Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biofabrication ; 16(3)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38569492

RESUMO

Tissue engineering has emerged as an advanced strategy to regenerate various tissues using different raw materials, and thus it is desired to develop more approaches to fabricate tissue engineering scaffolds to fit specific yet very useful raw materials such as biodegradable aliphatic polyester like poly (lactide-co-glycolide) (PLGA). Herein, a technique of 'wet 3D printing' was developed based on a pneumatic extrusion three-dimensional (3D) printer after we introduced a solidification bath into a 3D printing system to fabricate porous scaffolds. The room-temperature deposition modeling of polymeric solutions enabled by our wet 3D printing method is particularly meaningful for aliphatic polyester, which otherwise degrades at high temperature in classic fuse deposition modeling. As demonstration, we fabricated a bilayered porous scaffold consisted of PLGA and its mixture with hydroxyapatite for regeneration of articular cartilage and subchondral bone. Long-termin vitroandin vivodegradation tests of the scaffolds were carried out up to 36 weeks, which support the three-stage degradation process of the polyester porous scaffold and suggest faster degradationin vivothanin vitro. Animal experiments in a rabbit model of articular cartilage injury were conducted. The efficacy of the scaffolds in cartilage regeneration was verified through histological analysis, micro-computed tomography (CT) and biomechanical tests, and the influence of scaffold structures (bilayerversussingle layer) onin vivotissue regeneration was examined. This study has illustrated that the wet 3D printing is an alternative approach to biofabricate tissue engineering porous scaffolds based on biodegradable polymers.


Assuntos
Cartilagem Articular , Animais , Coelhos , Porosidade , Microtomografia por Raio-X , Temperatura , Alicerces Teciduais/química , Engenharia Tecidual/métodos , Polímeros , Poliésteres , Impressão Tridimensional
2.
Adv Healthc Mater ; : e2303395, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38554036

RESUMO

In the last 30 years, there are ≈60 000 publications about electrospun nanofibers, but it is still unclear whether nanoscale fibers are really necessary for electrospun tissue engineering scaffolds. The present report puts forward this argument and reveals that compared with electrospun nanofibers, microfibers with diameter of ≈3 µm (named as "oligo-micro fiber") are more appropriate for tissue engineering scaffolds owing to their better cell infiltration ability caused by larger pores with available nuclear deformation. To further increase pore sizes, electrospun poly(ε-caprolactone) (PCL) scaffolds are fabricated using latticed collectors with meshes. Fiber orientation leads to sufficient mechanical strength albeit increases porosity. The latticed scaffolds exhibit good biocompatibility and improve cell infiltration. Under aortic conditions in vitro, the performances of latticed scaffolds are satisfactory in terms of the acute systolic hemodynamic functionality, except for the higher regurgitation fraction caused by the enlarged pores. This hierarchical electrospun scaffold with sparse fibers in macropores and oligo-micro fibers in filaments provides new insights into the design of tissue engineering scaffolds, and tissue engineering may provide living heart valves with regenerative capabilities for patients with severe valve disease in the future.

3.
Regen Biomater ; 11: rbad112, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38173765

RESUMO

Corrodible metals are the newest kind of biodegradable materials and raise a new problem of the corrosion products. However, the removal of the precipitated products has been unclear and even largely ignored in publications. Herein, we find that albumin, an abundant macromolecule in serum, enhances the solubility of corrosion products of iron in blood mimetic Hank's solution significantly. This is universal for other main biodegradable metals such as magnesium, zinc and polyester-coated iron. Albumin also influences corrosion rates in diverse trends in Hank's solution and normal saline. Based on quantitative study theoretically and experimentally, both the effects on corrosion rates and soluble fractions are interpreted by a unified mechanism, and the key factor leading to different corrosion behaviors in corrosion media is the interference of albumin to the Ca/P passivation layer on the metal surface. This work has illustrated that the interactions between metals and media macromolecules should be taken into consideration in the design of the next-generation metal-based biodegradable medical devices in the formulism of precision medicine. The improved Hank's solution in the presence of albumin and with a higher content of initial calcium salt is suggested to access biodegradable metals potentially for cardiovascular medical devices, where the content of calcium salt is calculated after consideration of chelating of calcium ions by albumin, resulting in the physiological concentration of free calcium ions.

4.
Biomaterials ; 304: 122411, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38061184

RESUMO

Poly(l-lactide) (PLLA) is an important candidate raw material of the next-generation biodegradable stent for percutaneous coronary intervention, yet how to make a polyester stent with sufficient mechanical strength and relatively fast biodegradation gets to be a dilemma. Herein, we put forward a hybrid interpenetrating network (H-IPN) strategy to resolve this dilemma. As such, we synthesize a multi-functional biodegradable macromer of star-like poly(d,l-lactide-co-ɛ-caprolactone) with six acrylate end groups, and photoinitiate it, after mixing with linear PLLA homopolymer, to trigger the free radical polymerization. The resultant crosslinked polymer blend is different from the classic semi-interpenetrating network, and partial chemical crosslinking occurs between the linear polymer and the macromer network. Combined with the tube blow molding and the postprocessing laser cutting, we fabricate a semi-crosslinked-polyester biodegradable coronary stent composed of H-IPN, which includes a physical network of polyester spherulites and a chemical crosslinking network of copolyester macromers and a part of homopolymers. Compared with the currently main-stream PLLA stent in research, this H-IPN stent realizes a higher and more appropriate biodegradation rate while maintaining sufficient radial strength. A series of polymer chemistry, polymer physics, polymer processing, and in vitro and in vivo biological assessments of medical devices have been made to examine the H-IPN material. The interventional implanting of the H-IPN stent into aorta abdominalis of rabbits and the follow-ups to 12 months have confirmed the safety and effectiveness.


Assuntos
Poliésteres , Polímeros , Animais , Coelhos , Poliésteres/química , Stents
5.
Regen Biomater ; 10: rbad056, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37397871

RESUMO

Expanded polytetrafluoroethylene (ePTFE) is promising in biomedical fields such as covered stents and plastic surgery owing to its excellent biocompatibility and mechanical properties. However, ePTFE material prepared by the traditional biaxial stretching process is with thicker middle and thinner sides due to the bowing effect, which poses a major problem in industrial-scale fabrication. To solve this problem, we design an olive-shaped winding roller to provide the middle part of the ePTFE tape with a greater longitudinal stretching amplitude than the two sides, so as to make up for the excessive longitudinal retraction tendency of the middle part when it is transversely stretched. The as-fabricated ePTFE membrane has, as designed, uniform thickness and node-fibril microstructure. In addition, we examine the effects of mass ratio of lubricant to PTFE powder, biaxial stretching ratio and sintering temperature on the performance of the resultant ePTFE membranes. Particularly, the relation between the internal microstructure of the ePTFE membrane and its mechanical properties is revealed. Besides stable mechanical properties, the sintered ePTFE membrane exhibits satisfactory biological properties. We make a series of biological assessments including in vitro hemolysis, coagulation, bacterial reverse mutation and in vivo thrombosis, intracutaneous reactivity test, pyrogen test and subchronic systemic toxicity test; all of the results meet the relevant international standards. The muscle implantation of the sintered ePTFE membrane into rabbits indicates acceptable inflammatory reactions of our sintered ePTFE membrane fabricated on industrial scale. Such a medical-grade raw material with the unique physical form and condensed-state microstructure is expected to afford an inert biomaterial potentially for stent-graft membrane.

6.
ACS Appl Mater Interfaces ; 15(4): 6142-6155, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36637977

RESUMO

Surface topography is a biophysical factor affecting cell behaviors, yet the underlying cues are still not clear. Herein, we hypothesized that stereo coverage and overall stiffness of biomaterial arrays on the scale of single cells underly parts of topography effects on cell adhesion. We fabricated a series of microarrays (micropillar, micropit, and microtube) of poly(l-lactic acid) (PLLA) using mold casting based on pre-designed templates. The characteristic sizes of array units were less than that of a single cell, and thus, each cell could sense the micropatterns with varied roughness. With human umbilical vein endothelial cells (HUVECs) as the model cell type, we examined spreading areas and cell viabilities on different surfaces. "Stereo coverage" was defined to quantify the actual cell spreading fraction on a topographic surface. Particularly in the case of high micropillars, cells were confirmed not able to touch the bottom and had to partially hang among the micropillars. Then, in our opinion, a cell sensed the overall stiffness combining the bulk stiffness of the raw material and the stiffness of the culture medium. Spreading area and single cell viability were correlated to coverage and topographic feature of the prepared microarrays in particular with the significantly protruded geometry feather. Cell traction forces exerted on micropillars were also discussed. These findings provide new insights into the surface modifications toward biomedical implants.


Assuntos
Materiais Biocompatíveis , Humanos , Adesão Celular , Células Endoteliais da Veia Umbilical Humana , Propriedades de Superfície
7.
Regen Biomater ; 9: rbac049, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35958517

RESUMO

The aortic dissection (AD) is a life-threatening disease. The transcatheter endovascular aortic repair (EVAR) affords a minimally invasive technique to save the lives of these critical patients, and an appropriate stent-graft gets to be the key medical device during an EVAR procedure. Herein, we report a trilayer stent-graft and corresponding delivery system used for the treatment of the AD disease. The stent-graft is made of nitinol stents with an asymmetric Z-wave design and two expanded polytetrafluoroethylene (ePTFE) membranes. Each of the inner and outer surfaces of the stent-graft was covered by an ePTFE membrane, and the two membranes were then sintered together. The biological studies of the sintered ePTFE membranes indicated that the stent-graft had excellent cytocompatibility and hemocompatibility in vitro. Both the stent-graft and the delivery system exhibited satisfactory mechanical properties and operability. The safety and efficacy of this stent-graft and the corresponding delivery system were demonstrated in vivo. In nine canine experiments, the blood vessels of the animals implanted with the stent-grafts were of good patency, and there were no thrombus and obvious stenosis by angiography after implantation for 6 months. Furthermore, all of the nine clinical cases experienced successful implantation using the stent-graft and its postrelease delivery system, and the 1-year follow-ups indicated the preliminary safety and efficacy of the trilayer stent-graft with an asymmetric Z-wave design for interventional treatment.

8.
ACS Appl Mater Interfaces ; 14(33): 37436-37446, 2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-35943249

RESUMO

Directed migration of cells through cell-surface interactions is a paramount prerequisite in biomaterial-induced tissue regeneration. However, whether and how the nanoscale spatial gradient of adhesion molecules on a material surface can induce directed migration of cells is not sufficiently known. Herein, we employed block copolymer micelle nanolithography to prepare gold nanoarrays with a nanospacing gradient, which were prepared by continuously changing the dipping velocity. Then, a self-assembly monolayer technique was applied to graft arginine-glycine-aspartate (RGD) peptides on the nanodots and poly(ethylene glycol) (PEG) on the glass background. Since RGD can trigger specific cell adhesion via conjugating with integrin (its receptor in the cell membrane) and PEG can resist protein adsorption and nonspecific cell adhesion, a nanopattern with cell-adhesion contrast and a gradient of RGD nanospacing was eventually prepared. In vitro cell behaviors were examined using endothelial cells (ECs) and smooth muscle cells (SMCs) as a demonstration. We found that SMCs exhibited significant orientation and directed migration along the nanospacing gradient, while ECs exhibited only a weak spontaneously anisotropic migration. The gradient response was also dependent upon the RGD nanospacing ranges, namely, the start and end nanospacings under a given distance and gradient. The different responses of these two cell types to the RGD nanospacing gradient provide new insights for designing cell-selective nanomaterials potentially used in cell screening, wound healing, etc.


Assuntos
Células Endoteliais , Oligopeptídeos , Adesão Celular , Miócitos de Músculo Liso , Oligopeptídeos/química , Polietilenoglicóis/química
9.
ACS Appl Mater Interfaces ; 14(21): 24197-24212, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35580332

RESUMO

Enabling a biodegradable polymer radiopaque under X-ray is much desired for many medical devices. Physical blending of a present biodegradable polymer and a commercialized medical contrast agent is convenient yet lacks comprehensive fundamental research. Herein, we prepared a biodegradable polymer-based radiopaque raw material by blending poly(l-lactic acid) (PLLA or simply PLA) and iohexol (IHX), where PLA constituted the continuous phase and IHX particles served as the dispersed phase. The strong X-ray adsorption of IHX enabled the composite radiopaque; the hydrolysis of the polyester and the water solubility of the contrast agent enabled the composite biodegradable in an aqueous medium. The idea was confirmed by in vitro characterizations of the resultant composite, in vivo subcutaneous implantation in rats up to 6 months, and the clear visualization of a part of a biodegradable occluder in a Bama piglet under X-ray. We also found that the crystallization of PLA was significantly enhanced in the presence of the solid particles, which should be taken into consideration in the design of an appropriate biomaterial composite because crystallization degree influences the biodegradation rate and mechanical property of a material to a large extent. We further tried to introduce a small amount of poly(vinylpyrrolidone) into the blend of PLA and IHX. Compared to the bicomponent composite, the tricomponent one exhibited decreased modulus and increased elongation at break and tensile strength. This paves more ways for researchers to select appropriate raw materials according to the regenerated tissue and the application site.


Assuntos
Meios de Contraste , Poliésteres , Animais , Materiais Biocompatíveis/química , Cristalização , Poliésteres/química , Polímeros/química , Ratos , Suínos
10.
Regen Biomater ; 9(1): rbac007, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35414958

RESUMO

The malalignment of teeth is treated classically by metal braces with alloy wires, which has an unfavorable influence on the patients appearance during the treatment. With the development of digitization, computer simulation and three-dimensional (3D) printing technology, herein, a modern treatment was tried using clear polymeric aligners, which were fabricated by molding polyurethane films via thermoforming on the 3D-printed personalized dental models. The key parameters of photocurable 3D printing of dental models and the mechanical properties of the clear aligner film material were examined. The precision of a 3D-printed dental model mainly relied on characteristics of photocurable resin, the resolution of light source and the exposure condition, which determined the eventual shape of the molded clear aligner and thus the orthodontic treatment efficacy. The biocompatibility of the polyurethane film material was confirmed through cytotoxicity and hemolysis tests in vitro. Following a series of 3D-printed personalized dental models and finite element analysis to predict and plan the fabrication and orthodontic processes, corresponding clear aligners were fabricated and applied in animal experiments, which proved the efficacy and biocompatibility in vivo. Clinical treatments of 120 orthodontic cases were finally carried out with success, which highlights the advantage of the clear aligners as an esthetic, compatible and efficient appliance.

11.
Biomaterials ; 279: 121208, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34749074

RESUMO

The dominant source of thromboembolism in heart comes from the left atrial appendage (LAA). An occluder can close LAA and significantly reduce the risk of strokes, particularly for those patients with atrial fibrillation. However, it is technically challenging to fabricate an LAA occluder that is appropriate for percutaneous implantation and can be rapidly endothelialized to accomplish complete closure and avoid severe complication. Hypothesizing that a fast migration rate of endothelial cells on the implant surface would lead to rapid endothelialization, we fabricated an LAA occlusion device for interventional treatment with a well-designed 3D architecture and a nanoscale 2D coating. Through screening of biomaterials surfaces with cellular studies in vitro including cell observations, qPCR, RNA sequencing, and implantation studies in vivo, we revealed that a titanium-nitrogen nanocoating on a NiTi alloy promoted high migration rate of endothelial cells on the surface. The effectiveness of this first nanocoating LAA occluder was validated in animal experiments and a patient case, both of which exhibited successful implantation, fast sealing and long-term safety of the device. The mechanistic insights gained in this study will be useful for the design of medical devices with appropriate surface modification, not necessarily for improved cell adhesion but sometimes for enhanced cell migration.


Assuntos
Apêndice Atrial , Cardiopatias , Dispositivo para Oclusão Septal , Animais , Apêndice Atrial/diagnóstico por imagem , Materiais Biocompatíveis , Movimento Celular , Ecocardiografia Transesofagiana , Células Endoteliais , Humanos , Resultado do Tratamento
12.
ACS Appl Mater Interfaces ; 13(36): 42344-42356, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34469116

RESUMO

Although many tissue regeneration processes after biomaterial implantation are related to migrations of multiple cell types on material surfaces, available tools to adjust relative migration speeds are very limited. Herein, we put forward a nanomaterial strategy to employ surface modification with arginine-glycine-aspartate (RGD) nanoarrays to tune in vitro cell migration using endothelial cells (ECs) and smooth muscle cells (SMCs) as demonstrated cell types. We found that migrations of both cell types exhibited a nonmonotonic trend with the increase of RGD nanospacing, yet with different peaks-74 nm for SMCs but 95 nm for ECs. The varied sensitivities afford a facile way to regulate the relative migration speeds. Although ECs migrated at a speed similar to SMCs on a non-nano surface, the migration of ECs could be controlled to be significantly faster or slower than SMCs simply by adjusting the RGD nanospacing. This study suggests a potential application of surface modification of biomaterials on a nanoscale level.


Assuntos
Materiais Biocompatíveis/química , Movimento Celular/fisiologia , Células Endoteliais/metabolismo , Miócitos de Músculo Liso/metabolismo , Oligopeptídeos/química , Adesão Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Ouro/química , Células Endoteliais da Veia Umbilical Humana , Humanos , Nanoestruturas/química , Poliestirenos/química , Polivinil/química , Piridinas/química
13.
Biomaterials ; 274: 120851, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33965798

RESUMO

The next-generation closure device for interventional treatment of congenital heart disease is regarded to be biodegradable, yet the corresponding biomaterial technique is still challenging. Herein, we report the first fully biodegradable atrial septal defect (ASD) occluder finally coming into clinical use, which is made of biodegradable poly(l-lactic acid) (PLLA). We characterized the physico-chemical properties of PLLA fibers as well as the raw polymer and the operability of the as-fabricated occluders. Cell behaviors on material were observed, and in vivo fiber degradation and inflammatory responses were examined. ASD models in piglets were created, and 44 PLLA ASD occluders were implanted via catheter successfully. After 36 months, the PLLA ASD occluders almost degraded without any complications. The mechanical properties and thickness between newborn and normal atrial septum showed no significant difference. We further accomplished the first clinical implantation of the PLLA ASD occluder in a four-year boy, and the two-year follow-up up to date preliminarily indicated safety and feasibility of such new-generation fully biodegradable occluder made of synthetic polymers.


Assuntos
Doenças Cardiovasculares , Comunicação Interatrial , Dispositivo para Oclusão Septal , Animais , Comunicação Interatrial/diagnóstico por imagem , Comunicação Interatrial/cirurgia , Humanos , Recém-Nascido , Masculino , Polímeros , Desenho de Prótese , Suínos , Resultado do Tratamento
14.
Zhongguo Zhen Jiu ; 35(6): 549-52, 2015 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-26480548

RESUMO

OBJECTIVE: To compare the difference in the efficacy between acupuncture and oral administration of trazodone and the expressions of neurotransmitters in patients of insomnia differentiated as liver stagnation transforming into fire. METHODS: Seventy patients of insomnia differentiated as liver stagnation transforming into fire were randomized into an observation group and a control group, 35 cases in each one. In the observation group, acupuncture therapy was adopted at Shenmen (HT 7), Baihui (GV 20), Yintang (GV 29), Hegu (LI 4), Taichong (LR 3), etc. The needles were retained for 20 min each time. The treatment was given once a day, the treatment of 2 weeks made one session. In the control group, trazodone, 100 mg, oral administration, once a day, the treatment of 2 weeks made one session. Two sessions were required in the two groups. The scores in Pittsburgh sleep quality index (PSQI) and Asberg rating scale for side effects (SERS), the levels of neurotransmitters such as 5-hydroxy tryptamine (5-HT) and norepinephrine (NE) and the expressions of protein kinase C (PKC) and brain-derived neurotrophic factor (BDNF) in peripheral blood were observed before and after treatment in the two groups. RESULTS: PSQI score and SERS score after treatment were all decreased compared with those in both groups before treatment (both P<0. 05). After treatment, PSQI score and SERS score in the observation group were lower apparently than those in the control group (both P<0. 05). After treatment NE content and PKC level were decreased; 5-HT content and BDNF mRNA were increased compared with those in both groups before treatment (all P<0. 05). NE content and PKC level in the observation group were lower apparently than those in the control group (both P<0. 05). The serum 5-HT content and BDNF mRNA expression in the observation group were higher than those in the control group separately (both P<0. 05). CONCLUSION: Acupuncture therapy improves the sleeping quality of patients of insomnia differentiated as liver stagnation transforming into fire, and reduces serum NE level and increases 5-HT content and BDNF expression, which achieves the better efficacy as compared with the oral administration of trazodone. It is one of the effective approaches to the treatment of insomnia differentiated as liver stagnation transforming into fire.


Assuntos
Terapia por Acupuntura , Neurotransmissores/genética , Distúrbios do Início e da Manutenção do Sono/terapia , Pontos de Acupuntura , Adulto , Idoso , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Feminino , Humanos , Fígado/fisiopatologia , Masculino , Neurotransmissores/metabolismo , Norepinefrina/genética , Norepinefrina/metabolismo , Serotonina/metabolismo , Distúrbios do Início e da Manutenção do Sono/genética , Distúrbios do Início e da Manutenção do Sono/metabolismo , Distúrbios do Início e da Manutenção do Sono/fisiopatologia , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA