Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Microbiol Spectr ; 11(6): e0254923, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37909745

RESUMO

IMPORTANCE: The development of safe and effective vaccines is needed to control the transmission of coronavirus disease 2019 (COVID-19). Synthetic DNA vaccines represent a promising platform in response to such outbreaks. Here, DNA vaccine candidates were developed using an optimized antibiotic-resistance gene-free asd-pVAX1 vector. An optimized flagellin (FliC) adjuvant was designed by fusion expression to increase the immunogenicity of the S1 antigen. S1 and S1-FliCΔD2D3 proteins were strongly expressed in mammalian cells. The FliCΔD2D3-adjuvanted DNA vaccine induced Th1/Th2-mixed immune responses and high titers of neutralizing antibodies. This study provides crucial information regarding the selection of a safer DNA vector and adjuvant for vaccine development. Our FliCΔD2D3-adjuvanted S1 DNA vaccine is more potent at inducing both humoral and cellular immune responses than S1 alone. This finding provides a new idea for the development of novel DNA vaccines against COVID-19 and could be further applied for the development of other vaccines.


Assuntos
COVID-19 , Vacinas de DNA , Humanos , Animais , Camundongos , Salmonella typhimurium/metabolismo , Vacinas de DNA/genética , Vacinas de DNA/metabolismo , SARS-CoV-2 , Flagelina/genética , Flagelina/metabolismo , Vacinas contra COVID-19 , COVID-19/prevenção & controle , Adjuvantes Imunológicos/metabolismo , Adjuvantes Imunológicos/farmacologia , Anticorpos Neutralizantes/metabolismo , Anticorpos Antivirais/metabolismo , Imunogenicidade da Vacina , Mamíferos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA