Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Fitoterapia ; 109: 52-7, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26704993

RESUMO

Migraine is a highly prevalent neurovascular disorder in the brain. An optimal therapy for migraine has not yet been developed. Gastrodin (Gas), the main effective constitute from Gastrodiae Rhizoma (Tianma in Chinese), has been indicated for migraine treatment and prophylaxis more than 30 years, with demonstrated safety. However, Gas is a phenolic glycoside, with relatively low concentrations and weak efficacy in the central nervous system. To develop more effective anti-migraine agents, we synthesized a novel Gas derivative (Gas-D). In the present study, comparative pharmacodynamic evaluations of Gas and Gas-D were performed in a model of nitroglycerin (NTG)-induced migraine in rats and the hot-plate test in mice. Following behavioral testing in this migraine model, external jugular vein blood and the trigeminal nucleus caudalis (TNC) were collected to analyze plasma nitric oxide (NO) and calcitonin gene-related peptide (CGRP) concentrations and c-Fos expression in the TNC. The acute oral toxicity of Gas and Gas-D was also examined. We found that Gas-D had potent anti-migraine effects, likely attributable to inhibition of both trigeminal nerve activation at central sites and the peripheral release of CGRP following NO scavenging. Additionally, Gas-D exerted significant anti-nociceptive effect in response to thermal pain compared with Gas. Furthermore, a single dose of 2.048 g/kg Gas or Gas-D presented no acute oral toxicity in mice. Altogether, the potent anti-migraine and anti-hyperalgesic effects of Gas-D suggest that it might be a potentially novel drug candidate for migraine treatment or prophylaxis.


Assuntos
Álcoois Benzílicos/farmacologia , Glucosídeos/farmacologia , Transtornos de Enxaqueca/tratamento farmacológico , Dor/tratamento farmacológico , Núcleos do Trigêmeo/efeitos dos fármacos , Analgésicos/farmacologia , Animais , Álcoois Benzílicos/síntese química , Peptídeo Relacionado com Gene de Calcitonina/sangue , Feminino , Glucosídeos/síntese química , Masculino , Camundongos , Camundongos Endogâmicos ICR , Transtornos de Enxaqueca/induzido quimicamente , Estrutura Molecular , Óxido Nítrico/sangue , Nitroglicerina/efeitos adversos , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Ratos Sprague-Dawley , Testes de Toxicidade
2.
Aging Clin Exp Res ; 28(1): 69-76, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25986237

RESUMO

BACKGROUND AND AIMS: The predominant distribution of the antiaging Klotho protein in both the kidneys and brain may point to its essential role in protecting against dysfunction of the kidney-brain axis during the aging process. Our previous study showed that the downregulation of Klotho was involved in aging-related cognitive impairment in aged senescence-accelerated mouse prone-8 (SAMP8) mice. The present study investigated the potential role of Klotho in aging-associated inflammation and renal injury. METHODS: Age- and gender-matched groups of SAMP8 mice and their corresponding normal control senescence-accelerated mouse resistant-1 (SAMR1) were used to investigate the potential role of Klotho in aging-associated inflammation and renal injury. RESULTS: Compared with aged SAMR1 controls, early-stage chronic kidney disease (CKD), which is associated with an increase in the urinary albumin-to-creatinine ratio, inflammatory cell infiltration, glomerulosclerosis, and tubulointerstitial fibrosis, was observed in aged SAMP8 mice. Furthermore, the aging-related loss of Klotho-induced activation of the retinoic acid-inducible gene 1/nuclear factor-κB (RIG-I/NF-κB) signaling pathway and subsequent production of the proinflammatory mediators tumor necrosis factor α, interleukin-6, and inducible nitric oxide synthase in the kidneys of aged SAMP8 mice compared with SAMR1 controls. CONCLUSIONS: The present results suggest that aging-related inflammation and the development of early-stage CKD are likely associated with the downregulation of Klotho and induction of the RIG-I/NF-κB signaling pathway in 12-month-old SAMP8 mice. Moreover, aged SAMP8 mice with cognitive deficits and renal damage may be a potential mouse model for investigating the kidney-brain axis in the aging process.


Assuntos
Envelhecimento/metabolismo , RNA Helicases DEAD-box/metabolismo , Glucuronidase/metabolismo , Inflamação , Subunidade p50 de NF-kappa B/metabolismo , Insuficiência Renal , Animais , Proteína DEAD-box 58 , Regulação para Baixo , Feminino , Inflamação/etiologia , Inflamação/metabolismo , Inflamação/patologia , Proteínas Klotho , Masculino , Camundongos , Insuficiência Renal/etiologia , Insuficiência Renal/metabolismo , Insuficiência Renal/patologia , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA