Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 271
Filtrar
1.
Angew Chem Int Ed Engl ; : e202400477, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38712648

RESUMO

Polyethylene oxide (PEO)-based solid-state batteries hold great promise as the next-generation batteries with high energy density and high safety. However, PEO-based electrolytes encounter certain limitations, including inferior ionic conductivity, low Li+ transference number, and poor mechanical strength. Herein, we aim to simultaneously address these issues by utilizing one-dimensional zwitterionic cellulose nanofiber (ZCNF) as fillers for PEO-based electrolytes using a simple aqueous solution casting method. Multiple characterizations and theoretical calculations demonstrate that the unique zwitterionic structure imparts ZCNF with various functions, such as disrupting PEO crystallization, dissociating lithium salts, anchoring anions through cationic groups, accelerating Li+ migration by anionic groups, as well as its inherent reinforcement effect. As a result, the prepared PL-ZCNF electrolyte exhibits remarkable ionic conductivity (5.37 × 10-4 S cm-1) and Li+ transference number (0.62) at 60 °C without sacrificing mechanical strength (9.2 MPa), together with high critical current density of 1.1 mA cm-2. Attributed to these merits of PL-ZCNF, the LiFePO4|PL-ZCNF|Li solid-state full-cell delivers exceptional rate capability and cycling performance (900 cycles at 5 C). Notably, the assembled pouch-cell can maintain steady operation over 1000 cycles with an impressive 93.7% capacity retention at 0.5 C and 60 °C, highlighting the great potential of PL-ZCNF for practical applications.

2.
Water Sci Technol ; 89(9): 2342-2366, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38747953

RESUMO

To investigate the influence of carbonization process parameters on the characteristics of municipal sludge carbonization products, this study selected carbonization temperatures of 300-700 °C and carbonization times of 0.5-1.5 h to carbonize municipal sludge. The results showed that with an increase in temperature and carbonization time, the sludge was carbonized more completely, and the structure and performance characteristics of the sludge changed significantly. Organic matter was continuously cracked, the amorphous nature of the material was reduced, its morphology was transformed into an increasing number of regular crystalline structures, and the content of carbon continued to decrease, from the initial 52.85 to 38.77%, while the content of inorganic species consisting continued to increase. The conductivity was reduced by 87.8%, and the degree of conversion of salt ions into their residual and insoluble states was significant. Natural water absorption in the sludge decreased from 8.13 to 1.29%, and hydrophobicity increased. The dry-basis higher calorific value decreased from 8,703 to 3,574 kJ/kg. Heavy metals were concentrated by a factor of 2-3, but the content of the available state was very low. The results of this study provide important technological support for the selection of suitable carbonization process conditions and for resource utilization.


Assuntos
Carbono , Esgotos , Temperatura , Esgotos/química , Carbono/química , Eliminação de Resíduos Líquidos/métodos , Fatores de Tempo , Metais Pesados/química
3.
Adv Mater ; : e2401965, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38631703

RESUMO

Tailorable lithium (Li) nucleation and uniform early-stage plating is essential for long-lifespan Li metal batteries. Among factors influencing the early plating of Li anode, the substrate is critical, but a fine control of the substrate structure on a scale of ≈10 nm has been rarely achieved. Herein, a carbon consisting of ordered grids is prepared, as a model to investigate the effect of substrate structure on the Li nucleation. In contrast to the individual spherical Li nuclei formed on the flat graphene, an ultrauniform and nuclei-free Li plating is obtained on the ordered carbon with a grid size smaller than the thermodynamical critical radius of Li nucleation (≈26 nm). Simultaneously, an inorganic-rich solid-electrolyte-interphase is promoted by the cross-sectional carbon layers of such ordered grids which are exposed to the electrolyte. Consequently, the carbon grids with a grid size of ≈10 nm show a favorable cycling stability for more than 1100 cycles measured at 2 mA cm-2 in a half cell. With LiNi0.8Co0.1Mn0.1O2 as cathode, the assembled full cell with a cathode capacity of 3 mAh cm-2 and a negative/positive ratio of 1.67 demonstrates a stable cycling for over 130 cycles with a capacity retention of 88%.

5.
Dalton Trans ; 53(15): 6547-6555, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38517702

RESUMO

Metalloviologens, as emerging electron-transfer photochromic compounds, have shown intriguing properties such as radiochromism, photochromism and photoconductance. However, only a limited number of them have been reported so far. Exploration of new metalloviologens is strongly desired. Herein, we report a new solvothermally synthesized metalloviologen complex [CdCl2(ND)2]n (1, ND = 1,5-naphthalenes) that exhibits photochromic and intrinsic white light emission properties. Density functional theory calculation results reveal that the photochromism could be assigned to photoinduced electron transfer from chlorine atoms to ND molecules. The photoinduced charge-separated states are heat/air stable, attributed to the delocalization of ND and strong intermolecular π-π interactions. Besides, complex 1 consistently emits intrinsic white light when excited with 340-370 nm UV light, achieving high color rendering index (CRI) values (82.54-94.04). By adjusting the excitation wavelength, both "warm" and "cold" white light emission can be produced, making it suitable for the application of a white light emitting diode (WLED). Thus, this work demonstrates that the ND-based metalloviologen is not only helpful in producing photochromism, but also beneficial for creating white-light emission.

6.
ACS Nano ; 18(4): 2917-2927, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38221729

RESUMO

A commonly used strategy to tackle the unstable interfacial problem between Li1.3Al0.3Ti1.7(PO4)3 (LATP) and lithium (Li) is to introduce an interlayer. However, this strategy has a limited effect on stabilizing LATP during long-term cycling or under high current density, which is due in part to the negative impact of its internal defects (e.g., gaps between grains (GBs)) that are usually neglected. Here, control experiments and theoretical calculations show clearly that the GBs of LATP have higher electronic conductivity, which significantly accelerates its side reactions with Li. Thus, a simple LiCl solution immersion method is demonstrated to modify the GBs and their electronic states, thereby stabilizing LATP. In addition to LiCl filling, composite solid polymer electrolyte (CSPE) interlayering is concurrently introduced at the Li/LATP interface to realize the internal-external dual modifications for LATP. As a result, electron leakage in LATP can be strictly inhibited from its interior (by LiCl) and exterior (by CSPE), and such dual modifications can well protect the Li/LATP interface from side reactions and Li dendrite penetration. Notably, thus-modified Li symmetrical cells can achieve ultrastable cycling for more than 3500 h at 0.4 mA cm-2 and 1500 h at 0.6 mA cm-2, among the best cycling performance to date.

7.
Small ; 20(13): e2307333, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37967329

RESUMO

Reducing the dark current of photodetectors is an important strategy for enhancing the detection sensitivity, but hampered by the manufacturing cost due to the need for controlling the complex material composition and processing intricate interface. This study reports a new single-component photochromic semiconductor, [(HDMA)4(Pb3Br10)(PhSQ)2]n (1, HDMA = dimethylamine cation, PhSQ = 1-(4-sulfophenyl)-4,4'-bipyridinium), by introducing a redox-active monosubstituted viologen zwitterion into inorganic semiconducting skeleton. It features yellow to green coloration after UV irradiation with the sharply dropping intrinsic conductivity of 14.6-fold, and the photodetection detection sensitivity gain successfully doubles. The reason of decreasing conductivity originates from the increasing the band gap of the inorganic semiconducting component and formation of Frenkel excitons with strong Coulomb interactions, thereby decreasing the concentration of thermally excited intrinsic carriers.

8.
Small ; 20(12): e2308472, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37946668

RESUMO

Given its exceptional theoretical energy density (over 2000 Wh kg-1), lithium||carbon fluoride (Li||CFx) battery has garnered global attention. N-methylpyrrolidone (NMP)-based electrolyte is regarded as one promising candidate for tremendously enhancing the energy density of Li||CFx battery, provided self-discharge challenges can be resolved. This study successfully achieves a low self-discharge (LSD) and desirable electrochemical performance in Li||CFx batteries at high temperatures by utilizing NMP as the solvent and incorporating additional ingredients, including vinylene carbonate additive, as well as the dual-salt systems formed by LiBF4 with three different Li salts, namely lithium bis(oxalato)borate, lithium difluoro(oxalato)borate, and LiNO3. The experimental results unfold that the proposed methods not only minimize aluminum current collector corrosion, but also effectively passivate the Li metal anode. Among them, LiNO3 exhibits the most pronounced effect that achieves an energy density of ≈2400 Wh kg-1 at a current density of 10 mA g-1 at 30 °C, nearly 0% capacity-fade rate after 300 h of storage at 60 °C, and the capability to maintain a stable open-circuit voltage over 4000 h. This work provides a distinctive perspective on how to realize both high energy density and LSD rates at high temperature of Li||CFx battery.

9.
Angew Chem Int Ed Engl ; 63(7): e202318026, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38157447

RESUMO

The study of facile-synthesis and low-cost X-ray scintillators with high light yield, low detection limit and high X-ray imaging resolution plays a vital role in medical and industrial imaging fields. However, the optimal balance between X-ray absorption, decay lifetime and excitonic utilization efficiency of scintillators to achieve high-resolution imaging is extremely difficult due to the inherent contradiction. Here two thermally activated delayed fluorescence (TADF)-actived coinage-metal clusters M6 S6 L6 (M=Ag or Cu) were synthesized by simple solvothermal reaction, where the cooperation of heavy atom-rich character and TADF mechanism supports strong X-ray absorption and rapid luminescent collection of excitons. Excitingly, Ag6 S6 L6 (SC-Ag) displays a high photoluminescence quantum yield of 91.6 % and scintillating light yield of 17420 photons MeV-1 , as well as a low detection limit of 208.65 nGy s-1 that is 26 times lower than the medical standard (5.5 µGy s-1 ). More importantly, a high X-ray imaging resolution of 16 lp/mm based on SC-Ag screen is demonstrated. Besides, rigid core skeleton reinforced by metallophilicity endows clusters M6 S6 L6 strong resistance to humidity and radiation. This work provides a new view for the design of efficient scintillators and opens the research door for silver clusters in scintillation application.

10.
Sensors (Basel) ; 23(22)2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-38005531

RESUMO

The early detection of an inter-turn short circuit (ITSC) fault is extremely critical for permanent magnet synchronous motors (PMSMs) because it can lead to catastrophic consequences. In this study, a model-based transfer learning method is developed for ITSC fault detection. The contribution can be summarized as two points. First of all, a Bayesian-optimized residual dilated CNN model was proposed for the pre-training of the method. The dilated convolution is utilized to extend the receptive domain of the model, the residual architecture is employed to surmount the degradation problems, and the Bayesian optimization method is launched to address the hyperparameters tuning issues. Secondly, a transfer learning framework and strategy are presented to settle the new target domain datasets after the pre-training of the proposed model. Furthermore, motor fault experiments are carried out to validate the effectiveness of the proposed method. Comparison with seven other methods indicates the performance and advantage of the proposed method.

11.
Medicine (Baltimore) ; 102(47): e36121, 2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38013298

RESUMO

INTRODUCTION: Both UCM and DCC are used to treat preterm infants, but there is no uniform standard for the length of UCM. The aim of this work was to explore the effectiveness and safety of different umbilical cord milking (UCM) lengths versus delayed cord clamping (DCC). METHODS: We enrolled premature infants from the Affiliated Hospital of Zunyi Medical University between September 2019 and October 2020 with random allocation (1:1:1:1) to the UCM 10 cm, UCM 20 cm, UCM 30 cm, and DCC groups. The primary outcome was hemoglobin at birth. RESULTS: Ultimately, 143 participants completed the trial (UCM 10 cm, n = 35; UCM 20 cm, n = 35; UCM 30 cm, n = 38; DCC, n = 35). The hemoglobin levels were significantly lower at birth in the UCM 10 cm group than in the UCM 20 and 30 cm and DCC groups (182.29 ±â€…22.15 vs 202.83 ±â€…21.46, 208.82 ±â€…20.72, and 198.46 ±â€…24.92, P = .001, .001, and .003, respectively). The systolic blood pressure and diastolic pressures in the UCM 30 cm group were higher than those in the UCM 10 and 20 cm and DCC groups at birth, postnatal day 3 and postnatal day 7 (P < .05). The occurrence rates of anemia were significantly higher in the UCM 10 cm group than in the UCM 20 and 30 cm and DCC groups (42.9% vs 14.3%, 10.5%, and 14.3%, all P < .0083). There were no significant differences in heart rate or complications among the 4 groups. CONCLUSIONS: A UCM of 20 or 30 cm is a safe, effective operation for preterm infants and could improve blood pressure and hemoglobin levels and reduce anemia.


Assuntos
Anemia , Recém-Nascido Prematuro , Lactente , Gravidez , Feminino , Recém-Nascido , Humanos , Clampeamento do Cordão Umbilical , Cordão Umbilical , Anemia/epidemiologia , Hemoglobinas/análise , Constrição
12.
Mater Horiz ; 10(12): 5677-5683, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-37791893

RESUMO

Widening the photoresponse range while enhancing the electrical properties of semiconductors could reduce the complexity and cost of photodetectors or increase the power conversion efficiency of solar cells. Surface doping through charge transfer with organic species is one of the most effective and widely used approaches to achieve this aim. It usually features easier preparation over other doping methods but is still limited by the low physicochemical stability and high cost of the used organic species or low improvement of electrical properties. This work shows unprecedented surface doping of semiconductors with highly stable, easily obtained, and strong electron-accepting viologen components, realizing the significant improvement of both the photoresponse range and conductivity. Coating the chalcogenide semiconductor KGaS2 with dimethyl viologen dichloride (MV) yields a charge-transfer complex (CTC) on the surface, which broadens the photoresponse range by nearly 300 nm and improves the conductivity by 5 orders of magnitude. The latter value surpasses all records obtained by surface doping through charge transfer with organic species.

13.
Dalton Trans ; 52(43): 15677-15681, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37888847

RESUMO

By the coordination assembly of a redox photoactive functional motif and a cyanide-bridged moiety, a cyanide-bridged MnII-FeIII compound with large photoinduced magnetic change at room-temperature due to photoinduced electron transfer was obtanied. This compound also shows unprecedented radical-quenched spin glass in molecule based magnets.

14.
Adv Sci (Weinh) ; 10(28): e2302978, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37541668

RESUMO

Single-component semiconductors with photoresponse to full solar spectrum are highly desirable to simplify the device structure of commercial photodetectors and to improve solar conversion or photocatalytic efficiency but remain scarce. This work reports bottom-up photosynthesis of an air-stable radical semiconductor using BiI3 and a photochromism-active benzidine derivative as a photosensitive functional motif. This semiconductor shows photoconductivity to full solar spectrum contributed by radical and non-radical forms of the benzidine derivative. It has also the potential to detect X-rays because of strong X-ray absorption coefficient. This finding opens up a new synthetic method for radical semiconductors and may find applications on extending photoresponsive ranges of perovskites, transition metal sulfides, and other materials.

15.
Injury ; 54(10): 110927, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37544863

RESUMO

BACKGROUND: Traumatic brain injury (TBI) is an urgent global health issue. Neuroinflammation, due partially to microglia, can worsen or even cause neuropsychiatric disorders after a TBI. An increasing number of studies have found that adipose-derived stem cell (ADSC) derived exosomes can alleviate many diseases by delivering non-coding RNAs including circRNA and miRNAs, but the mechanism of action remains unclear. METHODS: In the present investigation, we produced a TBI mouse model and isolated exosomes from their ADSCs before and after an hypoxic pretreatment. We then used next generation sequencing (NGS) to identify differentially expressed circRNAs and luciferase report assays to determine the relationship between the different noncoding RNAs (miRNA, circRNA and mRNA). RESULTS: The results show that we successfully isolated ADSCs which possessed a multidirectional differentiation potential. We then isolated exosomes from untreated ADSCs (Exos) and from hypoxia pretreated ADSCs (HExos). The HExos significantly decreased hippocampal nerve injury after TBI by decreasing M1 microglia mediated inflammatory cytokine expression and caused recovery of cognitive function. NGS data revealed that abnormal circ-Scmh1 expression plays a role in HExo mediated brain tissue preservation after TBI. Furthermore, luciferase report analysis found that miR-154-5p and STAT6 were the targets for circ-Scmh1. Interestingly, miR-154-5p overexpression or STAT6 inhibition reversed the circ-Scmh1 induced M2 microglial polarization. Overexpression of circ-Scmh1 increased the therapeutic effect of Exo on hippocampal nerve injury after TBI by promotion of M2 microglial polarization and decreased inflammatory induced hippocampal nerve injury. CONCLUSION: Taken together, we found that exosomes from ADSCs ameliorate nerve damage in the hippocampus post TBI through the delivery of circ-Scmh1 and the promotion of microglial M2 polarization.


Assuntos
Lesões Encefálicas Traumáticas , Exossomos , MicroRNAs , Camundongos , Animais , Microglia , Exossomos/genética , Exossomos/metabolismo , RNA Circular/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Lesões Encefálicas Traumáticas/terapia , Lesões Encefálicas Traumáticas/metabolismo , Hipocampo/metabolismo , Proteínas do Grupo Polycomb/metabolismo
16.
Nat Mater ; 22(10): 1189-1195, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37550568

RESUMO

Glasses, unlike crystals, are intrinsically brittle due to the absence of microstructure-controlled toughening, creating fundamental constraints for their technological applications. Consequently, strategies for toughening glasses without compromising their other advantageous properties have been long sought after but elusive. Here we report exceptional toughening in oxide glasses via paracrystallization, using aluminosilicate glass as an example. By combining experiments and computational modelling, we demonstrate the uniform formation of crystal-like medium-range order clusters pervading the glass structure as a result of paracrystallization under high-pressure and high-temperature conditions. The paracrystalline oxide glasses display superior toughness, reaching up to 1.99 ± 0.06 MPa m1/2, surpassing any other reported bulk oxide glasses, to the best of our knowledge. We attribute this exceptional toughening to the excitation of multiple shear bands caused by a stress-induced inverse transformation from the paracrystalline to amorphous states, revealing plastic deformation characteristics. This discovery presents a potent strategy for designing highly damage-tolerant glass materials and emphasizes the substantial influence of atomic-level structural variation on the properties of oxide glasses.

17.
Small ; 19(29): e2301915, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37189236

RESUMO

Pressure-stabilized high-entropy sulfide (FeCoNiCuRu)S2 (HES) is proposed as an anode material for fast and long-term stable lithium/sodium storage performance (over 85% retention after 15 000 cycles @10 A g-1 ). Its superior electrochemical performance is strongly related to the increased electrical conductivity and slow diffusion characteristics of entropy-stabilized HES. The reversible conversion reaction mechanism, investigated by ex-situ XRD, XPS, TEM, and NMR, further confirms the stability of the host matrix of HES after the completion of the whole conversion process. A practical demonstration of assembled lithium/sodium capacitors also confirms the high energy/power density and long-term stability (retention of 92% over 15 000 cycles @5 A g-1 ) of this material. The findings point to a feasible high-pressure route to realize new high-entropy materials for optimized energy storage performance.

18.
Small ; 19(27): e2300605, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36974568

RESUMO

Hard carbons are deemed as promising anode materials for high-performance potassium-ion battery, but their commercialization is still hindered by the insufficient K+ transfer kinetics and poor potassiophilicity. Herein, these issues are addressed by improving the wettability of hard carbon, which can be achieved by the introduction of open mesochannels. A series of such hollow mesoporous carbon capsules with different dimensions are synthesized, which exhibit markedly enhanced wettability with electrolyte compared to the microporous counterparts. Various characterizations confirm its effects on promoting the kinetics and potassiophilicity of as-synthesized carbons, which can be additionally improved by S-doping. As a result, the 2D mesoporous carbon anode exhibits excellent rate capability (122.2 mAh g-1 at 4 A g-1 ), high reversible capacity (396.6 mAh g-1 at 0.1 A g-1 after 200 cycles), and outstanding cycling stability (197.0 mAh g-1 at 2 A g-1 after 1400 cycles). In addition, the hollow mesoporous architecture can effectively buffer the volume expansion and thus stabilize the carbon anodes, as visualized by in situ transmission electron microscopy. This work provides new insight for enhanced K+ storage performance from the perspective of anode wettability with electrolyte, as well as a universal anode design that combines mesochannels architecture with heteroatom doping.

19.
Mod Pathol ; 36(7): 100151, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36906071

RESUMO

The precursor nature of papillary urothelial hyperplasia of the urinary bladder is uncertain. In this study, we investigated the telomerase reverse transcriptase (TERT) promoter and fibroblast growth factor receptor 3 (FGFR3) mutations in 82 patients with papillary urothelial hyperplasia lesions. Thirty-eight patients presented with papillary urothelial hyperplasia and concurrent noninvasive papillary urothelial carcinoma, and 44 patients presented with de novo papillary urothelial hyperplasia. The prevalence of the TERT promoter and FGFR3 mutations is compared between de novo papillary urothelial hyperplasia and those with concurrent papillary urothelial carcinoma. Mutational concordance between papillary urothelial hyperplasia and concurrent carcinoma was also compared. The TERT promoter mutations were detected in 44% (36/82) of papillary urothelial hyperplasia, including 23 (23/38, 61%) papillary urothelial hyperplasia with urothelial carcinoma and 13 (13/44, 29%) de novo papillary urothelial hyperplasia. The overall concordance of TERT promoter mutation status between papillary urothelial hyperplasia and concurrent urothelial carcinoma was 76%. The overall FGFR3 mutation rate of papillary urothelial hyperplasia was 23% (19/82). FGFR3 mutations were detected in 11 patients with papillary urothelial hyperplasia and concurrent urothelial carcinoma (11/38, 29%) and 8 patients with de novo papillary urothelial hyperplasia (8/44, 18%). Identical FGFR3 mutation status was detected in both papillary urothelial hyperplasia and urothelial carcinoma components in all 11 patients with FGFR3 mutations. Our findings provide strong evidence of a genetic association between papillary urothelial hyperplasia and urothelial carcinoma. High frequency of TERT promoter and FGFR3 mutations suggests the precursor role of papillary urothelial hyperplasia in urothelial carcinogenesis.


Assuntos
Carcinoma de Células de Transição , Telomerase , Neoplasias da Bexiga Urinária , Humanos , Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/patologia , Carcinoma de Células de Transição/genética , Telomerase/genética , Hiperplasia/patologia , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/genética , Mutação
20.
Adv Mater ; 35(15): e2210447, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36656991

RESUMO

Fast ion diffusion in anode hosts enabling uniform distribution of Li/Na/K is essential for achieving dendrite-free alkali-metal batteries. Common strategies, e.g. expanding the interlayer spacing of anode materials, can enhance bulk diffusion of Li but are less efficient for Na and K due to their larger ionic radius. Herein, a universal strategy to drastically improve the mass-transport efficiency of Na/K by introducing open mesochannels in carbon hosts is proposed. Such pore engineering can increase the accessible surface area by one order of magnitude, thus remarkably accelerating surface diffusion, as visualized by in situ transmission electron microscopy. In particular, once the mesochannels are filled by the Na/K metals, they become the superfast channels for mass transport via the mechanism of interfacial diffusion. Thus-modified carbon hosts enable Na/K filling in their inner cavities and uniform deposition across the whole electrodes with fast kinetics. The resulting Na-metal anodes can exhibit stable dendrite-free cycling with outstanding rate performance at a high current density of up to 30 mA cm-2 . This work presents an inspiring attempt to address the sluggish transport issue of Na/K, as well as valuable insights into the mass-transport mechanism in porous anodes for high-performance alkali-metal storage.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA