Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
J Am Soc Nephrol ; (0)2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38788191

RESUMO

BACKGROUND: Renal mTORc2 plays a role in regulating renal K+-excretion (renal-EK) and K+-homeostasis. Inhibition of renal mTORc2 caused hyperkalemia due to suppressing epithelial-Na+-channel (ENaC) and ROMK (Kir1.1) in the collecting duct. We now explore whether mTORc2 of DCT regulates basolateral Kir4.1/Kir5.1, NCC and renal-EK. METHODS: We used patch-clamp-technique to examine basolateral Kir4.1/Kir5.1 in early-DCT, immunoblotting and immunofluorescence to examine NCC expression and in vivo measurement of urinary K+-excretion to determine baseline renal-EK in the mice treated with mTORc2-inhibitor and in DCT-specific Rapamycin-Insensitive-Companion- of-mTOR knockout (DCT-RICTOR-KO) mice. RESULTS: Inhibition of mTORc2 with AZD8055 abolished high-K+-induced inhibition of Kir4.1/Kir5.1 in DCT, high-K+-induced depolarization of DCT membrane and high-K+-induced suppression of pNCC expression. AZD8055 stimulated the 40-pS-inwardly-rectifying-K+ channel (Kir4.1/Kir5.1-heterotetramer) in early-DCT in the mice on overnight-high-K+, this effect was absent in the presence of PKC-inhibitor which also stimulated Kir4.1/Kir5.1. AZD8055-treatment decreased renal-EK in animals on overnight-high-K+. Deletion of RICTOR in the DCT increased the Kir4.1/Kir5.1-mediated K+-currents, hyperpolarized DCT membrane and increased the expression of pWNK4 and pNCC. Renal-EK was lower and plasma-K+ was higher in DCT-RICTOR-KO mice than corresponding control mice. Also, overnight-high-K+ did not inhibit Kir4.1/Kir5.1 activity in the DCT and failed to inhibit the expression of pNCC in DCT-RICTOR-KO mice. Overnight-high-K+ stimulated renal-EK in control mice, but this effect was attenuated in DCT-RICTOR-KO mice. Thus, overnight-high-K+ induced hyperkalemia in DCT-RICTOR-KO mice but not in control mice. CONCLUSIONS: mTORc2 of the DCT inhibits Kir4.1/Kir5.1 activity and NCC expression, and stimulates renal-EK during high-K+-intake.

2.
Front Physiol ; 13: 1039029, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36439248

RESUMO

Basolateral potassium channels in the distal convoluted tubule (DCT) are composed of inwardly-rectifying potassium channel 4.1 (Kir4.1) and Kir5.1. Kir4.1 interacts with Kir5.1 to form a 40 pS K+ channel which is the only type K+ channel expressed in the basolateral membrane of the DCT. Moreover, Kir4.1/Kir5.1 heterotetramer plays a key role in determining the expression and activity of thiazide-sensitive Na-Cl cotransport (NCC). In addition to Kir4.1/Kir5.1, Kir1.1 (ROMK) is expressed in the apical membrane of the late DCT (DCT2) and plays a key role in mediating epithelial Na+ channel (ENaC)-dependent K+ excretion. High dietary-K+-intake (HK) stimulates ROMK and inhibits Kir4.1/Kir5.1 in the DCT. Inhibition of Kir4.1/Kir5.1 is essential for HK-induced suppression of NCC whereas the stimulation of ROMK is important for increasing ENaC-dependent K+ excretion during HK. We have now used the patch-clamp-technique to examine whether gender and Cl- content of K+-diet affect HK-induced inhibition of basolateral Kir4.1/Kir5.1 and HK-induced stimulation of ROMK. Single-channel-recording shows that basolateral 40 pS K+ channel (Kir4.1/Kir5.1) activity of the DCT defined by NPo was 1.34 (1% KCl, normal K, NK), 0.95 (5% KCl) and 1.03 (5% K+-citrate) in male mice while it was 1.47, 1.02 and 1.05 in female mice. The whole-cell recording shows that Kir4.1/Kir5.1-mediated-K+ current of the early-DCT (DCT1) was 1,170 pA (NK), 725 pA (5% KCl) and 700 pA (5% K+-citrate) in male mice whereas it was 1,125 pA, 674 pA and 700 pA in female mice. Moreover, K+-currents (IK) reversal potential of DCT (an index of membrane potential) was -63 mV (NK), -49 mV (5% KCl) and -49 mV (5% K-citrate) in the male mice whereas it was -63 mV, -50 mV and -50 mV in female mice. Finally, TPNQ-sensitive whole-cell ROMK-currents in the DCT2 /initial-connecting tubule (CNT) were 910 pA (NK), 1,520 pA (5% KCl) and 1,540 pA (5% K+-citrate) in male mice whereas the ROMK-mediated K+ currents were 1,005 pA, 1,590 pA and 1,570 pA in female mice. We conclude that the effect of HK intake on Kir4.1/Kir5.1 of the DCT and ROMK of DCT2/CNT is similar between male and female mice. Also, Cl- content in HK diets has no effect on HK-induced inhibition of Kir4.1/Kir5.1 of the DCT and HK-induced stimulation of ROMK in DCT2/CNT.

3.
Sheng Li Xue Bao ; 74(1): 110-116, 2022 Feb 25.
Artigo em Chinês | MEDLINE | ID: mdl-35199131

RESUMO

Hypertension is one of the strongest risk factors for cardiovascular diseases, cerebral stroke, and kidney failure. Lifestyle and nutrition are important factors that modulate blood pressure. Hypertension can be controlled by increasing physical activity, decreasing alcohol and sodium intake, and stopping tobacco smoking. Chronic kidney disease patients often have increased blood pressure, which indicates that kidney is one of the major organs responsible for blood pressure homeostasis. The decrease of renal sodium reabsorption and increase of diuresis induced by high potassium intake is critical for the blood pressure reduction. The beneficial effect of a high potassium diet on hypertension could be explained by decreased salt reabsorption by sodium-chloride cotransporter (NCC) in the distal convoluted tubule (DCT). In DCT cells, NCC activity is controlled by with-no-lysine kinases (WNKs) and its down-stream target kinases, Ste20-related proline-alanine-rich kinase (SPAK) and oxidative stress-responsive 1 (OSR1). The kinase activity of WNKs is inhibited by intracellular chloride ([Cl-]i) and WNK4 is known to be the major WNK positively regulating NCC. Based on our previous studies, high potassium intake reduces the basolateral potassium conductance, decreases the negativity of DCT basolateral membrane (depolarization), and increases [Cl-]i. High [Cl-]i inhibits WNK4-SPAK/OSR1 pathway, and thereby decreases NCC phosphorylation. In this review, we discuss the role of DCT in the blood pressure regulation by dietary potassium intake, which is the mechanism that has been best dissected so far.


Assuntos
Túbulos Renais Distais , Proteínas Serina-Treonina Quinases , Pressão Sanguínea , Dieta , Humanos , Rim/metabolismo , Túbulos Renais Distais/metabolismo , Fosforilação , Potássio/metabolismo , Potássio/farmacologia , Membro 3 da Família 12 de Carreador de Soluto/metabolismo
4.
Am J Physiol Renal Physiol ; 318(6): F1369-F1376, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32308018

RESUMO

Cytochrome P-450 (Cyp) epoxygenase-dependent metabolites of arachidonic acid (AA) have been shown to inhibit renal Na+ transport, and inhibition of Cyp-epoxygenase is associated with salt-sensitive hypertension. We used the patch-clamp technique to examine whether Cyp-epoxygenase-dependent AA metabolites inhibited the basolateral 40-pS K+ channel (Kir4.1/Kir5.1) in the distal convoluted tubule (DCT). Application of AA inhibited the basolateral 40-pS K+ channel in the DCT. The inhibitory effect of AA on the 40-pS K+ channel was specific because neither linoleic nor oleic acid was able to mimic the effect of AA on the K+ channel. Inhibition of Cyp-monooxygenase with N-methylsulfonyl-12,12-dibromododec-11-enamide or inhibition of cyclooxygenase with indomethacin failed to abolish the inhibitory effect of AA on the 40-pS K+ channel. However, the inhibition of Cyp-epoxygenase with N-methylsulfonyl-6-(propargyloxyphenyl)hexanamide abolished the effect of AA on the 40-pS K+ channel in the DCT. Moreover, addition of either 11,12-epoxyeicosatrienoic acid (EET) or 14,15-EET also inhibited the 40-pS K+ channel in the DCT. Whole cell recording demonstrated that application of AA decreased, whereas N-methylsulfonyl-6-(propargyloxyphenyl)hexanamide treatment increased, Ba2+-sensitive K+ currents in the DCT. Finally, application of 14,15-EET but not AA was able to inhibit the basolateral 40-pS K+ channel in the DCT of Cyp2c44-/- mice. We conclude that Cyp-epoxygenase-dependent AA metabolites inhibit the basolateral Kir4.1/Kir5.1 in the DCT and that Cyp2c44-epoxygenase plays a role in the regulation of the basolateral K+ channel in the mouse DCT.


Assuntos
Ácido 8,11,14-Eicosatrienoico/análogos & derivados , Ácido Araquidônico/farmacologia , Família 2 do Citocromo P450/metabolismo , Túbulos Renais Distais/efeitos dos fármacos , Bloqueadores dos Canais de Potássio/farmacologia , Canais de Potássio Corretores do Fluxo de Internalização/antagonistas & inibidores , Ácido 8,11,14-Eicosatrienoico/metabolismo , Ácido 8,11,14-Eicosatrienoico/farmacologia , Amidas/farmacologia , Animais , Ácido Araquidônico/metabolismo , Família 2 do Citocromo P450/antagonistas & inibidores , Família 2 do Citocromo P450/genética , Inibidores Enzimáticos/farmacologia , Túbulos Renais Distais/metabolismo , Masculino , Potenciais da Membrana , Camundongos da Linhagem 129 , Camundongos Knockout , Bloqueadores dos Canais de Potássio/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo
5.
J Am Soc Nephrol ; 30(2): 216-227, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30559144

RESUMO

BACKGROUND: Dietary sodium intake regulates the thiazide-sensitive Na-Cl cotransporter (NCC) in the distal convoluted tubule (DCT). Whether the basolateral, inwardly rectifying potassium channel Kir4.1/Kir5.1 (a heterotetramer of Kir4.1/Kir5.1) in the DCT is essential for mediating the effect of dietary sodium intake on NCC activity is unknown. METHODS: We used electrophysiology, renal clearance techniques, and immunoblotting to examine effects of Kir4.1/Kir5.1 in the DCT and NCC in wild-type and kidney-specific Kir4.1 knockout mice. RESULTS: Low sodium intake stimulated basolateral Kir4.1/Kir5.1 activity, increased basolateral K+ conductance, and hyperpolarized the membrane. Conversely, high sodium intake inhibited the potassium channel, decreased basolateral K+ currents, and depolarized the membrane. Low sodium intake increased total and phosphorylated NCC expression and augmented hydrochlorothiazide-induced natriuresis; high sodium intake had opposite effects. Thus, elevated NCC activity induced by low sodium intake was associated with upregulation of Kir4.1/Kir5.1 activity in the DCT, whereas inhibition of NCC activity by high sodium intake was associated with diminished Kir4.1/Kir5.1 activity. In contrast, dietary sodium intake did not affect NCC activity in knockout mice. Further, Kir4.1 deletion not only abolished basolateral K+ conductance and depolarized the DCT membrane, but also abrogated the stimulating effects induced by low sodium intake on basolateral K+ conductance and hyperpolarization. Finally, dietary sodium intake did not alter urinary potassium excretion rate in hypokalemic knockout and wild-type mice. CONCLUSIONS: Stimulation of Kir4.1/Kir5.1 by low intake of dietary sodium is essential for NCC upregulation, and inhibition of Kir4.1/Kir5.1 induced by high sodium intake is a key step for downregulation of NCC.


Assuntos
Potenciais da Membrana/efeitos dos fármacos , Canais de Potássio Corretores do Fluxo de Internalização/genética , Sódio na Dieta/farmacologia , Simportadores de Cloreto de Sódio-Potássio/efeitos dos fármacos , Simportadores de Cloreto de Sódio-Potássio/metabolismo , Animais , Modelos Animais de Doenças , Eletrofisiologia , Hipopotassemia/tratamento farmacológico , Hipopotassemia/fisiopatologia , Transporte de Íons , Túbulos Renais Distais/metabolismo , Camundongos , Camundongos Knockout , Natriurese/efeitos dos fármacos , Distribuição Aleatória , Receptores de Droga/efeitos dos fármacos , Sensibilidade e Especificidade , Simportadores de Cloreto de Sódio/efeitos dos fármacos , Regulação para Cima
6.
Am J Physiol Renal Physiol ; 315(4): F986-F996, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29897283

RESUMO

Kir4.1/5.1 heterotetramer participates in generating the negative cell membrane potential in distal convoluted tubule (DCT) and plays a critical role in determining the activity of Na-Cl cotransporter (NCC). Kir5.1 contains a phosphothreonine motif at its COOH terminus (AA249-252). Coimmunoprecipitation showed that Nedd4-2 was associated with Kir5.1 in HEK293 cells cotransfected with Kir5.1 or Kir4.1/Kir5.1. GST pull-down further confirmed the association between Nedd4-2 and Kir5.1. Ubiquitination assay showed that Nedd4-2 increased the ubiquitination of Kir4.1/Kir5.1 heterotetramer in the cells cotransfected with Kir4.1/Kir5.1, but it has no effect on Kir4.1 or Kir5.1 alone. Patch-clamp and Western blot also demonstrated that coexpression of Nedd4-2 but not Nedd4-1 decreased K currents and Kir4.1 expression in the cells cotransfected with Kir4.1 and Kir5.1. In contrast, Nedd4-2 fails to inhibit Kir4.1 in the absence of Kir5.1 or in the cells transfected with the inactivated form of Nedd4-2 (Nedd4-2C821A). Moreover, the mutation of TPVT motif in the COOH terminus of Kir5.1 largely abolished the association of Nedd4-2 with Kir5.1 and abolished the inhibitory effect of Nedd4-2 on K currents in HEK293 cells transfected with Kir4.1 and Kir5.1 mutant (Kir5.1T249A). Finally, the basolateral K conductance in the DCT and Kir4.1 expression is significantly increased in the kidney-specific Nedd4-2 knockout or in Kir5.1 knockout mice in comparison to their corresponding wild-type littermates. We conclude that Nedd4-2 binds to Kir5.1 at the phosphothreonine motif of the COOH terminus, and the association of Nedd4-2 with Kir5.1 facilitates the ubiquitination of Kir4.1, thereby regulating its plasma expression in the DCT.


Assuntos
Ubiquitina-Proteína Ligases Nedd4/metabolismo , Néfrons/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Ubiquitinação , Animais , Transporte de Íons/fisiologia , Túbulos Renais Distais/metabolismo , Potenciais da Membrana/fisiologia , Camundongos Knockout , Canal Kir5.1
7.
Hypertension ; 71(4): 622-630, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29483225

RESUMO

AT2R (AngII [angiotensin II] type 2 receptor) is expressed in the distal nephrons. The aim of the present study is to examine whether AT2R regulates NCC (Na-Cl cotransporter) and Kir4.1 of the distal convoluted tubule. AngII inhibited the basolateral 40 pS K channel (a Kir4.1/5.1 heterotetramer) in the distal convoluted tubule treated with losartan but not with PD123319. AT2R agonist also inhibits the K channel, indicating that AT2R was involved in tonic regulation of Kir4.1. The infusion of PD123319 stimulated the expression of tNCC (total NCC) and pNCC (phosphorylated NCC; Thr53) by a time-dependent way with the peak at 4 days. PD123319 treatment (4 days) stimulated the basolateral 40 pS K channel activity, augmented the basolateral K conductance, and increased the negativity of distal convoluted tubule membrane. The stimulation of Kir4.1 was essential for PD123319-induced increase in NCC because inhibiting AT2R increased the expression of tNCC and pNCC only in wild-type but not in the kidney-specific Kir4.1 knockout mice. Renal clearance study showed that thiazide-induced natriuretic effect was larger in PD123319-treated mice for 4 days than untreated mice. However, this effect was absent in kidney-specific Kir4.1 knockout mice which were also Na wasting under basal conditions. Finally, application of AT2R antagonist decreased the renal ability of K excretion and caused hyperkalemia in wild-type but not in kidney-specific Kir4.1 knockout mice. We conclude that AT2R-dependent regulation of NCC requires Kir4.1 in the distal convoluted tubule and that AT2R plays a role in stimulating K excretion by inhibiting Kir4.1 and NCC.


Assuntos
Imidazóis/farmacologia , Túbulos Renais Distais , Losartan/farmacologia , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Piridinas/farmacologia , Inibidores de Simportadores de Cloreto de Sódio/farmacologia , Membro 3 da Família 12 de Carreador de Soluto/metabolismo , Angiotensina II/metabolismo , Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Bloqueadores do Receptor Tipo 2 de Angiotensina II/farmacologia , Animais , Transporte de Íons/efeitos dos fármacos , Túbulos Renais Distais/efeitos dos fármacos , Túbulos Renais Distais/metabolismo , Camundongos , Camundongos Knockout , Receptor Tipo 2 de Angiotensina/metabolismo , Simportadores de Cloreto de Sódio-Potássio/metabolismo , Desequilíbrio Hidroeletrolítico/metabolismo
8.
Kidney Int ; 93(4): 893-902, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29310825

RESUMO

Kir4.1 in the distal convoluted tubule plays a key role in sensing plasma potassium and in modulating the thiazide-sensitive sodium-chloride cotransporter (NCC). Here we tested whether dietary potassium intake modulates Kir4.1 and whether this is essential for mediating the effect of potassium diet on NCC. High potassium intake inhibited the basolateral 40 pS potassium channel (a Kir4.1/5.1 heterotetramer) in the distal convoluted tubule, decreased basolateral potassium conductance, and depolarized the distal convoluted tubule membrane in Kcnj10flox/flox mice, herein referred to as control mice. In contrast, low potassium intake activated Kir4.1, increased potassium currents, and hyperpolarized the distal convoluted tubule membrane. These effects of dietary potassium intake on the basolateral potassium conductance and membrane potential in the distal convoluted tubule were completely absent in inducible kidney-specific Kir4.1 knockout mice. Furthermore, high potassium intake decreased, whereas low potassium intake increased the abundance of NCC expression only in the control but not in kidney-specific Kir4.1 knockout mice. Renal clearance studies demonstrated that low potassium augmented, while high potassium diminished, hydrochlorothiazide-induced natriuresis in control mice. Disruption of Kir4.1 significantly increased basal urinary sodium excretion but it abolished the natriuretic effect of hydrochlorothiazide. Finally, hypokalemia and metabolic alkalosis in kidney-specific Kir4.1 knockout mice were exacerbated by potassium restriction and only partially corrected by a high-potassium diet. Thus, Kir4.1 plays an essential role in mediating the effect of dietary potassium intake on NCC activity and potassium homeostasis.


Assuntos
Túbulos Renais Distais/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Potássio na Dieta/metabolismo , Alcalose/genética , Alcalose/metabolismo , Alcalose/fisiopatologia , Animais , Modelos Animais de Doenças , Feminino , Homeostase , Hidroclorotiazida/farmacologia , Hipopotassemia/genética , Hipopotassemia/metabolismo , Hipopotassemia/fisiopatologia , Túbulos Renais Distais/efeitos dos fármacos , Túbulos Renais Distais/fisiopatologia , Masculino , Potenciais da Membrana , Camundongos Knockout , Natriurese , Canais de Potássio Corretores do Fluxo de Internalização/deficiência , Canais de Potássio Corretores do Fluxo de Internalização/genética , Eliminação Renal , Sódio/urina , Inibidores de Simportadores de Cloreto de Sódio/farmacologia , Membro 3 da Família 12 de Carreador de Soluto/genética , Membro 3 da Família 12 de Carreador de Soluto/metabolismo , Canal Kir5.1
9.
J Am Soc Nephrol ; 28(6): 1814-1825, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28052988

RESUMO

The mammalian distal convoluted tubule (DCT) makes an important contribution to potassium homeostasis by modulating NaCl transport. The thiazide-sensitive Na+/Cl- cotransporter (NCC) is activated by low potassium intake and by hypokalemia. Coupled with suppression of aldosterone secretion, activation of NCC helps to retain potassium by increasing electroneutral NaCl reabsorption, therefore reducing Na+/K+ exchange. Yet the mechanisms by which DCT cells sense plasma potassium concentration and transmit the information to the apical membrane are not clear. Here, we tested the hypothesis that the potassium channel Kir4.1 is the potassium sensor of DCT cells. We generated mice in which Kir4.1 could be deleted in the kidney after the mice are fully developed. Deletion of Kir4.1 in these mice led to moderate salt wasting, low BP, and profound potassium wasting. Basolateral membranes of DCT cells were depolarized, nearly devoid of conductive potassium transport, and unresponsive to plasma potassium concentration. Although renal WNK4 abundance increased after Kir4.1 deletion, NCC abundance and function decreased, suggesting that membrane depolarization uncouples WNK kinases from NCC. Together, these results indicate that Kir4.1 mediates potassium sensing by DCT cells and couples this signal to apical transport processes.


Assuntos
Túbulos Renais Distais/fisiologia , Canais de Potássio Corretores do Fluxo de Internalização/fisiologia , Potássio , Animais , Túbulos Renais Distais/citologia , Camundongos
10.
Biochim Biophys Acta ; 1852(11): 2554-62, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26319417

RESUMO

The renal phenotype of EAST syndrome, a disease caused by the loss-of-function-mutations of Kcnj10 (Kir4.1), is a reminiscence of Gitelman's syndrome characterized by the defective function in the distal convoluted tubule (DCT). The aim of the present study is to test whether antidiuretic hormone (vasopressin)-induced stimulation of the Na(+)-activated 80-150pS K(+) channel is responsible for compensating the lost function of Kcnj10 in the thick ascending limb (TAL) of subjects with EAST syndrome. Immunostaining and western blot showed that the expression of aquaporin 2 (AQP2) was significantly higher in Kcnj10(-/-) mice than those of WT littermates, suggesting that the disruption of Kcnj10 stimulates vasopressin response in the kidney. The role of vasopressin in stimulating the basolateral K(+) conductance of the TAL was strongly indicated by the finding that the application of arginine-vasopressin (AVP) hyperpolarized the membrane in the TAL of Kcnj10(-/-) mice. Application of AVP significantly stimulated the 80-150pS K(+) channel in the TAL and this effect was blocked by tolvaptan (V2 receptor antagonist) or by inhibiting PKA. Moreover, the water restriction for 24h significantly increased the probability of finding the 80-150pS K(+) channel and the K(+) channel open probability in the TAL. The application of a membrane permeable cAMP analog also mimicked the effect of AVP and activated this K(+) channel, suggesting that cAMP-PKA pathway stimulates the 80-150pS K(+) channels. The role of the basolateral K(+) conductance in maintaining transcellular Cl(-) transport is further suggested by the finding that the inhibition of basolateral K(+) channels significantly diminished the AVP-induced stimulation of the basolateral 10pS Cl(-) channels. We conclude that vasopressin stimulates the 80-150pS K(+) channel in the TAL via a cAMP-dependent mechanism. The vasopressin-induced stimulation of K(+) channels is responsible for compensating lost function of Kcnj10 thereby rescuing the basolateral K(+) conductance which is essential for the transport function in the TAL.

12.
Zhonghua Yi Xue Za Zhi ; 92(16): 1122-5, 2012 Apr 24.
Artigo em Chinês | MEDLINE | ID: mdl-22781773

RESUMO

OBJECTIVE: To evaluate the expression of proteasome ß5 subunit in human atherosclerotic plaque. METHODS: The specimens of carotid endarterectomy were collected from 16 carotid stenosis patients. For the case group, they were divided into 2 groups: plaque (group A) and areas adjacent to plaque (group B). And carotid endarterium was obtained from 6 patients undergoing aortic replacement surgery. Relatively normal arterial intima (subclavian artery & innominate artery) was selected as the control group (group C). Content of proteasome ß5 subunit was evaluated by hematoxylin & eosin (HE) staining, immunohistochemistry and Western blot. RESULTS: (1) In patients with diabetes, hyperlipidemia and probable smoking, proteasome ß5 subunit was enhanced in all groups; (2) Proteasome ß5 subunit was demonstrated in both cytoplasm and nucleus of vascular smooth muscle cells, but mainly confined to cytoplasm; (3)The positive expression rate of ß5 was 9/16 in group A, 11/16 in group B and 6/6 in group C. There was significant divergence in the expression of ß5 in different sample sub-groups: group A (atherosclerotic plaque) < group B (areas adjacent to plaque) < group C (control group). CONCLUSION: The expression of ß5 decrease markedly in human atherosclerotic plaques.


Assuntos
Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/patologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Adulto , Idoso , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
15.
Zhonghua Nan Ke Xue ; 17(4): 291-5, 2011 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-21548202

RESUMO

OBJECTIVE: To investigate the effects of Cox7a2 on the LH-induced testosterone production and the involved autophagy regulating signals in TM3 mouse Leydig cells. METHODS: The Cox7a2-pEYFP-N1 fluorescent protein vector was constructed and transfected into TM3 mouse Leydig cells. The level of testosterone was determined by ELISA, and the effects of Cox7a2 on the expression of the steroidogenic acute regulatory protein (StAR) and the phosphorylation of the autophagy regulatory factor P70S6K were detected by Western blot. RESULTS: LH stimulation increased the StAR protein expression and testosterone production, while Cox7a2 decreased P70S6K phosphorylation, reduced StAR expression and consequently inhibited LH-induced testosterone biosynthesis in the TM3 Leydig cells. CONCLUSION: Cox7a2 inhibits testosterone production by decreasing the StAR protein expression, which might be at least in part related with the activation of autophagy in TM3 mouse Leydig cells.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/genética , Células Intersticiais do Testículo/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Testosterona/biossíntese , Animais , Autofagia , Células Cultivadas , Hormônio Luteinizante/farmacologia , Masculino , Camundongos , Fosfoproteínas/metabolismo , Fosforilação
16.
Circ J ; 73(1): 48-54, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19023154

RESUMO

BACKGROUND: There is evidence that the autonomic nervous system may be involved in the mechanism of focal atrial fibrillation (AF), so the present study investigated the effects of the parasympathetic nervous system on the occurrence of focal AF originating from the pulmonary veins (PVs). METHODS AND RESULTS: In 10 mongrel dogs, programmed stimulation and local burst stimulation (12.5 Hz, impulse duration 0.5 ms) were performed at each of the PVs. Pacing thresholds at different sites were determined and shown as a terraced distribution. The closer to the ostium of the PV, the lower was the pacing threshold (P<0.05-0.001). The local effective refractory period (ERP), AF induction and AF threshold were measured at baseline and during bilateral vagal nerve stimulation (VNS). VNS led to local ERP shortening at each of the PV sites (P<0.05-0.001), increased the inducibility of AF at all sites in the 4 PVs (P<0.05-0.001), and decreased the AF threshold at most sites, especially in the distal portions of the 4 PVs (P<0.05-0.01). CONCLUSIONS: VNS changes the electrophysiological characteristics of the PVs and facilitates the induction of AF. Interaction between the autonomic nervous system and local cardiac autonomic nerve system may be a potential mechanism.


Assuntos
Fibrilação Atrial/etiologia , Fibrilação Atrial/fisiopatologia , Veias Pulmonares/inervação , Nervo Vago/fisiologia , Animais , Sistema Nervoso Autônomo/fisiopatologia , Estimulação Cardíaca Artificial , Modelos Animais de Doenças , Cães , Estimulação Elétrica/métodos , Potenciais Evocados/fisiologia , Coração/inervação , Sistema de Condução Cardíaco/fisiopatologia , Masculino , Período Refratário Eletrofisiológico/fisiologia
18.
Zhonghua Nei Ke Za Zhi ; 47(8): 661-3, 2008 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-19080300

RESUMO

OBJECTIVE: To investigate the relationship between mine environment and hypertension in miners. METHODS: 1736 male miners who worked under the ground and 825 on the ground were recruited in this study. Prevalence of hypertension under the ground and on the ground miners was compared. RESULTS: Prevalence of hypertension of miners under the ground was 23.91% and on the ground was 15.52% (chi(2) = 23.56, P < 0.001). Compared to miners on the ground, the relative risk of hypertension under the ground workers was 1.71 (95%CI 1.38 - 2.13). Prevalence of hypertension was correlated to the years of ground working (chi(2) = 37.00, P < 0.001). The binary logistic regression showed significant relationship between mine environment and hypertension under the ground miners (OR = 1.05, 95%CI 1.02 - 1.08). CONCLUSION: The underground environment is an important risk factor hypertension to the miners.


Assuntos
Minas de Carvão , Hipertensão/epidemiologia , Exposição Ocupacional , Adulto , Humanos , Masculino , Pessoa de Meia-Idade , Prevalência , Fatores de Risco , Estudos de Amostragem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA