Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 13(5)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38475434

RESUMO

Sugarcane is a globally significant crop for sugar and energy production, and developing high light-efficiency sugarcane varieties is crucial for enhancing yield and quality. However, limited research is available on the screening of sugarcane germplasm with high photosynthetic efficiency, especially with different leaf positions. The present study, conducted in Guangxi, China, aimed to analyze the photosynthetic characteristics of 258 sugarcane varieties at different leaf positions over three consecutive years in field experiments. The results showed significant differences in photosynthetic characteristics among genotypes, years, and leaf positions. Heritability estimates for various photosynthetic parameters ranged from 0.76 to 0.88. Principal component analysis revealed that the first three principal components accounted for over 99% of the cumulative variance. The first component represented photosynthetic efficiency and light utilization, the second focused on electron transfer and reaction center status, and the third was associated with chlorophyll content. Cluster and discriminant analysis classified sugarcane genotypes into three categories: high photosynthetic efficiency (HPE) with 86 genotypes, medium photosynthetic efficiency (MPE) with 60 genotypes, and low photosynthetic efficiency (LPE) with 112 genotypes. Multi-year trials confirmed that HPE sugarcane genotypes had higher single-stem weight and sucrose content. This study provides valuable insights into the photosynthetic physiological characteristics of different sugarcane varieties, which can contribute to further research regarding high yields and sugar breeding.

2.
Plant Methods ; 19(1): 101, 2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37770966

RESUMO

BACKGROUND: Sugarcane (Saccharum spp.) is the core crop for sugar and bioethanol production over the world. A major problem in sugarcane production is stalk lodging due to weak mechanical strength. Rind penetrometer resistance (RPR) and breaking force are two kinds of regular parameters for mechanical strength characterization. However, due to the lack of efficient methods for determining RPR and breaking force in sugarcane, genetic approaches for improving these traits are generally limited. This study was designed to use near-infrared spectroscopy (NIRS) calibration assay to accurately assess mechanical strength on a high-throughput basis for the first time. RESULTS: Based on well-established laboratory measurements of sugarcane stalk internodes collected in the years 2019 and 2020, considerable variations in RPR and breaking force were observed in the stalk internodes. Following a standard NIRS calibration process, two online models were obtained with a high coefficient of determination (R2) and the ratio of prediction to deviation (RPD) values during calibration, internal cross-validation, and external validation. Remarkably, the equation for RPR exhibited R2 and RPD values as high as 0.997 and 17.70, as well as showing relatively low root mean square error values at 0.44 N mm-2 during global modeling, demonstrating excellent predictive performance. CONCLUSIONS: This study delivered a successful attempt for rapid and precise prediction of rind penetrometer resistance and breaking force in sugarcane stalk by NIRS assay. These established models can be used to improve phenotyping jobs for sugarcane germplasm on a large scale.

3.
Front Plant Sci ; 14: 1224268, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37546250

RESUMO

Sugarcane is a major industrial crop around the world. Lodging due to weak mechanical strength is one of the main problems leading to huge yield losses in sugarcane. However, due to the lack of high efficiency phenotyping methods for stalk mechanical strength characterization, genetic approaches for lodging-resistant improvement are severely restricted. This study attempted to apply near-infrared spectroscopy high-throughput assays for the first time to estimate the crushing strength of sugarcane stalks. A total of 335 sugarcane samples with huge variation in stalk crushing strength were collected for online NIRS modeling. A comprehensive analysis demonstrated that the calibration and validation sets were comparable. By applying a modified partial least squares method, we obtained high-performance equations that had large coefficients of determination (R2 > 0.80) and high ratio performance deviations (RPD > 2.4). Particularly, when the calibration and external validation sets combined for an integrative modeling, we obtained the final equation with a coefficient of determination (R2) and ratio performance deviation (RPD) above 0.9 and 3.0, respectively, demonstrating excellent prediction capacity. Additionally, the obtained model was applied for characterization of stalk crushing strength in large-scale sugarcane germplasm. In a three-year study, the genetic characteristics of stalk crushing strength were found to remain stable, and the optimal sugarcane genotypes were screened out consistently. In conclusion, this study offers a feasible option for a high-throughput analysis of sugarcane mechanical strength, which can be used for the breeding of lodging resistant sugarcane and beyond.

4.
Front Chem ; 10: 950149, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36046724

RESUMO

Chiral allylic oxidized products play an increasingly important role in the pharmaceutical, agrochemical, and pharmaceutical industries. Biocatalytic C-H oxyfunctionalization to synthesize allylic oxidized products has attracted great attention in recent years, with the ability to simplify synthetic approaches toward complex compounds. As a result, scientists have found some new enzymes and mutants through techniques of gene mining and enzyme-directed evolution in recent years. This review summarizes the recent developments in biocatalytic selective oxidation of olefins by different kinds of biocatalysts.

5.
Plant Methods ; 17(1): 76, 2021 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-34256789

RESUMO

BACKGROUND: Sugarcane (Saccharum officinarum L.) is an economically important crop with stalks as the harvest organs. Improvement in stalk quality is deemed a promising strategy for enhancing sugarcane production. However, the lack of efficient approaches for systematic evaluation of sugarcane germplasm largely limits improvements in stalk quality. This study is designed to develop a systematic near-infrared spectroscopy (NIRS) assay for high-throughput phenotyping of sugarcane stalk quality, thereby providing a feasible solution for precise evaluation of sugarcane germplasm. RESULTS: A total of 628 sugarcane accessions harvested at different growth stages before and after maturity were employed to take a high-throughput assay to determine sugarcane stalk quality. Based on high-performance anion chromatography (HPAEC-PAD), large variations in sugarcane stalk quality were detected in terms of biomass composition and the corresponding fundamental ratios. Online and offline NIRS modeling strategies were applied for multiple purpose calibration with partial least square (PLS) regression analysis. Consequently, 25 equations were generated with excellent determination coefficients (R2) and ratio performance deviation (RPD) values. Notably, for some observations, RPD values as high as 6.3 were observed, which indicated their exceptional performance and predictive capability. CONCLUSIONS: This study provides a feasible method for consistent and high-throughput assessment of stalk quality in terms of moisture, soluble sugar, insoluble residue and the corresponding fundamental ratios. The proposed method permits large-scale screening of optimal sugarcane germplasm for sugarcane stalk quality breeding and beyond.

6.
Biotechnol Biofuels ; 14(1): 123, 2021 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-34051834

RESUMO

BACKGROUND: Sugarcane is one of the most crucial energy crops that produces high yields of sugar and lignocellulose. The cellulose crystallinity index (CrI) and lignin are the two kinds of key cell wall features that account for lignocellulose saccharification. Therefore, high-throughput screening of sugarcane germplasm with excellent cell wall features is considered a promising strategy to enhance bagasse digestibility. Recently, there has been research to explore near-infrared spectroscopy (NIRS) assays for the characterization of the corresponding wall features. However, due to the technical barriers of the offline strategy, it is difficult to apply for high-throughput real-time analyses. This study was therefore initiated to develop a high-throughput online NIRS assay to rapidly detect cellulose crystallinity, lignin content, and their related proportions in sugarcane, aiming to provide an efficient and feasible method for sugarcane cell wall feature evaluation. RESULTS: A total of 838 different sugarcane genotypes were collected at different growth stages during 2018 and 2019. A continuous variation distribution of the near-infrared spectrum was observed among these collections. Due to the very large diversity of CrI and lignin contents detected in the collected sugarcane samples, seven high-quality calibration models were developed through online NIRS calibration. All of the generated equations displayed coefficient of determination (R2) values greater than 0.8 and high ratio performance deviation (RPD) values of over 2.0 in calibration, internal cross-validation, and external validation. Remarkably, the equations for CrI and total lignin content exhibited RPD values as high as 2.56 and 2.55, respectively, indicating their excellent prediction capacity. An offline NIRS assay was also performed. Comparable calibration was observed between the offline and online NIRS analyses, suggesting that both strategies would be applicable to estimate cell wall characteristics. Nevertheless, as online NIRS assays offer tremendous advantages for large-scale real-time screening applications, it could be implied that they are a better option for high-throughput cell wall feature prediction. CONCLUSIONS: This study, as an initial attempt, explored an online NIRS assay for the high-throughput assessment of key cell wall features in terms of CrI, lignin content, and their proportion in sugarcane. Consistent and precise calibration results were obtained with NIRS modeling, insinuating this strategy as a reliable approach for the large-scale screening of promising sugarcane germplasm for cell wall structure improvement and beyond.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA