Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 15(12)2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37370700

RESUMO

Prostaglandins, the bioactive lipids generated from the metabolism of arachidonic acid through cyclooxygenases, have potent effects on many constituents of tumor microenvironments. In this review, we will describe the formation and activities of prostaglandins in the context of the tumor microenvironment. We will discuss the regulation of cancer-associated fibroblasts and immune constituents by prostaglandins and their roles in immune escapes during tumor progression. The review concludes with future perspectives on improving the efficacy of immunotherapy through repurposing non-steroid anti-inflammatory drugs and other prostaglandin modulators.

2.
Dev Cell ; 57(2): 228-245.e6, 2022 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-35016014

RESUMO

Although overwhelming plasma membrane integrity loss leads to cell lysis and necrosis, cells can tolerate a limited level of plasma membrane damage, undergo ESCRT-III-mediated repair, and survive. Here, we find that cells which undergo limited plasma membrane damage from the pore-forming actions of MLKL, GSDMD, perforin, or detergents experience local activation of PKCs through Ca2+ influx at the damage sites. S660-phosphorylated PKCs subsequently activate the TAK1/IKKs axis and RelA/Cux1 complex to trigger chemokine expressions. We observe that in late-stage cancers, cells with active MLKL show expression of CXCL8. Similar expression induction is also found in ischemia-injured kidneys. Chemokines generated in this manner are also indispensable for recruiting immune cells to the dead and dying cells. This plasma membrane integrity-sensing pathway is similar to the well-established yeast cell wall integrity signaling pathway at molecular level, and this suggests an evolutionary conserved mechanism to respond to the cellular barrier damage.


Assuntos
Membrana Celular/metabolismo , Quimiocinas/fisiologia , Proteína Quinase C/fisiologia , Animais , Apoptose/fisiologia , Membrana Celular/fisiologia , Quimiocinas/genética , Quimiocinas/imunologia , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Expressão Gênica/genética , Regulação da Expressão Gênica/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Necrose/metabolismo , Proteínas de Ligação a Fosfato/metabolismo , Fosforilação , Proteína Quinase C/metabolismo , Proteínas Quinases/metabolismo , Proteínas Quinases/fisiologia , Transdução de Sinais
3.
Nat Commun ; 10(1): 3055, 2019 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-31296870

RESUMO

KRAS mutations are present in over 90% of pancreatic ductal adenocarcinomas (PDAC), and drive their poor outcomes and failure to respond to targeted therapies. Here we show that Leukemia Inhibitory Factor (LIF) expression is induced specifically by oncogenic KRAS in PDAC and that LIF depletion by genetic means or by neutralizing antibodies prevents engraftment in pancreatic xenograft models. Moreover, LIF-neutralizing antibodies synergize with gemcitabine to eradicate established pancreatic tumors in a syngeneic, KrasG12D-driven, PDAC mouse model. The related cytokine IL-6 cannot substitute for LIF, suggesting that LIF mediates KRAS-driven malignancies through a non-STAT-signaling pathway. Unlike IL-6, LIF inhibits the activity of the Hippo-signaling pathway in PDACs. Depletion of YAP inhibits the function of LIF in human PDAC cells. Our data suggest a crucial role of LIF in KRAS-driven pancreatic cancer and that blockade of LIF by neutralizing antibodies represents an attractive approach to improving therapeutic outcomes.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Carcinoma Ductal Pancreático/tratamento farmacológico , Fator Inibidor de Leucemia/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Desoxicitidina/uso terapêutico , Feminino , Técnicas de Inativação de Genes , Humanos , Interleucina-6/genética , Interleucina-6/metabolismo , Fator Inibidor de Leucemia/antagonistas & inibidores , Fator Inibidor de Leucemia/genética , Camundongos , Mutação , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais/genética , Fatores de Transcrição , Ensaios Antitumorais Modelo de Xenoenxerto , Proteínas de Sinalização YAP , Gencitabina
4.
Cell ; 163(5): 1237-1251, 2015 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-26590425

RESUMO

K-Ras and H-Ras share identical effectors and have similar properties; however, the high degree of tumor-type specificity associated with K-Ras and H-Ras mutations suggests that they have unique roles in oncogenesis. Here, we report that oncogenic K-Ras, but not H-Ras, suppresses non-canonical Wnt/Ca(2+) signaling, an effect that contributes strongly to its tumorigenic properties. K-Ras does this by binding to calmodulin and so reducing CaMKii activity and expression of Fzd8. Restoring Fzd8 in K-Ras mutant pancreatic cells suppresses malignancy, whereas depletion of Fzd8 in H-Ras(V12)-transformed cells enhances their tumor initiating capacity. Interrupting K-Ras-calmodulin binding using genetic means or by treatment with an orally active protein kinase C (PKC)-activator, prostratin, represses tumorigenesis in K-Ras mutant pancreatic cancer cells. These findings provide an alternative way to selectively target this "undruggable" protein.


Assuntos
Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Receptores de Superfície Celular/metabolismo , Via de Sinalização Wnt , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Calmodulina/metabolismo , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Genes ras , Humanos , Camundongos , Dados de Sequência Molecular , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/metabolismo , Papiloma/metabolismo , Ésteres de Forbol/administração & dosagem , Fosforilação , Ligação Proteica/efeitos dos fármacos
5.
Cancer Biol Ther ; 9(2): 122-33, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19923925

RESUMO

A common metabolic change in cancer is the acquisition of glycolytic phenotypes. Increased expression of glycolytic enzymes is considered as one contributing factor. The role of mitochondrial defects in acquisition of glycolytic phenotypes has been postulated but remains controversial. Here we show that functional defects in mitochondrial respiration could be induced by oncogenic H-Ras(Q61L) transformation, even though the mitochondrial contents or mass was not reduced in the transformed cells. First, mitochondrial respiration, as measured by mitochondrial oxygen consumption, was suppressed in NIH-3T3 cells transformed with H-Ras(Q61L). Second, oligomycin or rotenone did not reduce the cellular ATP levels in the H-Ras(Q61L) transformed cells, suggesting a diminished role of mitochondrial respiration in the cellular energy metabolism. Third, inhibition of glycolysis with iodoacetic acid reduced ATP levels at a much faster rate in H-Ras(Q61L) transformed cells than in the vector control cells. The reduction of cellular ATP levels was reversed by exogenously added pyruvate in the vector control cells but not in H-Ras(Q61L) transformed cells. Finally when compared to the HRas(Q61L) transformed cells, the vector control cells had increased resistance toward glucose deprivation. The increased resistance was dependent on mitochondrial oxidative phosphorylation since rotenone or oligomycin abolished the increased survival of the vector control cells under glucose deprivation. The results also suggest an inability of the H-Ras(Q61L) transformed cells to reactivate mitochondrial respiration under glucose deprivation. Taken together, the data suggest that mitochondrial respiration can be impaired during transformation of NIH-3T3 cells by oncogeneic H-Ras(Q61L).


Assuntos
Transformação Celular Neoplásica , Fibroblastos/metabolismo , Genes ras , Mitocôndrias/metabolismo , Proteína Oncogênica p21(ras)/fisiologia , Trifosfato de Adenosina/metabolismo , Animais , Antimicina A/farmacologia , Transporte de Elétrons/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Glucose/metabolismo , Glicólise/efeitos dos fármacos , Ácido Iodoacético/farmacologia , Camundongos , Mitocôndrias/efeitos dos fármacos , Mutação de Sentido Incorreto , Células NIH 3T3/metabolismo , Oligomicinas/farmacologia , Proteína Oncogênica p21(ras)/genética , Fosforilação Oxidativa/efeitos dos fármacos , Consumo de Oxigênio/efeitos dos fármacos , Mutação Puntual , Ácido Pirúvico/farmacologia , Rotenona/farmacologia
6.
Int J Cancer ; 124(7): 1545-51, 2009 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-19089921

RESUMO

The enzyme 15-lipoxygenase-2 (15-LOX-2) utilizes arachidonic acid, a polyunsaturated fatty acid, to synthesize 15(S)-hydroxyeicosatetraenoic acid. Abundantly expressed in normal prostate epithelium but frequently suppressed in the cancerous tissues, 15-LOX-2 has been suggested as a functional suppressor of prostate cancer, but the mechanism(s) involved remains unknown. To study the functional role of 15-LOX-2 in prostate cancer, we expressed 15-LOX-2 as a fusion protein with GFP in DU145 and PC-3 cells and found that 15-LOX-2 increased cell cycle arrest at G0/G1 phase. When injected into athymic nu/nu mice, prostate cancer cells with 15-LOX-2 expression could still form palpable tumors without significant changes in tumorigenicity. But, the tumors with 15-LOX-2 expression grew significantly slower than those derived from vector controls and were kept dormant for a long period of time. Histological evaluation revealed an increase in cell death in tumors derived from prostate cancer cells with 15-LOX-2 expression, while in vitro cell culture conditions, no such increase in apoptosis was observed. Further studies found that the expression of vascular endothelial growth factor A (VEGF-A) was significantly reduced in prostate cancer cells with 15-LOX-2 expression restored. Our studies suggest that 15-LOX-2 suppresses VEGF gene expression and sustains tumor dormancy in prostate cancer. Loss of 15-LOX-2 functionalities, therefore, represents a key step for prostate cancer cells to exit from dormancy and embark on malignant progression in vivo.


Assuntos
Araquidonato 15-Lipoxigenase/metabolismo , Regulação Neoplásica da Expressão Gênica/fisiologia , Neoplasias da Próstata/enzimologia , Neoplasias da Próstata/patologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Apoptose/fisiologia , Western Blotting , Linhagem Celular Tumoral , Proliferação de Células , Regulação para Baixo , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Expressão Gênica , Humanos , Imuno-Histoquímica , Masculino , Camundongos , Neoplasias da Próstata/genética , Proteínas Recombinantes de Fusão , Transfecção , Fator A de Crescimento do Endotélio Vascular/genética
7.
Cancer Res ; 68(1): 115-21, 2008 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-18172303

RESUMO

Thromboxane A(2) (TxA(2)) is a prostanoid formed by thromboxane synthase using the cyclooxygenase product prostaglandin H(2) as the substrate. Previously, increased expression of thromboxane synthase was found in prostate tumors, and tumor cell motility was attenuated by inhibitors of thromboxane synthase. This study was undertaken to elucidate how tumor motility is regulated by TxA(2). Here, we report that human prostate cancer cells express functional receptors for TxA(2) (TP). Ligand binding assay found that PC-3 cells binded to SQ29548, a high-affinity TP antagonist, in a saturable manner with K(d) of 3.64 nmol/L and B(max) of 120.4 fmol per million cells. Treatment of PC-3 cells by U46619, a TP agonist, induced PC-3 cell contraction, which was blocked by pretreatment with the TP antagonist SQ29548 or pinane TxA(2). The migration of prostate cancer cells was significantly inhibited either by sustained activation of TP or by blockade of TP activation, suggesting that TP activation must be tightly controlled during cell migration. Further studies found that small GTPase RhoA was activated by TP activation, and pretreatment of PC-3 cells with Y27632, a Rho kinase (ROCK) inhibitor, blocked U46619-induced cell contraction. A dominant-negative mutant of RhoA also blocked U46619-induced cell contraction. Taken together, the data suggest that TPs are expressed in prostate cancer and activation of TPs regulates prostate cancer cell motility and cytoskeleton reorganization through activation of Rho.


Assuntos
Carcinoma/patologia , Movimento Celular , Neoplasias da Próstata/patologia , Receptores de Tromboxano A2 e Prostaglandina H2/fisiologia , Proteína rhoA de Ligação ao GTP/metabolismo , Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico/farmacologia , Amidas/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes , Carcinoma/química , Carcinoma/metabolismo , Linhagem Celular Tumoral , Inibidores Enzimáticos/farmacologia , Ácidos Graxos Insaturados , Humanos , Hidrazinas/farmacologia , Ligantes , Masculino , Neoplasias da Próstata/química , Neoplasias da Próstata/metabolismo , Piridinas/farmacologia , Receptores de Tromboxano A2 e Prostaglandina H2/análise , Receptores de Tromboxano A2 e Prostaglandina H2/efeitos dos fármacos , Proteína rhoA de Ligação ao GTP/análise , Proteína rhoA de Ligação ao GTP/antagonistas & inibidores
8.
Front Biosci ; 13: 759-76, 2008 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-17981586

RESUMO

Small GTPase Rho signaling pathways regulate the growth, motility, invasion and metastasis of breast cancer cells. Aberrant Rho signaling, as results from alterations in the levels of Rho GTPase proteins, the status of activation, and the abundance of effector proteins, is found in breast cancers. Alterations of Rho signaling particularly impact the cytoskeleton, whose organization and reorganization underpin the motility of breast cancer cells during the invasive growth and metastasis of breast cancer. Progress is being made to elucidate the underlying mechanisms by which Rho GTPases activate the downstream signaling effectors. Further investigations are required for development of novel tumor therapeutic strategies targeting the Rho GTPase signaling pathways to treat breast cancer.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Proteínas rho de Ligação ao GTP/metabolismo , Animais , Antineoplásicos/farmacologia , Movimento Celular , Citoesqueleto/metabolismo , Progressão da Doença , Inibidores Enzimáticos/farmacologia , Humanos , Modelos Biológicos , Metástase Neoplásica , Transdução de Sinais , Proteína cdc42 de Ligação ao GTP/metabolismo
9.
Cancer Res ; 67(21): 10361-7, 2007 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-17974979

RESUMO

Resistance to chemotherapy is a significant barrier to the effective management of prostate cancer. Human pregnane X receptor (hPXR), an orphan nuclear receptor known for its activation by many important clinical drugs, interacts with many cellular signaling pathways during carcinogenesis and is a major transcription factor regulating the expression of drug metabolism enzymes, including transporters. It is unknown whether hPXR is a determinant of drug resistance in prostate cancer. In this study, we first detected the expression of hPXR in both normal and cancerous prostate tissues. Pretreatment with SR12813, a potent and selective agonist of hPXR, led to nuclear translocation of PXR in PC-3 cells and increased expression of cytochrome P450 3A4 (CYP3A4) and multidrug resistance 1 (MDR1). SR12813 pretreatment increased resistance of PC-3 cells to Taxol and vinblastine, as assessed by viability and clonogenic survival. To further study the role of hPXR in prostate cancer drug resistance, hPXR expression was knocked down using PXR-targeting short hairpin RNAs. The activities of hPXR toward the promoter of CYP3A4 in hPXR-ablated clones decreased when compared with that of wild-type PC-3 cells. Their sensitivities to Taxol and vinblastine were enhanced by hPXR ablation. Our data here suggest that hPXR may play an important role in prostate cancer resistance to chemotherapeutics.


Assuntos
Neoplasias da Próstata/tratamento farmacológico , Receptores de Esteroides/fisiologia , Subfamília B de Transportador de Cassetes de Ligação de ATP , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/análise , Linhagem Celular Tumoral , Citocromo P-450 CYP3A , Sistema Enzimático do Citocromo P-450/análise , Sistema Enzimático do Citocromo P-450/genética , Difosfonatos/farmacologia , Resistencia a Medicamentos Antineoplásicos , Humanos , Imuno-Histoquímica , Masculino , Receptor de Pregnano X , Receptores de Esteroides/análise
10.
Cancer Metastasis Rev ; 26(3-4): 525-34, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17763971

RESUMO

In response to various growth factors, hormones or cytokines, arachidonic acid can be mobilized from phospholipids pools and converted to bioactive eicosanoids through cyclooxygenase (COX), lipoxygenase (LOX) or P-450 epoxygenase pathway. The COX pathway generates five major prostanoids (prostaglandin D(2), prostaglandin E(2), prostaglandin F(2)alpha, prostaglandin I(2) and thromboxane A(2)) that play important roles in diverse biological processes. Studies suggest that different prostanoids and their own synthase can play distinct roles in tumor progression and cancer metastasis. COX-2 and PGE(2) synthase have been most well documented in the regulation of various aspects of tumor progression and metastasis. PGE(2), for example, can stimulate angiogenesis or other signaling pathways by binding to its receptors termed EPs. Therefore, targeting downstream prostanoids may provide a new avenue to impede tumor progression. In this review, aberrant expression and functions of several prostanoid synthetic enzymes in cancer will be discussed. The possible regulation of tumor progression by prostaglandins and their receptors will also be discussed.


Assuntos
Neoplasias/patologia , Prostaglandina-Endoperóxido Sintases/fisiologia , Prostaglandinas/fisiologia , Animais , Dinoprostona/fisiologia , Progressão da Doença , Humanos , Neoplasias/enzimologia , Receptores de Prostaglandina/fisiologia , Tromboxano A2/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA