Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 339: 139714, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37543234

RESUMO

Improving the dewatering performance of sewage sludge is of great scientific and engineering significance in the context of accelerated urbanization and increasingly strict environmental regulations. Acidified sludge (AS) can improve sludge dewatering performance, but the dewatering effect of repeated inoculation is unclear. The effects of long-term repeated inoculation of AS on the sludge dewaterability were investigated. The molecular structure and microbial community succession of extracellular polymeric substances (EPS) are emphasized. The results revealed that increasing the inoculation ratio of AS reduced the pH, absolute value of sludge zeta potential, and sludge particle size, and the decreasing trend was more evident with prolonging treatment time. Under the conditions of 30% and 50% AS inoculation, the dewatering performance of the sludge was significantly improved (p < 0.05). Compared with the raw sludge, the specific resistance of filtration (SRF) and capillary suction time of 30% inoculation were reduced by 64.3% and 50.1% after 30 cycles, respectively. Excluding loosely bound (LB)-EPS, soluble (S)-EPS and tightly bound (TB)-EPS exhibited a visible decrease, the protein in TB-EPS was significantly related to sludge dewaterability (p < 0.05). The fluorescent components of aromatic protein and fulvic acid-like substances in TB-EPS were significantly associated with SRF, with a correlation coefficient 0.99 (p < 0.05). Both the increase in the percentages of random coil and decrease in α-helix in TB-EPS contributed to improving dewaterability. Increasing Firmicutes and decreasing Chloroflexi levels improved the sludge dewatering capacity. Repeated inoculation did not disrupt the dewatering effect of AS rather increased the feasibility of the engineering application of AS. Considering the dewatering performance and cost synthetically, 30% AS inoculated ratio is feasible for practical applications.


Assuntos
Matriz Extracelular de Substâncias Poliméricas , Esgotos , Esgotos/química , Estrutura Molecular , Água/química , Proteínas/química , Eliminação de Resíduos Líquidos/métodos
2.
Artigo em Inglês | MEDLINE | ID: mdl-35020594

RESUMO

High-frequency endoscopic ultrasound (HFEUS) imaging is an important tool commonly used in clinical practice for imaging hollow organs. The virtual source synthetic aperture (VSSA) method is effective in improving the imaging quality of HFEUS. However, interference from the motor control unit severely affects the accuracy of the conventional delay and sum (DAS) method, thus compromising the effectiveness of VSSA. In this article, a new computational method based on phase correction was proposed to overcome these shortcomings, which is named phase-corrected-and-sum (PCAS). Meanwhile, the parameters of coherence factor weighting (CFW) can be obtained from the correlation coefficient of the superimposed signals to further increase the imaging quality. Three kinds of imaging experiments were designed to evaluate the proposed method. Compared with the conventional method, the results show that the PCAS-CFW method improves the lateral resolution by about 10% and the contrast-to-noise ratio (CNR) by about 44%. Therefore, this proposed method is capable of significantly improving HFEUS image quality, and this method can be easily integrated into current HFEUS imaging systems, showing great potential for clinical applications.


Assuntos
Endossonografia , Processamento de Imagem Assistida por Computador , Algoritmos , Processamento de Imagem Assistida por Computador/métodos , Imagens de Fantasmas , Razão Sinal-Ruído , Ultrassonografia/métodos
3.
Ultrasonics ; 121: 106669, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35007837

RESUMO

Insufficient imaging penetration and large data acquisition are two of the major challenges of high-frequency ultrasound imaging. Based on the good autocorrelation properties of chirp signal and the feasibility of using compressed sensing theory to reconstruct high-quality ultrasound images with low sampling requirements, this paper proposed a chirp coded excitation combined with compressed sensing (CCE-CS) technique for high-frequency endoscopic ultrasound (HFEUS) imaging. The feasibility of the method was verified by a brief theoretical analysis, and the relevant parameters were selected and analyzed according to the actual engineering situation. Simulated phantoms and in-vitro tissue experiments were used to evaluate the performance of the CCE-CS. Simulation results demonstrate that CCE-CS is capable of reducing the impact of reconstruction errors and improving imaging quality through comparison with conventional methods. The reduction of reconstruction data had less impact on penetration depth, resolution and general contrast general contrast-to-noise ratio (gCNR), and the reconstructed image was closer to the original image with a maximum improvement of 37% in peak signal-to-noise ratio (PSNR). Moreover, comparisons were conducted on the digestive tract of swine, and the results show that CCE-CS is also feasible in the in-vitro environment. These results demonstrated that CCE-CS method has good potential for application to improve the imaging quality of HFEUS while reducing the sampling rate.


Assuntos
Endossonografia/métodos , Intestinos/diagnóstico por imagem , Animais , Simulação por Computador , Processamento de Imagem Assistida por Computador , Técnicas In Vitro , Razão Sinal-Ruído , Suínos
4.
Biosensors (Basel) ; 13(1)2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36671867

RESUMO

High-frequency ultrasound has developed rapidly in clinical fields such as cardiovascular, ophthalmology, and skin with its high imaging resolution. However, the development of multi-elements high-frequency ultrasonic transducers and multi-channel high-frequency ultrasound imaging systems is extremely challenging. Here, a high-frequency ultrasound imaging system based on mechanical scanning was proposed in this paper. It adopts the method of reciprocating feed mechanism, which can achieve reciprocating scanning in the 14 mm range at 168 mm/s with a small 60 MHz transducer. A single-channel high-frequency ultrasonic imaging system consisting of the transmitting module, analog front end, acquisition module, and FPGA control module was developed. To overcome the non-uniformity of mechanical scanning, the ultrasound images are compensated according to the motion trajectory. The wire target and ex vivo tissue experiments have shown that the system can obtain an imaging resolution of 51 µm, imaging depth of 8 mm, and imaging speed of 12 fps. This high-frequency mechanical scanning ultrasound imaging system has the characteristics of simple structure, high-frequency, real-time, and good imaging performance, which can meet the clinical needs of high-resolution ultrasound images.


Assuntos
Pele , Transdutores , Imagens de Fantasmas , Desenho de Equipamento , Ultrassonografia/métodos
5.
Artigo em Inglês | MEDLINE | ID: mdl-33591917

RESUMO

In this article, a PZT/Epoxy 1-3 piezoelectric composite based on picosecond laser etching technology is developed for the fabrication of high-frequency ultrasonic transducer. The design, fabrication, theoretical analysis, and performance of the piezocomposite and transducer are presented and discussed. According to the test results, the area of the PZT pillar is [Formula: see text], the average width of the kerf is [Formula: see text], and the thickness of the piezocomposite is [Formula: see text]. The fabricated 1-3 piezocomposite has a resonant frequency of 46.5 MHz, a parallel resonant frequency of 65 MHz, and an electromechanical coupling coefficient of 0.73. According to the wires phantom imaging, its imaging resolution can reach [Formula: see text]. This study shows that the proposed picosecond laser micromachining technique can be applied in the fabrication of high frequency 1-3 piezocomposite and transducer.

6.
Artigo em Inglês | MEDLINE | ID: mdl-32746209

RESUMO

Chirp coded excitation is an effective method to improve the signal-to-noise ratio (SNR) and penetration depth of high-frequency endoscopic ultrasound (EUS) imaging. In coded excitation, pulse compression is applied to compress the elongated coded signals into a short pulse, which determines the final imaging performance, including spatial resolution and SNR. However, with the current pulse compression methods, it is hard to get high performance in the peak sidelobe level (PSL), image contrast, and axial resolution at the same time. To solve this problem, in this article, a new method named compressed pulse weighting method (CPWM) was proposed based on the combination of two kinds of pulse compression signals. A brief theoretical derivation proved the feasibility of method. The proposed method was evaluated by the simulation and phantom experiments. Compared with traditional method, the results showed that the proposed adaptive weighting method can provide increases of 32.42% in the penetration depth, 9.48 dB in the SNR, 5.60 dB in the contrast ratio (CR), 5.46 in the contrast-to-noise ratio (CNR), and 0.13 mm in the axial imaging resolution for 12-MHz EUS. Therefore, this method can effectively improve the ultrasound penetration depth and imaging quality, which made it have good potential for high-frequency ultrasound imaging.


Assuntos
Compressão de Dados , Processamento de Sinais Assistido por Computador , Imagens de Fantasmas , Razão Sinal-Ruído , Ultrassonografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA