Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cell Death Discov ; 8(1): 122, 2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35301287

RESUMO

Claudins, the integral tight junction proteins that regulate paracellular permeability and cell polarity, are frequently dysregulated in cancer; however, their roles in regulating EGFR tyrosine kinase inhibitors (EGFR-TKIs) resistance in non-small cell lung cancer (NSCLC) are unknown. To this end, we performed GEO dataset analysis and identified that claudin1 was a critical regulator of EGFR-TKI resistance in NSCLC cells. We also found that claudin1, which was highly induced by continuous gefitinib treatment, was significantly upregulated in EGFR-TKI-resistant NSCLC cells. By knocking down claudin1 in cell lines and xenograft models, we established that gefitinib resistance was decreased. Moreover, claudin1 knockdown suppressed the expression levels of pluripotency markers (Oct4, Nanog, Sox2, CD133, and ALDH1A1). Claudin1 loss inhibited phosphorylated AKT (p-AKT) expression and reduced cancer cell stemness by suppressing AKT activation. Furthermore, SKL2001, a ß-catenin agonist, upregulated the expression levels of claudin1, p-AKT, and pluripotency markers, and 1,25-dihydroxy-vitamin D3 (1,25(OH)2D3) reduced claudin1 expression, AKT activation, and cancer cell stemness by inhibiting ß-catenin, and suppressed claudin1/AKT pathway mediated cancer stem-like properties and gefitinib resistance. Collectively, inhibition of claudin1-mediated cancer stem-like properties by 1,25(OH)2D3 may decrease gefitinib resistance through the AKT pathway, which may be a promising therapeutic strategy for inhibiting gefitinib resistance in EGFR-mutant lung adenocarcinoma.

2.
Acta Pharmacol Sin ; 43(1): 167-176, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33772142

RESUMO

Recent studies show that intracellular accumulation of cholesterol leads to acquired resistance to gefitinib in non-small cell lung cancer (NSCLC) cells. In this study we investigated how to regulate the cholesterol levels in gefitinib-resistant NSCLC cells. We showed that intracellular cholesterol levels in gefitinib-resistant cell lines (PC-9/GR, H1975, H1650, and A549) were significantly higher than that in gefitinib-sensitive cell line (PC-9). Treatment with gefitinib (5 µM) significantly increased intracellular cholesterol levels in PC-9/GR, H1975, and H1650 cells. Gefitinib treatment downregulated the expression of PPARα, LXRα, and ABCA1, leading to dysregulation of cholesterol efflux pathway. We found that a lipid-lowering drug fenofibrate (20, 40 µM) dose-dependently increased the expression of PPARα, LXRα, and ABCA1, decreased the intracellular cholesterol levels, and enhanced the antiproliferative effects of gefitinib in PC-9/GR, H1975, and H1650 cells. We revealed that fenofibrate increased the gefitinib-induced apoptosis via regulating the key proteins involved in the intrinsic apoptosis pathway. In PC-9/GR, H1975 and H1650 cells, fenofibrate dose-dependently increased the expression of AMPK, FoxO1, and decreased the expression of AKT, which were remarkably weakened by knockdown of PPARα. In PC-9/GR cell xenograft mice, combined administration of gefitinib (25 mg · kg-1 · d-1) and fenofibrate (100 mg · kg-1 · d-1) caused remarkable inhibition on tumor growth as compared to treatment with either drug alone. All the results suggest that fenofibrate relieves acquired resistance to gefitinib in NSCLC by promoting apoptosis via regulating PPARα/AMPK/AKT/FoxO1 pathway. We propose that combination of gefitinib and fenofibrate is a potential strategy for overcoming the gefitinib resistance in NSCLC.


Assuntos
Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Fenofibrato/farmacologia , Gefitinibe/farmacologia , Hipolipemiantes/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Proteínas Quinases Ativadas por AMP/metabolismo , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Fenofibrato/química , Proteína Forkhead Box O1/metabolismo , Gefitinibe/química , Humanos , Hipolipemiantes/química , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Estrutura Molecular , PPAR alfa/agonistas , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo , Relação Estrutura-Atividade
3.
Cell Death Dis ; 11(8): 670, 2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32820157

RESUMO

Recent studies have demonstrated that acquisition of cancer stem-like properties plays an essential role in promoting epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) resistance in non-small cell lung cancer (NSCLC); however, how to regulate cancer stem-like properties and EGFR-TKI resistance is largely unclear. In this study, we discovered that increased iroquois-class homeodomain protein 4 (IRX4) was related to gefitinib resistance in NSCLC cells. Knockdown of IRX4 inhibited cell proliferation, sphere formation, and the expression of CD133, ALDH1A1, NANOG, Sox2 and Notch1, and the transcriptional activity of NANOG promoter. IRX4 overexpression increased the protein level of NANOG and CD133 in PC-9 cells. Combination of knocking-down IRX4 with gefitinib increased cell apoptosis and decreased cell viability and the expression of p-EGFR and NANOG in PC-9/GR cells. IRX4 knockdown in a PC-9/GR xenograft tumor model inhibited tumor progression and the expression of NANOG and CD133 more effectively than single treatment alone. Knockdown of NANOG inhibited the expression of CD133 and restored gefitinib cytotoxicity, and NANOG overexpression-induced cancer stem-like properties and gefitinib resistance could be obviously reversed by knocking-down IRX4. Further, we found that 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) reduced obviously the expression of IRX4 and NANOG by inhibiting the activation of TGF-ß1/Smad3 signaling pathway; moreover, combination of 1,25(OH)2D3 and gefitinib decreased cell viability and proliferation or tumor progression and the expression of IRX4 and NANOG compared with single treatment alone both in PC-9/GR cells and in a PC-9/GR xenograft tumor model. These results reveal that inhibition of IRX4-mediated cancer stem-like properties by regulating 1,25(OH)2D3 signaling may increase gefitinib cytotoxicity. Combination therapy of gefitinib and 1,25(OH)2D3 by targeting IRX4 and NANOG, could provide a promising strategy to improve gefitinib cytotoxicity.


Assuntos
Calcitriol/metabolismo , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Proteínas de Homeodomínio/metabolismo , Antígeno AC133/genética , Antígeno AC133/metabolismo , Animais , Apoptose/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Receptores ErbB/metabolismo , Gefitinibe/farmacologia , Expressão Gênica/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Proteínas de Homeodomínio/genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Proteína Homeobox Nanog/genética , Proteína Homeobox Nanog/metabolismo , Células-Tronco Neoplásicas/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Quinazolinas/farmacologia , Transdução de Sinais/efeitos dos fármacos
4.
Int J Oncol ; 57(5): 1103-1115, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33491740

RESUMO

Cancer represents a severe challenge to healthcare systems and individuals worldwide. The development of multiple drug resistance is a major issue regarding cancer therapy, which can result in the progression of disease. Cholesterol is a major constituent of cell membranes and participates in the regulation of several cellular processes, such as cell growth, proliferation, differentiation, survival and apoptosis. Numerous studies have provided correlative support for a role of cholesterol in cancer development and drug resistance. In the present review, recent insights into the regulation of cholesterol metabolism, the association between cholesterol and the efficacy of antitumor agents in preclinical studies, as well as the possible mechanisms through which cholesterol influences drug resistance, are summarized. Furthermore, the clinical relevance of cholesterol to the development of cancer, as well as strategies targeting cholesterol for therapeutic intervention are detailed. Collectively, studies on various types of cancer have suggested that increased cholesterol levels promote resistance to chemotherapeutic drugs in cancer through a variety of mechanisms, and that the depletion of cholesterol using statins significantly enhances the sensitivity of the therapeutic agents. However, additional studies are required to enhance the current understanding of the involvement of cholesterol in the development of drug­resistant cancer.


Assuntos
Colesterol/metabolismo , Resistencia a Medicamentos Antineoplásicos , Neoplasias/metabolismo , Transportadores de Cassetes de Ligação de ATP/fisiologia , Animais , Regulação da Expressão Gênica , Humanos , Microdomínios da Membrana/fisiologia , Neoplasias/tratamento farmacológico , Prognóstico
5.
Acta Pharmacol Sin ; 40(4): 522-529, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29921888

RESUMO

Silkworm cocoon was recorded to cure carbuncle in the Compendium of Materia Medica. Previous studies have demonstrated that the supplemental silk protein sericin exhibits anticancer activity. In the present study, we investigated the effects of silk fibroin peptide (SFP) extracted from silkworm cocoons against human lung cancer cells in vitro and in vivo and its possible anticancer mechanisms. SFP that we prepared had high content of glycine (~ 30%) and showed a molecular weight of ~ 10 kDa. Intragastric administration of SFP (30 g/kg/d) for 14 days did not affect the weights, vital signs, routine blood indices, and blood biochemical parameters in mice. MTT assay showed that SFP dose-dependently inhibited the growth of human lung cancer A549 and H460 cells in vitro with IC50 values of 9.921 and 9.083 mg/mL, respectively. SFP also dose-dependently suppressed the clonogenic activity of the two cell lines. In lung cancer H460 xenograft mice, intraperitoneal injection of SFP (200 or 500 mg/kg/d) for 40 days significantly suppressed the tumor growth, but did not induce significant changes in the body weight. We further examined the effects of SFP on cell cycle and apoptosis in H460 cells using flow cytometry, which revealed that SFP-induced cell cycle arrest at the S phase, and then promoted cell apoptosis. We demonstrated that SFP (20-50 mg/mL) dose-dependently downregulates Bcl-2 protein expression and upregulates Bax protein in H460 cells during cell apoptosis. The results suggest that SFP should be studied further as a novel therapeutic agent for the treatment of lung cancer.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Fibroínas/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Peptídeos/farmacologia , Células A549 , Animais , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Fibroínas/química , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Peptídeos/química , Relação Estrutura-Atividade
6.
Sci Rep ; 7(1): 9153, 2017 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-28831201

RESUMO

The novel pyrazoline derivative, BHX, has recently been shown to exhibit potent anti-tumour activity by blocking the Wnt/ß-catenin signalling pathway. However, its effect on breast cancer growth and invasion are unknown. Our results show that BHX suppresses MDA-MB-231 cell viability and colony formation in a dose-dependent manner, and induces apoptosis and G0/G1 phase arrest. BHX-treated breast cancer cells showed morphological characteristics of cells undergoing apoptosis. Furthermore, BHX inhibited cell migration and invasion, which was associated with increased E-cadherin mRNA and protein expression, and down-regulation of SNAIL and vimentin. In addition, BHX induced the generation of intracellular ROS and decreased ß-catenin protein and mRNA expression. We used a mouse xenograft model to investigate the effects of BHX in vivo, where the growth of MDA-MB-231 xenografted tumours was suppressed in nude mice treated continuously with BHX for 21 days. Finally, the rat plasma concentration of BHX was measured by ultra-performance liquid-chromatography tandem mass spectrometry and the pharmacokinetic parameters of BHX were processed by non-compartmental analysis. In conclusion, BHX merits further study as a novel therapeutic small molecule for the treatment of breast cancer.


Assuntos
Antinematódeos/administração & dosagem , Neoplasias da Mama/tratamento farmacológico , Regulação para Baixo , Pirazóis/administração & dosagem , Via de Sinalização Wnt/efeitos dos fármacos , Animais , Antinematódeos/farmacocinética , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Camundongos Nus , Invasividade Neoplásica , Pirazóis/farmacocinética , Ratos , Resultado do Tratamento , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Sci Rep ; 6: 38331, 2016 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-27910912

RESUMO

BHX (N-(4-hydroxybenzyl)-1,3,4-triphenyl-4,5-dihydro-1H-pyrazole-5-carboxamide), a Wnt signaling pathway inhibitor, effectively inhibits tumor cell growth, but the underlying mechanism is unclear. Thus, we aim to investigate the effects and associated mechanism of BHX action on A549 and MCF-7 cell lines. In our study, MTT(3-[4,5-dimethyl-2-thiazolyl]-2,5-diphenyl-2H-tetrazolium bromide) and xenograft model assay indicated that cell growth was inhibited by BHX at a range of concentrations in vitro and in vivo. The expression of ß-catenin and Wnt signaling pathway downstream target genes were decreased evidently under BHX treatment. Flow cytometry also revealed that BHX treatment significantly induced G1 arrest. Further analysis showed that BHX lowered the transcriptional level of ß-catenin. In conclusion, BHX inhibited the nuclear synthesis of ß-catenin, thereby suppressing the Wnt signaling pathway and further inhibiting tumor growth and proliferation.


Assuntos
Antineoplásicos/farmacologia , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica , Pirazóis/farmacologia , beta Catenina/genética , Células A549 , Animais , Proliferação de Células/efeitos dos fármacos , Feminino , Pontos de Checagem da Fase G1 do Ciclo Celular/genética , Humanos , Células MCF-7 , Camundongos , Camundongos Endogâmicos BALB C , Transdução de Sinais , Carga Tumoral/efeitos dos fármacos , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , beta Catenina/antagonistas & inibidores , beta Catenina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA