Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Bioorg Med Chem ; 106: 117752, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38749341

RESUMO

Bromodomain protein 4 (BRD4) is a member of the BET family, and its overexpression is closely associated with the development of many tumors. Inhibition of BRD4 shows great therapeutic potential in anti-tumor, and pan-BRD4 inhibitors show adverse effects of dose limiting toxicity and thrombocytopenia in clinical trials. To improve clinical effects and reduce side effects, more efforts have focused on seeking selective inhibitors of BD1 or BD2. Herein, a series of indole-2-one derivatives were designed and synthesized through docking-guided optimization to find BRD4-BD1 selective inhibitors, and their BRD4 inhibitory and antiproliferation activities were evaluated. Among them, compound 21r had potent BRD4 inhibitory activity (the IC50 values of 41 nM and 313 nM in BD1 and BD2 domain), excellent anti-proliferation (the IC50 values of 4.64 ± 0.30 µM, 0.78 ± 0.03 µM, 5.57 ± 1.03 µM against HL-60, MV-4-11 and HT-29 cells), and displayed low toxicity against normal cell GES-1 cells. Further studies revealed that 21r inhibited proliferation by decreasing the expression of proto-oncogene c-Myc, blocking cell cycle in G0/G1 phase, and inducing apoptosis in MV-4-11 cells in a dose-dependent manner. All the results showed that compound 21r was a potent BRD4 inhibitor with BD1 selectivity, which had potential in treatment of leukemia.


Assuntos
Antineoplásicos , Proteínas de Ciclo Celular , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Indóis , Fatores de Transcrição , Humanos , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/metabolismo , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/metabolismo , Indóis/química , Indóis/farmacologia , Indóis/síntese química , Proliferação de Células/efeitos dos fármacos , Relação Estrutura-Atividade , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Estrutura Molecular , Descoberta de Drogas , Relação Dose-Resposta a Droga , Proto-Oncogene Mas , Apoptose/efeitos dos fármacos , Simulação de Acoplamento Molecular , Linhagem Celular Tumoral , Proteínas que Contêm Bromodomínio
2.
Bioorg Chem ; 148: 107467, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38772290

RESUMO

KRAS-G12C inhibitors has been made significant progress in the treatment of KRAS-G12C mutant cancers, but their clinical application is limited due to the adaptive resistance, motivating development of novel structural inhibitors. Herein, series of coumarin derivatives as KRAS-G12C inhibitors were found through virtual screening and rational structural optimization. Especially, K45 exhibited strong antiproliferative potency on NCI-H23 and NCI-H358 cancer cells harboring KRAS-G12C with the IC50 values of 0.77 µM and 1.50 µM, which was 15 and 11 times as potent as positive drug ARS1620, respectively. Furthermore, K45 reduced the phosphorylation of KRAS downstream effectors ERK and AKT by reducing the active form of KRAS (KRAS GTP) in NCI-H23 cells. In addition, K45 induced cell apoptosis by increasing the expression of anti-apoptotic protein BAD and BAX in NCI-H23 cells. Docking studies displayed that the 3-naphthylmethoxy moiety of K45 extended into the cryptic pocket formed by the residues Gln99 and Val9, which enhanced the interaction with the KRAS-G12C protein. These results indicated that K45 was a potent KRAS-G12C inhibitor worthy of further study.


Assuntos
Antineoplásicos , Proliferação de Células , Cumarínicos , Ensaios de Seleção de Medicamentos Antitumorais , Proteínas Proto-Oncogênicas p21(ras) , Humanos , Proteínas Proto-Oncogênicas p21(ras)/antagonistas & inibidores , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Cumarínicos/química , Cumarínicos/farmacologia , Cumarínicos/síntese química , Relação Estrutura-Atividade , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Proliferação de Células/efeitos dos fármacos , Estrutura Molecular , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Descoberta de Drogas , Apoptose/efeitos dos fármacos , Simulação de Acoplamento Molecular , Avaliação Pré-Clínica de Medicamentos
3.
Dalton Trans ; 53(9): 4088-4097, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38314797

RESUMO

Effectively harnessing solar energy for the conversion of CO2 into valuable chemical energy presents a viable solution to address energy scarcity and climate change concerns. Nonetheless, the limited light absorption and sluggish charge kinetics significantly hinder the photoreduction of CO2. In this study, we employed a facile sol-gel method combined with wetness impregnation to synthesize Cu-doped TiO2 coated with NiOx nanoparticles. Various characterizations verified the successful incorporation of Cu ions into the TiO2 crystal lattice and the formation of NiOx co-catalysts within the composites. The optimal performance attained with CTN-0.5 demonstrates an output of 11.85 µmol h-1 g-1 for CO and 9.51 µmol h-1 g-1 for CH4, which represent a 4.4-fold and 15.6-fold increase, respectively, compared to those achieved with pure TiO2. The induced Cu defect band broadens the light absorption by decreasing the conduction band edge of TiO2, while NiOx upshifts the valence band of TiO2 because of the interaction of valence orbitals. Light irradiation EPR and FTIR tests suggest that the collaboration of CuOx and NiOx promotes the formation of oxygen vacancies/defects and a rapid charge transfer pathway, thereby provides numerous active sites and electrons to enhance CO2 photoreduction performance.

4.
Neurosci Bull ; 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37973720

RESUMO

Neuroinflammation mediated by microglia and oxidative stress play pivotal roles in the development of chronic temporal lobe epilepsy (TLE). We postulated that kainic acid (KA)-Induced status epilepticus triggers microglia-dependent inflammation, leading to neuronal damage, a lowered seizure threshold, and the emergence of spontaneous recurrent seizures (SRS). Extensive evidence from our laboratory suggests that dextromethorphan (DM), even in ultra-low doses, has anti-inflammatory and neuroprotective effects in many animal models of neurodegenerative disease. Our results showed that administration of DM (10 ng/kg per day; subcutaneously via osmotic minipump for 4 weeks) significantly mitigated the residual effects of KA, including the frequency of SRS and seizure susceptibility. In addition, DM-treated rats showed improved cognitive function and reduced hippocampal neuronal loss. We found suppressed microglial activation-mediated neuroinflammation and decreased expression of hippocampal gp91phox and p47phox proteins in KA-induced chronic TLE rats. Notably, even after discontinuation of DM treatment, ultra-low doses of DM continued to confer long-term anti-seizure and neuroprotective effects, which were attributed to the inhibition of microglial NADPH oxidase 2 as revealed by mechanistic studies.

5.
Small ; 19(38): e2301892, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37194985

RESUMO

Photocatalytic CO2 reduction to valuable fuels is a promising way to alleviate anthropogenic CO2 emissions and energy crises. Perovskite oxides have attracted widespread attention as photocatalysts for CO2 reduction by virtue of their high catalytic activity, compositional flexibility, bandgap adjustability, and good stability. In this review, the basic theory of photocatalysis and the mechanism of CO2 reduction over perovskite oxide are first introduced. Then, perovskite oxides' structures, properties, and preparations are presented. In detail, the research progress on perovskite oxides for photocatalytic CO2 reduction is discussed from five aspects: as a photocatalyst in its own right, metal cation doping at A and B sites of perovskite oxides, anion doping at O sites of perovskite oxides and oxygen vacancies, loading cocatalyst on perovskite oxides, and constructing heterojunction with other semiconductors. Finally, the development prospects of perovskite oxides for photocatalytic CO2 reduction are put forward. This article should serve as a useful guide for creating perovskite oxide-based photocatalysts that are more effective and reasonable.

6.
Bioorg Chem ; 133: 106412, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36773456

RESUMO

The PI3K/AKT/mTOR signaling pathway is one of the most common abnormal activation pathways in tumor cells, and has associated with multiple functions such as tumor cell growth, proliferation, migration, invasion, and tumor angiogenesis. Here, a series of 3-amino-1H-indazole derivatives were synthesized, and their antiproliferative activities against HT-29, MCF-7, A-549, HepG2 and HGC-27 cells were evaluated. Among them, W24 exhibited the broad-spectrum antiproliferative activity against four cancer cells with IC50 values of 0.43-3.88 µM. Mechanism studies revealed that W24 inhibited proliferation by affecting the DNA synthesis, induced G2/M cell cycle arrest and apoptosis by regulating Cyclin B1, BAD and Bcl-xL, meanwhile induced the change of intracellular ROS and mitochondrial membrane potential in HGC-27 cells. Moreover, W24 inhibited the migration and invasion of HGC-27 cells by decreasing EMT pathway related proteins and reducing the mRNA expression levels of Snail, Slug and HIF-1α. Furthermore, W24 displayed low tissue toxicity profile and good pharmacokinetic properties in vivo. Therefore, 3-amino-1H-indazole derivatives might serve as a new scaffold for the development of PI3K/AKT/mTOR inhibitor and anti-gastric cancer reagent.


Assuntos
Indazóis , Neoplasias , Humanos , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias/tratamento farmacológico , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Indazóis/química , Indazóis/farmacologia
7.
J Biol Chem ; 298(7): 102082, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35660418

RESUMO

The stemness of cancer cells contributes to tumorigenesis, the heterogeneity of malignancies, cancer metastasis, and therapeutic resistance. However, the roles and regulatory mechanisms maintaining stemness among breast cancer subtypes remain elusive. Our previous studies have demonstrated that ectopic expression and dynamic alteration of the mesenchymal transcription factor forkhead box F2 (FOXF2) differentially regulates breast cancer progression and metastasis organotropism in a cell subtype-specific manner. Here, we reveal the underlying mechanism by which FOXF2 enhances stemness in luminal breast cancer cells but suppresses that in basal-like breast cancer (BLBC) cells. We show that luminal breast cancer and BLBC cells with FOXF2-regulated stemness exhibit partial mesenchymal stem cell properties that toward osteogenic differentiation and myogenic differentiation, respectively. Furthermore, we show that FOXF2 activates the Wnt signaling pathway in luminal breast cancer cells but represses this pathway in BLBC cells by recruiting nuclear receptor coactivator 3 (NCoA3) and nuclear receptor corepressor 1 (NCoR1) to the promoters of Wnt family member 2B (WNT2B) and frizzled class receptor 1 (FZD1) genes to activate and repress their transcription, respectively. We propose that targeting the Wnt signaling pathway is a promising strategy for the treatment of breast cancers with dysregulated expression of FOXF2.


Assuntos
Neoplasias da Mama , Fatores de Transcrição Forkhead , Células-Tronco Neoplásicas , Via de Sinalização Wnt , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Células-Tronco Neoplásicas/patologia , Osteogênese
8.
Food Funct ; 13(2): 933-943, 2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35005749

RESUMO

The purpose of this study was to investigate the protective effect of sniffing orange essential oil (OEO) on the formation of non-alcoholic fatty liver disease (NAFLD) caused by a high-fat diet. The results confirmed that sniffing OEO could reduce obesity caused by a high-fat diet (HFD) by reducing the levels of triglycerides (TGs), total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C). In addition, the observation of liver tissue sections showed that sniffing OEO could reduce lipid accumulation in liver cells. Further analysis by western blot analysis showed that OEO treatment made the expression levels of acetyl-CoA carboxylase (ACC) and Cytochrome P450 2E1 (CYP2E1) down-regulated and the expression levels of peroxisome proliferator-activated receptor-α (PPAR-α) and carnitine palmitoyltransferase-1 (CPT-1) up-regulated. These results indicate that the treatment of sniffing OEO could enhance the antioxidant capacity of mice and reduce liver damage caused by a high-fat diet. Furthermore, sniffing OEO could inhibit lipid synthesis and oxidative stress stimulated by a high-fat diet. Overall, OEO treatment had a certain protective effect on NAFLD-related diseases caused by a high-fat diet. Therefore, aromatherapy may be introduced as a treatment of long-term chronic diseases.


Assuntos
Citrus sinensis/química , Dieta Hiperlipídica/efeitos adversos , Hepatopatia Gordurosa não Alcoólica/induzido quimicamente , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Óleos Voláteis/farmacologia , Óleos de Plantas/farmacologia , Tecido Adiposo/efeitos dos fármacos , Animais , Peso Corporal , Comportamento Alimentar , Masculino , Camundongos , Óleos Voláteis/química , Óleos de Plantas/química
9.
Cell Death Differ ; 27(10): 2973-2987, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32424142

RESUMO

The mesenchymal transcription factor forkhead box F2 (FOXF2) is a critical regulator of embryogenesis and tissue homeostasis. Our previous studies demonstrated that FOXF2 is ectopically expressed in basal-like breast cancer (BLBC) cells and that FOXF2 deficiency promotes the epithelial-mesenchymal transition and aggressiveness of BLBC cells. In this study, we found that FOXF2 controls transforming growth factor-beta (TGF-ß)/SMAD signaling pathway activation through transrepression of TGF-ß-coding genes in BLBC cells. FOXF2-deficient BLBC cells adopt a myofibroblast-/cancer-associated fibroblast (CAF)-like phenotype, and tend to metastasize to visceral organs by increasing autocrine TGF-ß signaling and conferring aggressiveness to neighboring cells by increasing paracrine TGF-ß signaling. In turn, TGF-ß silences FOXF2 expression through upregulating miR-182-5p, a posttranscriptional regulator of FOXF2 and inducer of metastasis. In addition to mediating a reciprocal repression loop between FOXF2 and TGF-ß through direct transrepression by SMAD3, miR-182-5p forms a reciprocal repression loop with FOXF2 that directly transrepresses MIR182 expression. Therefore, FOXF2 deficiency accelerates the visceral metastasis of BLBC through unrestricted increases in autocrine and paracrine TGF-ß signaling, and miR-182-5p expression. Our findings provide novel mechanisms underlying the roles of TGF-ß, miR-182-5p, and FOXF2 in accelerating BLBC dissemination and metastasis, and may facilitate the development of therapeutic strategies for aggressive BLBC.


Assuntos
Neoplasias da Mama/metabolismo , Fatores de Transcrição Forkhead/fisiologia , MicroRNAs/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Animais , Movimento Celular , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Células MCF-7 , Camundongos , Camundongos SCID
10.
Brain Res Bull ; 154: 32-42, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31669104

RESUMO

Glial cell line-derived neurotrophic factor (GDNF) has neurotrophic activity for the survival of dopaminergic neurons, which is under active investigation for Parkinson's disease (PD) therapy. FLZ is a potential new drug for PD treatment. However, it is unclear whether neurotrophic activity contributes to the neuroprotective effects of FLZ. Here we found that FLZ markedly improved the function of dopaminergic neurons in primary mesencephalic neuron/glia cultures. Further investigation demonstrated that astroglia were required for FLZ to function as a neurotrophic regulator, as FLZ failed to show neurotrophic effects in the absence of astroglia. We clarified that GDNF was responsible for the neurotrophic effects of FLZ since FLZ selectively stimulated GDNF production, which was confirmed by the finding that the neurotrophic effect of FLZ was attenuated by GDNF-neutralizing antibody. Mechanistic study demonstrated that GDNF induction by FLZ was CREB-dependent and that PI3K/Akt was the main pathway regulating CREB activity, which was confirmed by in vivo studies. We also validated that the induction of GDNF by FLZ contributed to PD treatment in vivo. In conclusion, the present data provided evidence that FLZ had robust neurotrophic effects on dopaminergic neurons through sustained induction of GDNF in astroglia by activating the PI3K/Akt/CREB pathway.


Assuntos
Astrócitos/metabolismo , Neurônios Dopaminérgicos/metabolismo , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Acrilamidas/efeitos adversos , Acrilamidas/farmacologia , Animais , Astrócitos/efeitos dos fármacos , Benzenoacetamidas/farmacologia , Ácidos Cafeicos/efeitos adversos , Ácidos Cafeicos/farmacologia , Modelos Animais de Doenças , Dopamina/metabolismo , Neurônios Dopaminérgicos/efeitos dos fármacos , Fator Neurotrófico Derivado de Linhagem de Célula Glial/fisiologia , Mesencéfalo/citologia , Neuroglia/metabolismo , Fármacos Neuroprotetores/metabolismo , Fármacos Neuroprotetores/farmacologia , Doença de Parkinson/metabolismo , Fenóis/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Cultura Primária de Células/métodos , Ratos , Ratos Sprague-Dawley
11.
Mol Nutr Food Res ; 63(24): e1900418, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31655498

RESUMO

SCOPE: Cardiac fibrosis is a key feature of cardiac remodeling. Recently, a protective role for resveratrol (RES) in pressure-overload-induced cardiac hypertrophy and contractile dysfunction has been demonstrated. However, the effect of RES on cardiac fibrosis and diastolic function in this model remains unclear. METHODS AND RESULTS: Cardiac remodeling is induced in mice by transverse aortic constriction (TAC) for 2-4 weeks. RES is administered at dose of 5 or 50 mg kg-1  d-1 for 2 weeks. It is found that RES administration at 50 mg kg-1  d-1 significantly attenuates TAC-induced adverse cardiac systolic and diastolic function, fibrosis, inflammation, and oxidative stress via inhibiting PTEN degradation and the downstream mediators. However, RES at 5 mg kg-1  d-1 has no significant effects. RES at 50 mg kg-1  d-1 also ameliorates pre-established adverse cardiac function and remodeling induced by TAC. Treatment with PTEN inhibitor VO-OHpic (10 mg kg-1  d-1 ) for 2 weeks abolishes RES-mediated protective effects. Additionally, the effect of RES (100 µm) on inhibition of Ang II-induced fibroblast proliferation and activation in vitro is verified. CONCLUSIONS: The findings provide new evidence that RES plays a critical role in the progression of cardiac fibrosis and diastolic dysfunction, and suggest that RES may be a promising therapeutic agent for cardiac fibrosis.


Assuntos
Cardiotônicos/farmacologia , Coração/efeitos dos fármacos , Miocárdio/patologia , Resveratrol/farmacologia , Animais , Diástole/efeitos dos fármacos , Fibrose , Coração/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , Miocardite/tratamento farmacológico , Miocardite/etiologia , NF-kappa B/metabolismo , Estresse Oxidativo/efeitos dos fármacos , PTEN Fosfo-Hidrolase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteína Smad2/metabolismo , Proteína Smad3/metabolismo
12.
Nat Commun ; 10(1): 2707, 2019 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-31222004

RESUMO

Bone metastases occur in most advanced breast cancer patients and cause serious skeletal-related complications. The mechanisms by which bone metastasis seeds develop in primary tumors and specifically colonize the bone remain to be elucidated. Here, we show that forkhead box F2 (FOXF2) functions as a master transcription factor for reprogramming cancer cells into an osteomimetic phenotype by pleiotropic transactivation of the BMP4/SMAD1 signaling pathway and bone-related genes that are expressed at early stages of bone differentiation. The epithelial-to-osteomimicry transition regulated by FOXF2 confers a tendency on cancer cells to metastasize to bone which leads to osteolytic bone lesions. The BMP antagonist Noggin significantly inhibits FOXF2-driven osteolytic bone metastasis of breast cancer cells. Thus, targeting the FOXF2-BMP/SMAD axis might be a promising therapeutic strategy to manage bone metastasis. The role of FOXF2 in transactivating bone-related genes implies a biological function of FOXF2 in regulating bone development and remodeling.


Assuntos
Neoplasias Ósseas/patologia , Neoplasias da Mama/patologia , Carcinoma Ductal de Mama/patologia , Fatores de Transcrição Forkhead/metabolismo , Regulação Neoplásica da Expressão Gênica , Animais , Proteína Morfogenética Óssea 4/metabolismo , Neoplasias Ósseas/genética , Neoplasias Ósseas/secundário , Neoplasias da Mama/cirurgia , Carcinoma Ductal de Mama/genética , Carcinoma Ductal de Mama/secundário , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Reprogramação Celular/genética , Feminino , Seguimentos , Perfilação da Expressão Gênica , Humanos , Camundongos , Camundongos Nus , Osteoblastos , Transdução de Sinais/genética , Proteína Smad1/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
13.
FASEB J ; 33(5): 6564-6573, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30807702

RESUMO

FOXF2 and FOXQ1, forkhead box transcription factor superfamily members, are encoded by neighboring genes located on human chromosome 6p25.3 and play opposite roles in epithelial-mesenchymal transition (EMT) and metastasis in basal-like breast cancer (BLBC). However, the relationship between FOXF2 and FOXQ1 in cancer remains unknown. Here, we found mutual transcriptional repression between FOXF2 and FOXQ1, and the reciprocal negative feedback loop controlled EMT, aggressiveness, and chemoresistance in BLBC cells. We further demonstrated that FOXF2 recruited nuclear receptor corepressor 1 and histone deacetylase 3 to the FOXQ1 promoter to inhibit its transcription in BLBC cells, but FOXQ1 did not exert such an effect on FOXF2. Our findings reveal novel mechanisms underlying the determination of BLBC aggressiveness and the transrepressive function of FOXF2 in a basal-like cell subtype-specific manner. Therefore, blocking the vicious cycle of the abnormal reciprocal feedback loop between FOXF2 and FOXQ1 to induce cell differentiation and restore tissue homeostasis is a promising strategy for the treatment of aggressive BLBC.-Kang, L.-J., Yu, Z.-H., Cai, J., He, R., Lu, J.-T., Hou, C., Wang, Q.-S., Li, X.-Q., Zhang, R., Feng, Y.-M. Reciprocal transrepression between FOXF2 and FOXQ1 controls basal-like breast cancer aggressiveness.


Assuntos
Neoplasias da Mama/metabolismo , Transição Epitelial-Mesenquimal , Fatores de Transcrição Forkhead/biossíntese , Regulação Neoplásica da Expressão Gênica , Proteínas de Neoplasias/biossíntese , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Feminino , Fatores de Transcrição Forkhead/genética , Humanos , Células MCF-7 , Proteínas de Neoplasias/genética
14.
Redox Biol ; 20: 390-401, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30412827

RESUMO

Sustained cardiac hypertrophy is a major cause of heart failure (HF) and death. Recent studies have demonstrated that resveratrol (RES) exerts a protective role in hypertrophic diseases. However, the molecular mechanisms involved are not fully elucidated. In this study, cardiac hypertrophic remodeling in mice were established by pressure overload induced by transverse aortic constriction (TAC). Cardiac function was evaluated by echocardiography and invasive pressure-volume analysis. Cardiomyocyte size was detected by wheat germ agglutinin staining. The protein and gene expressions of signaling mediators and hypertrophic markers were examined. Our results showed that administration of RES significantly suppressed pressure overload-induced cardiac hypertrophy, fibrosis and apoptosis and improved in vivo heart function in mice. RES also reversed pre-established hypertrophy and restoring contractile dysfunction induced by chronic pressure overload. Moreover, RES treatment blocked TAC-induced increase of immunoproteasome activity and catalytic subunit expression (ß1i, ß2i and ß5i), which inhibited PTEN degradation thereby leading to inactivation of AKT/mTOR and activation of AMPK signals. Further, blocking PTEN by the specific inhibitor VO-Ohpic significantly attenuated RES inhibitory effect on cardiomyocyte hypertrophy in vivo and in vitro. Taken together, our data suggest that RES is a novel inhibitor of immunoproteasome activity, and may represent a promising therapeutic agent for the treatment of hypertrophic diseases.


Assuntos
Cardiomegalia/metabolismo , Cardiomegalia/fisiopatologia , PTEN Fosfo-Hidrolase/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma/farmacologia , Resveratrol/farmacologia , Animais , Biomarcadores , Pressão Sanguínea , Cardiomegalia/diagnóstico , Cardiomegalia/tratamento farmacológico , Cardiotônicos/farmacologia , Células Cultivadas , Modelos Animais de Doenças , Ecocardiografia , Testes de Função Cardíaca , Masculino , Camundongos , Modelos Moleculares , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Complexo de Endopeptidases do Proteassoma/imunologia , Proteólise/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Serina-Treonina Quinases TOR
15.
Cancer Lett ; 420: 116-126, 2018 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-29409810

RESUMO

Lymphatic metastasis is the main route of breast cancer metastasis. It is known that lymphangiogenesis facilitates lymphatic metastasis through vascular endothelial growth factor-C (VEGF-C)/VEGF receptor 3 (VEGFR3) pathway-linked interactions between the tumor and its microenvironment. Here, we report a novel mechanism of lymphatic metastasis by which aggressive basal-like breast cancer (BLBC) cells form lymphatic vessel-like structures that are identified by the positive expression of lymphatic endothelial cell markers lymphatic vessel endothelial hyaluronan receptor 1 (LYVE-1), podoplanin, and VEGFR3, and termed as lymphangiogenic mimicry (LM), for the first time. Our clinical evidence and experimental data in vivo and in vitro revealed that forkhead box F2 (FOXF2) deficiency promotes the lymphatic metastasis of BLBC by conferring a lymphangiogenic mimetic feature upon cancer cells through directly activating VEGFR3 transcription. The fact that FOXF2 controls the activation of the VEGF-C/VEGFR3 signaling pathway in BLBC cells provides potential molecular diagnostic and therapeutic strategies for lymphatic metastasis in BLBC patients.


Assuntos
Neoplasias Encefálicas/patologia , Fatores de Transcrição Forkhead/deficiência , Metástase Linfática/patologia , Neoplasia de Células Basais/patologia , Transdução de Sinais , Animais , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Humanos , Metástase Linfática/genética , Células MCF-7 , Glicoproteínas de Membrana/metabolismo , Camundongos , Estadiamento de Neoplasias , Transplante de Neoplasias , Neoplasia de Células Basais/genética , Neoplasia de Células Basais/metabolismo , Microambiente Tumoral , Fator C de Crescimento do Endotélio Vascular/genética , Fator C de Crescimento do Endotélio Vascular/metabolismo , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Proteínas de Transporte Vesicular/metabolismo
16.
J Steroid Biochem Mol Biol ; 178: 293-302, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29337094

RESUMO

Vitamin D (VD) and its analogues play critical roles in metabolic and cardiovascular diseases. Recent studies have demonstrated that VD exerts a protective role in cardiovascular diseases. However, the beneficial effect of VD on pressure overload-induced cardiac remodeling and dysfunction and its underlying mechanisms are not fully elucidated. In this study, cardiac dysfunction and hypertrophic remodeling in mice were induced by pressure overload. Cardiac function was evaluated by echocardiography, and myocardial histology was detected by H&E and Masson's trichrome staining. Cardiomyocyte size was detected by wheat germ agglutinin staining. The protein levels of signaling mediators were examined by western blotting while mRNA expression of hypertrophic and fibrotic markers was examined by qPCR analysis. Oxidative stress was detected by dihydroethidine staining. Our results showed that administration of VD3 significantly ameliorates pressure overload-induced contractile dysfunction, cardiac hypertrophy, fibrosis and inflammation in mice. In addition, VD3 treatment also markedly inhibited cardiac oxidative stress and apoptosis. Moreover, protein levels of calcineurin A, ERK1/2, AKT, TGF-ß, GRP78, cATF6, and CHOP were significantly reduced whereas SERCA2 level was upregulated in the VD3-treated hearts compared with control. These results suggest that VD3 attenuates cardiac remodeling and dysfunction induced by pressure overload, and this protective effect is associated with inhibition of multiple signaling pathways.


Assuntos
Cardiomegalia/prevenção & controle , Fibrose/prevenção & controle , Inflamação/prevenção & controle , Pressão , Remodelação Ventricular , Vitamina D/administração & dosagem , Vitaminas/administração & dosagem , Animais , Cardiomegalia/etiologia , Cardiomegalia/patologia , Chaperona BiP do Retículo Endoplasmático , Fibrose/etiologia , Fibrose/patologia , Inflamação/etiologia , Inflamação/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo
17.
Cancer Lett ; 402: 142-152, 2017 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-28577976

RESUMO

Myc-associated zinc finger protein (MAZ) is a transcription factor with C2H2-type zinc-finger motifs that can bind GC-rich cis-elements. MAZ activates the transcription of some cancer-related genes and represses that of others, suggesting that changes in MAZ expression may play different roles in the development and progression of different types or subtypes of cancers depending on its target genes. However, the functions and mechanisms of MAZ in regulating the carcinogenesis and progression of breast cancer have remained unclear. In the current study, we show that MAZ performs dual function in basal-like breast cancer (BLBC): suppression of aggressiveness and promotion of proliferation. Forkhead box F2 (FOXF2) is a novel transcription target of MAZ and mediates the functions of MAZ. The MAZ mRNA level, particularly in combination with the FOXF2 mRNA level, may serve as a prognostic marker for BLBC patients. Our results indicate that the dual function of the MAZ-FOXF2 axis reflect the pleiotropic nature of multifunctional transcription factors in regulating the different stages of cancer development and progression, which could lead to the complexity of cancer diagnosis and treatment.


Assuntos
Neoplasias da Mama/metabolismo , Movimento Celular , Proliferação de Células , Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Fatores de Transcrição/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/mortalidade , Neoplasias da Mama/patologia , Proteínas de Ligação a DNA/genética , Progressão da Doença , Feminino , Fatores de Transcrição Forkhead/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Estimativa de Kaplan-Meier , Células MCF-7 , Invasividade Neoplásica , Interferência de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais , Fatores de Tempo , Fatores de Transcrição/genética , Transcrição Gênica , Ativação Transcricional , Transfecção
18.
Oncotarget ; 7(48): 79688-79705, 2016 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-27806311

RESUMO

Bone is one of the most common organs of breast cancer metastasis. Cancer cells that mimic osteoblasts by expressing bone matrix proteins and factors have a higher likelihood of metastasizing to bone. However, the molecular mechanisms of osteomimicry formation of cancer cells remain undefined. Herein, we identified a set of bone-related genes (BRGs) that are ectopically co-expressed in primary breast cancer tissues and determined that osteomimetic feature is obtained due to the osteoblast-like transformation of epithelial breast cancer cells that have undergone epithelial-mesenchymal transition (EMT) followed by bone morphogenetic protein-2 (BMP2) stimulation. Furthermore, we demonstrated that breast cancer cells that transformed into osteoblast-like cells with high expression of BRGs showed enhanced chemotaxis, adhesion, proliferation and multidrug resistance in an osteoblast-mimic bone microenvironment in vitro. During these processes, runt-related transcription factor 2 (RUNX2) functioned as a master mediator by suppressing or activating the transcription of BRGs that underlie the dynamic antagonism between the TGF-ß/SMAD and BMP/SMAD signaling pathways in breast cancer cells. Our findings suggest a novel mechanism of osteomimicry formation that arises in primary breast tumors, which may explain the propensity of breast cancer to metastasize to the skeleton and contribute to potential strategies for predicting and targeting breast cancer bone metastasis and multidrug resistance.


Assuntos
Mimetismo Biológico , Proteína Morfogenética Óssea 2/farmacologia , Neoplasias Ósseas/metabolismo , Neoplasias da Mama/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Osteoblastos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Antineoplásicos/farmacologia , Neoplasias Ósseas/genética , Neoplasias Ósseas/secundário , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/patologia , Adesão Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Técnicas de Cocultura , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Células MCF-7 , Osteoblastos/metabolismo , Osteoblastos/patologia , Fenótipo , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Transcrição Gênica , Microambiente Tumoral , Regulação para Cima
19.
Cancer Lett ; 380(1): 78-86, 2016 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-27317874

RESUMO

Runt-related transcription factor 2 (RUNX2) is regarded as an important contributor to breast cancer bone metastasis. However, previous studies did not provide direct clinical evidence for a role of RUNX2 in bone-specific metastasis in breast cancer, and the mechanism of RUNX2 in cancer cell recruitment and adhesion to the bone remains unclear. In this study, we showed that RUNX2 expression is positively correlated with the risk of bone-specific metastasis in lymph node-negative breast cancer patients. Then, we identified ITGA5 as a transcriptional target of RUNX2 from multiple candidate genes encoding adhesion molecules or chemokine receptors. We further provided experimental and clinical evidence that RUNX2, in an integrin α5-dependent manner, promotes the attraction and adhesion of breast cancer cells to the bone and confers cancer cell survival and bone colonization advantages. Overall, our findings clarify an adhesion-dependent mechanism of RUNX2 for the osteotropism and bone colonization of breast cancer cells and implicate RUNX2 and integrin α5 as potential molecular markers for the prediction of bone metastasis and therapeutic targets for the treatment of breast cancer bone metastasis.


Assuntos
Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/secundário , Neoplasias da Mama/metabolismo , Neoplasias da Mama/secundário , Movimento Celular , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Integrina alfa5/metabolismo , Osteoblastos/metabolismo , Animais , Neoplasias Ósseas/genética , Neoplasias da Mama/genética , Neoplasias da Mama/terapia , Adesão Celular , Linhagem Celular Tumoral , Proliferação de Células , Técnicas de Cocultura , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Intervalo Livre de Doença , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Integrina alfa5/genética , Estimativa de Kaplan-Meier , Camundongos , Osteoblastos/patologia , Interferência de RNA , Transdução de Sinais , Fatores de Tempo , Transcrição Gênica , Transfecção
20.
Dalton Trans ; 45(23): 9704-11, 2016 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-27227338

RESUMO

This report describes the facile solvothermal synthesis of highly monodispersed nickel microspheres with surfaces uniformly covered by nickel dots. Synthesis parameters including reaction times and reagent concentrations significantly influence the microspheric particle characteristics. The novelty of the synthetic method in this work is twofold: first, the controlled synthesis of Ni metallic microspheres using ethylene glycol as the precursor of a reductant and urea as the origin of OH(-) has never been reported. Second, there are few studies on the construction of Ni microspheres covered by uniform Ni dots using a one-step solvothermal method. Importantly, the as-prepared Ni microspheres show an improved ability to remove Cd(2+) ions even at high concentrations in water and a unique adsorption isotherm having an increasing adsorption capacity for Cd(2+) ions. The presence of Ni dots was considered to play an important role in the onset of the adsorption process. We believe that this work opens up new and possibly exciting opportunities in the field of adsorption of heavy metal ions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA