Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Nanomedicine ; 19: 2755-2772, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38525008

RESUMO

Purpose: The drug resistance and low response rates of immunotherapy limit its application. This study aimed to construct a new nanoparticle (CaCO3-polydopamine-polyethylenimine, CPP) to effectively deliver interleukin-12 (IL-12) and suppress cancer progress through immunotherapy. Methods: The size distribution of CPP and its zeta potential were measured using a Malvern Zetasizer Nano-ZS90. The morphology and electrophoresis tentative delay of CPP were analyzed using a JEM-1400 transmission electron microscope and an ultraviolet spectrophotometer, respectively. Cell proliferation was analyzed by MTT assay. Proteins were analyzed by Western blot. IL-12 and HMGB1 levels were estimated by ELISA kits. Live/dead staining assay was performed using a Calcein-AM/PI kit. ATP production was detected using an ATP assay kit. The xenografts in vivo were estimated in C57BL/6 mice. The levels of CD80+/CD86+, CD3+/CD4+ and CD3+/CD8+ were analyzed by flow cytometry. Results: CPP could effectively express EGFP or IL-12 and increase ROS levels. Laser treatment promoted CPP-IL-12 induced the number of dead or apoptotic cell. CPP-IL-12 and laser could further enhance CALR levels and extracellular HMGB1 levels and decrease intracellular HMGB1 and ATP levels, indicating that it may induce immunogenic cell death (ICD). The tumors and weights of xenografts in CPP-IL-12 or laser-treated mice were significantly reduced than in controls. The IL-12 expression, the CD80+/CD86+ expression of DC from lymph glands, and the number of CD3+/CD8+T or CD3+/CD4+T cells from the spleen increased in CPP-IL-12-treated or laser-treated xenografts compared with controls. The levels of granzyme B, IFN-γ, and TNF-α in the serum of CPP-IL-12-treated mice increased. Interestingly, CPP-IL-12 treatment in local xenografts in the back of mice could effectively inhibit the growth of the distant untreated tumor. Conclusion: The novel CPP-IL-12 could overexpress IL-12 in melanoma cells and achieve immunotherapy to melanoma through inducing ICD, activating CD4+ T cell, and enhancing the function of tumor-reactive CD8+ T cells.


Assuntos
Proteína HMGB1 , Melanoma , Humanos , Camundongos , Animais , Interleucina-12 , Linfócitos T CD8-Positivos , Melanoma/terapia , Melanoma/metabolismo , Proteína HMGB1/metabolismo , Morte Celular Imunogênica , Camundongos Endogâmicos C57BL , Proliferação de Células , Linfócitos T CD4-Positivos , Trifosfato de Adenosina/metabolismo
2.
Chronobiol Int ; 40(4): 361-367, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37183834

RESUMO

The effects of the moon on mental activities remain contentious. Few studies have investigated associations between lunar phases and different types of bipolar disorder (BD) episodes. In the current study, 7,452 patients with BD from three hospitals were enrolled. Patients were divided into two groups on the basis of episode types, and the effects of lunar phase were examined for each type. The cosinor analysis revealed moon-related rhythmicity in admissions for BD in a period of 14.75 days. There were fewer admissions around the new moon and the full moon. There was no significant difference between different groups in acrophase. There was possibly a temporal lag between the onset of BD and hospitalization. Thus, it is too early to draw firm conclusions about the impact of lunar phases on BD. Sleep might be a middle way from moon effect to admissions of BD. These results have implications for future disease prevention strategies and research.


Assuntos
Transtorno Bipolar , Humanos , Lua , Estudos Retrospectivos , Ritmo Circadiano , Hospitalização , Hospitais
3.
Thorac Cancer ; 14(10): 913-928, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36808485

RESUMO

BACKGROUND: The present study aimed to investigate the function of miR-3529-3p in lung adenocarcinoma and MnO2 -SiO2 -APTES (MSA) as a promising multifunctional delivery agent for lung adenocarcinoma therapy. METHODS: Expression levels of miR-3529-3p were evaluated in lung carcinoma cells and tissues by qRT-PCR. The effects of miR-3529-3p on apoptosis, proliferation, metastasis and neovascularization were assessed by CCK-8, FACS, transwell and wound healing assays, tube formation and xenografts experiments. Luciferase reporter assays, western blot, qRT-PCR and mitochondrial complex assay were used to determine the targeting relationship between miR-3529-3p and hypoxia-inducible gene domain family member 1A (HIGD1A). MSA was fabricated using MnO2 nanoflowers, and its heating curves, temperature curves, IC50, and delivery efficiency were examined. The hypoxia and reactive oxygen species (ROS) production was investigated by nitro reductase probing, DCFH-DA staining and FACS. RESULTS: MiR-3529-3p expression was reduced in lung carcinoma tissues and cells. Transfection of miR-3529-3p could promote apoptosis and suppress cell proliferation, migration and angiogenesis. As a target of miR-3529-3p, HIGD1A expression was downregulated, through which miR-3529-3p could disrupt the activities of complexes III and IV of the respiratory chain. The multifunctional nanoparticle MSA could not only efficiently deliver miR-3529-3p into cells, but also enhance the antitumor function of miR-3529-3p. The underlying mechanism may be that MSA alleviates hypoxia and has synergistic effects in cellular ROS promotion with miR-3529-3p. CONCLUSIONS: Our results establish the antioncogenic role of miR-3529-3p, and demonstrate that miR-3529-3p delivered by MSA has enhanced tumor suppressive effects, probably through elevating ROS production and thermogenesis.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , MicroRNAs , Nanopartículas , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Dióxido de Silício/metabolismo , Compostos de Manganês , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular Tumoral , Óxidos/farmacologia , Óxidos/metabolismo , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/terapia , Adenocarcinoma de Pulmão/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/metabolismo , Proliferação de Células/genética , Fototerapia , Regulação Neoplásica da Expressão Gênica
4.
Biomed Pharmacother ; 160: 114382, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36773525

RESUMO

Salvianolic acid A (SAA) is a traditional Chinese medicine that has a good therapeutic effect on cardiovascular disease. However, the underlying mechanisms by which SAA improves mitochondrial respiration and cardiac function in diabetic cardiomyopathy (DCM) remain unknown. This study aims to elucidate whether SAA had any cardiovascular protection on the pathophysiology of DCM and explored the potential mechanisms. Diabetes was induced in rats by 30 mg/kg of streptozotocin (STZ) treatment. After a week of stability, 5 mg/kg isoprenaline (ISO) was injected into the rats subcutaneously. 3 mg/kg SAA was orally administered for six weeks and 150 mg/kg Metformin was selected as a positive group. At the end of this period, cardiac function was assessed by ultrasound, electrocardiogram, and relevant cardiac injury biomarkers testing. Treatment with SAA improved cardiac function, glucose, and lipid levels, mitochondrial respiration, and suppressed myocardial inflammation and apoptosis. Furthermore, SAA treatment inhibits the apoptosis pathway through CRYAB in diabetic cardiomyopathy rats. As a result, this study not only provides new insights into the mechanism of SAA against DCM but also provides new therapeutic ideas for the discovery of anti-DCM compounds in the clinic.


Assuntos
Diabetes Mellitus , Cardiomiopatias Diabéticas , Animais , Ratos , Apoptose , Cardiomiopatias Diabéticas/metabolismo , Ratos Sprague-Dawley , Respiração , Coração
5.
Int J Pharm ; 631: 122488, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36521638

RESUMO

Reduced drug uptake and elevated drug efflux are two major mechanisms in cancer multidrug resistance (MDR). In the present study, a new multistage O2-producing liposome with NAG/R8-dual-ligand and stimuli-responsive dePEGylation was developed to address the abovementioned issues simultaneously. The designed C-NAG-R8-PTXL/MnO2-lip could also achieve magnetic resonance imaging (MRI)-guided synergistic chemodynamic/chemotherapy (CDT/CT). In vitro and in vivo studies showed that C-NAG-R8-PTXL/MnO2-lip enhanced circulation time by PEG and targeted the tumor site. After tumor accumulation, endogenous l-cysteine was administered, and the PEG-attached disulfide bond was broken, resulting in the dissociation of PEG shells. The previously hidden positively charged R8 by different lengths of PEG chains was exposed and mediated efficient internalization. In addition, the oxygen (O2) generated by C-NAG-R8-PTXL/MnO2-lip relieved the hypoxic environment within the tumor, thus reducing the efflux of chemotherapeutic drug. O2 was able to burst liposomes and triggered the release of PTXL. The toxic hydroxyl radical (·OH), which was produced by H2O2 and Mn2+, strengthened CDT/CT. C-NAG-R8-PTXL/MnO2-lip was also used as MRI contrast agent, which blazed the trail to rationally design theranostic agents for tumor imaging.


Assuntos
Lipossomos , Neoplasias , Humanos , Lipossomos/química , Compostos de Manganês/química , Linhagem Celular Tumoral , Peróxido de Hidrogênio , Óxidos/química , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Resistência a Múltiplos Medicamentos , Oxigênio , Imageamento por Ressonância Magnética , Microambiente Tumoral , Nanomedicina Teranóstica
6.
Front Oncol ; 12: 1032850, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36387210

RESUMO

Long non-coding RNAs (lncRNAs) modulate cell proliferation, cycle, and apoptosis. However, the role of lncRNA-WFDC21P in the tumorigenesis of triple-negative breast cancer (TNBC) remains unclear. Results of this study demonstrated that WFDC21P levels significantly increased in TNBC, which was associated with the poor survival of patients. WFDC21P overexpression significantly promoted TNBC cell proliferation and metastasis. WFDC21P interacted with miR-628-5p, which further suppressed cell proliferation and metastasis by negatively regulating Smad3-related gene expression. Recovery of miR-628-5p weakened the roles of WFDC21P in promoting the growth and metastasis of TNBC cells. Moreover,N6-methyladenosine (m6A) modification upregulated WFDC21P expression in the TNBC cells. WFDC21P and its m6A levels were increased after methyltransferase like 3 (METTL3) overexpression but reduced after METTL3 silencing. The proliferation and metastasis of TNBC cells were promoted by METTL3 overexpression but suppressed by METTL3 silencing. This study demonstrated the vital roles of WFDC21P and its m6A in regulating the proliferation and metastasis of TNBC cells via the WFDC21P/miR-628/SMAD3 axis.

7.
JCI Insight ; 7(21)2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36173680

RESUMO

Early-stage temporomandibular joint osteoarthritis (TMJOA) is characterized by excessive subchondral bone loss. Emerging evidence suggests that TMJ disc displacement is involved, but the pathogenic mechanism remains unclear. Here, we established a rat model of TMJOA that simulated disc displacement with a capacitance-based force-sensing system to directly measure articular surface pressure in vivo. Micro-CT, histological staining, immunofluorescence staining, IHC staining, and Western blot were used to assess pathological changes and underlying mechanisms of TMJOA in the rat model in vivo as well as in RAW264.7 cells in vitro. We found that disc displacement led to significantly higher pressure on the articular surface, which caused rapid subchondral bone loss via activation of the RANTES-chemokine receptors-Akt2 (RANTES-CCRs-Akt2) axis. Inhibition of RANTES or Akt2 attenuated subchondral bone loss and resulted in improved subchondral bone microstructure. Cytological studies substantiated that RANTES regulated osteoclast formation by binding to its receptor CCRs and activating the Akt2 pathway. The clinical evidence further supported that RANTES was a potential biomarker for predicting subchondral bone loss in early-stage TMJOA. Taken together, this study demonstrates important functions of the RANTES-CCRs-Akt2 axis in the regulation of subchondral bone remodeling and provides further knowledge of how disc displacement causes TMJOA.


Assuntos
Doenças Ósseas Metabólicas , Osteoartrite , Animais , Ratos , Doenças Ósseas Metabólicas/patologia , Remodelação Óssea/fisiologia , Quimiocina CCL5 , Osteoartrite/diagnóstico por imagem , Osteoartrite/patologia , Osteoclastos/patologia , Proteínas Proto-Oncogênicas c-akt , Articulação Temporomandibular/diagnóstico por imagem , Articulação Temporomandibular/patologia , Camundongos , Linhagem Celular
8.
Cell Death Discov ; 8(1): 306, 2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35790734

RESUMO

PKM2 is an important regulator of the aerobic glycolysis that plays a vital role in cancer cell metabolic reprogramming. In general, Trib2 is considered as a "pseudokinase", contributing to different kinds of cancer. However, the detailed roles of TRIB2 in regulating cancer metabolism by PKM2 remain unclear. This study demonstrated that TRIB2, not a "pseudokinase", has the kinase activity to directly phosphorylate PKM2 at serine 37 in cancer cells. The elevated pSer37-PKM2 would subsequently promote the PKM2 dimers to enter into nucleus and increase the expression of LDHA, GLUT1, and PTBP1. The aerobic glycolysis is then elevated to promote cancer cell proliferation and migration in TRIB2- or PKM2-overexpressed cultures. The glucose uptake and lactate production increased, but the ATP content decreased in TRIB2- or PKM2-treated cultures. Experiments of TRIB2-/- mice further supported that TRIB2 could regulate aerobic glycolysis by PKM2. Thus, these results reveal the new kinase activity of TRIB2 and its mechanism in cancer metabolism may be related to regulating PKM2 to promote lung cancer cell proliferation in vitro and in vivo, suggesting promising therapeutic targets for cancer therapy by controlling cancer metabolism.

9.
J Biomed Nanotechnol ; 18(3): 763-777, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35715902

RESUMO

Although the development of safe and efficient cancer therapeutic agents is essential, this process remains challenging. In this study, a mitochondria-targeted degradable nanoplatform (PDA-MnO2-IR780) for synergistic photothermal, photodynamic, and sonodynamic tumor treatment was investigated. PDA-MnO2-IR780 exhibits superior photothermal properties owing to the integration of polydopamine, MnO2, and IR780. IR780, a photosensitizer and sonosensitizer, was used for photodynamic therapy and sonodynamic therapy. When PDA-MnO2-IR780 was delivered to the tumor site, MnO2 was decomposed by hydrogen peroxide, producing Mn2+ and oxygen. Meanwhile, alleviating tumor hypoxia promoted the production of reactive oxygen species during photodynamic therapy and sonodynamic therapy. Moreover, large amounts of reactive oxygen species could reduce the expression of heat shock proteins and increase the heat sensitivity of tumor cells, thereby improving the photothermal treatment effect. In turn, hyperthermia caused by photothermal therapy accelerated the production of reactive oxygen species in photodynamic therapy. IR780 selectively accumulation in mitochondria also promoted tumor apoptosis. In this system, the mutual promotion of photothermal therapy and photodynamic therapy/sonodynamic therapy had an enhanced therapeutic effect. Moreover, the responsive degradable characteristic of PDA-MnO2-IR780 in the tumor microenvironment ensured excellent biological safety. These results reveal a great potential of PDA-MnO2-IR780 for safe and highly-efficiency synergistic therapy for cancer.


Assuntos
Nanocompostos , Nanopartículas , Fotoquimioterapia , Linhagem Celular Tumoral , Lasers , Compostos de Manganês/metabolismo , Mitocôndrias/metabolismo , Nanocompostos/uso terapêutico , Nanopartículas/uso terapêutico , Óxidos , Fotoquimioterapia/métodos , Espécies Reativas de Oxigênio
10.
Pharmacol Res ; 180: 106238, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35504356

RESUMO

Pulmonary arterial hypertension (PAH) is a severe cardiopulmonary dysfunctional disease, characterized by progressive vascular remodeling. Inflammation is an increasingly recognized feature of PAH, which is important for the initiation and maintenance of vascular remodeling. High levels of various inflammatory mediators have been documented in both PAH patients and experimental models of PAH. Similarly, multiple immune cells were found to accumulate in and around the wall of remodeled pulmonary vessels and in the vicinity of plexiform lesions, respectively. On the other hand, inflammation is also a bridge from autoimmune diseases to PAH. Autoimmune diseases always lead to chronic inflammation, characterized by the low-level persistent infiltration of immune cells, and elevated levels of several pro-inflammatory cytokines and chemokines. In addition, circulating autoantibodies are found in the peripheral blood of patients, indicating a possible role of autoimmunity in the pathogenesis of PAH. Thus, anti-inflammatory and immunotherapy might be new strategies to prevent or even reverse the process of PAH. Many anti-inflammatory agents and immunotherapies have been confirmed in animal models while some clinical trials employing immunotherapies are completed or currently underway. Here, we review pathological mechanisms associated with inflammation and immunity in the development of PAH, and discuss potential interventions for the treatment of PAH.


Assuntos
Doenças Autoimunes , Hipertensão Pulmonar , Hipertensão Arterial Pulmonar , Animais , Anti-Inflamatórios/uso terapêutico , Doenças Autoimunes/tratamento farmacológico , Hipertensão Pulmonar Primária Familiar/complicações , Hipertensão Pulmonar Primária Familiar/tratamento farmacológico , Humanos , Hipertensão Pulmonar/tratamento farmacológico , Inflamação , Hipertensão Arterial Pulmonar/tratamento farmacológico , Artéria Pulmonar , Remodelação Vascular
11.
Front Pharmacol ; 13: 844400, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35479305

RESUMO

Traditional Chinese medicine (TCM) plays an important role in the treatment of complex diseases, especially cardiovascular diseases. However, it is hard to identify their modes of action on account of their multiple components. The present study aims to evaluate the effects of Dan-Shen-Yin (DSY) granules on hypoxia-induced pulmonary hypertension (HPH), and then to decipher the molecular mechanisms of DSY. Systematic pharmacology was employed to identify the targets of DSY on HPH. Furthermore, core genes were identified by constructing a protein-protein interaction (PPI) network and analyzed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes (KEGG) analysis. Related genes and pathways were verified using a hypoxia-induced mouse model and hypoxia-treated pulmonary artery cells. Based on network pharmacology, 147 potential targets of DSY on HPH were found, constructing a PPI network, and 13 hub genes were predicted. The results showed that the effect of DSY may be closely associated with AKT serine/threonine kinase 1 (AKT1), signal transducer and activator of transcription 3 (STAT3), and HIF-1 signaling pathways, as well as biological processes such as cell proliferation. Consistent with network pharmacology analysis, experiments in vivo demonstrated that DSY could prevent the development of HPH in a hypoxia-induced mouse model and alleviate pulmonary vascular remodeling. In addition, inhibition of STAT3/HIF-1α/VEGF and FAK/AKT signaling pathways might serve as mechanisms. Taken together, the network pharmacology analysis suggested that DSY exhibited therapeutic effects through multiple targets in the treatment of HPH. The inferences were initially confirmed by subsequent in vivo and in vitro studies. This study provides a novel perspective for studying the relevance of TCM and disease processes and illustrates the advantage of this approach and the multitargeted anti-HPH effect of DSY.

12.
J Biomed Nanotechnol ; 18(2): 352-368, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35484752

RESUMO

The construction of high-efficiency tumor theranostic platform will be of great interest in the treatment of cancer patients; however, significant challenges are associated with developing such a platform. In this study, we developed high-efficiency nanotheranostic agent based on ferroferric oxide, manganese dioxide, hyaluronic acid and doxorubicin (FMDH-D NPs) for dual targeting and imaging guided synergetic photothermal-enhanced chemodynamic/chemotherapy for cancer, which improved the specific uptake of drugs at tumor site by the dual action of CD44 ligand hyaluronic acid and magnetic nanoparticles guided by magnetic force. Under the acidic microenvironment of cancer cells, FMDH-D could be decomposed into Mn2+ and Fe2+ to generate •OH radicals by triggering a Fenton-like reaction and responsively releasing doxorubicin to kill cancer cells. Meanwhile, alleviating tumor hypoxia improved the efficacy of chemotherapy in tumors. The photothermal properties of FMDH generated high temperatures, which further accelerated the generation of reactive oxygen species, and enhanced effects of chemodynamic therapy. Furthermore, FMDH-D NPs proved to be excellent T1/T2-weighted magnetic resonance imaging contrast agents for monitoring the tumor location. These results confirmed the considerable potential of FMDH-D NPs in a highly efficient synergistic therapy platform for cancer treatment.


Assuntos
Compostos de Manganês , Neoplasias , Doxorrubicina/farmacologia , Humanos , Ácido Hialurônico , Imageamento por Ressonância Magnética , Compostos de Manganês/farmacologia , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Óxidos , Microambiente Tumoral
13.
Acta Pharmacol Sin ; 43(9): 2325-2339, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35190697

RESUMO

Pulmonary hypertension (PH) is a cardiopulmonary disease characterized by a progressive increase in pulmonary vascular resistance. One of the initial pathogenic factors of PH is pulmonary arterial remodeling under various stimuli. Current marketed drugs against PH mainly relieve symptoms without significant improvement in overall prognosis. Discovering and developing new therapeutic drugs that interfere with vascular remodeling is in urgent need. Puerarin is an isoflavone compound extracted from the root of Kudzu vine, which is widely used in the treatment of cardiovascular diseases. In the present study, we evaluated the efficacy of puerarin in the treatment of experimental PH. PH was induced in rats by a single injection of MCT (50 mg/kg, sc), and in mice by exposure to hypoxia (10% O2) for 14 days. After MCT injection the rats were administered puerarin (10, 30, 100 mg · kg-1 · d-1, i.g.) for 28 days, whereas hypoxia-treated mice were pre-administered puerarin (60 mg · kg-1 · d-1, i.g.) for 7 days. We showed that puerarin administration exerted significant protective effects in both experimental PH rodent models, evidenced by significantly reduced right ventricular systolic pressure (RVSP) and lung injury, improved pulmonary artery blood flow as well as pulmonary vasodilation and contraction function, inhibited inflammatory responses in lung tissues, improved resistance to apoptosis and abnormal proliferation in lung tissues, attenuated right ventricular injury and remodeling, and maintained normal function of the right ventricle. We revealed that MCT and hypoxia treatment significantly downregulated BMPR2/Smad signaling in the lung tissues and PPARγ/PI3K/Akt signaling in the lung tissues and right ventricles, which were restored by puerarin administration. In addition, we showed that a novel crystal type V (Puer-V) exerted better therapeutic effects than the crude form of puerarin (Puer). Furthermore, Puer-V was more efficient than bosentan (a positive control drug) in alleviating the abnormal structural changes and dysfunction of lung tissues and right ventricles. In conclusion, this study provides experimental evidence for developing Puer-V as a novel therapeutic drug to treat PH.


Assuntos
Hipertensão Pulmonar , Isoflavonas , Animais , Modelos Animais de Doenças , Hipertensão Pulmonar/induzido quimicamente , Hipertensão Pulmonar/tratamento farmacológico , Hipertensão Pulmonar/patologia , Hipóxia/induzido quimicamente , Hipóxia/tratamento farmacológico , Isoflavonas/farmacologia , Isoflavonas/uso terapêutico , Camundongos , Monocrotalina/efeitos adversos , Fosfatidilinositol 3-Quinases , Artéria Pulmonar , Ratos , Roedores , Remodelação Vascular
14.
Chin J Integr Med ; 28(4): 339-348, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35023063

RESUMO

OBJECTIVE: To investigate the pharmacodynamic material basis, mechanism of actions and targeted diseases of Salicornia europaea L. (SE) based on the network pharmacology method, and to verify the antidepressant-like effect of the SE extract by pharmacological experiments. METHODS: Retrieval tools including Chinese medicine (CM), PubMed, PharmMapper, MAS 3.0 and Cytoscape were used to search the components of SE, predict its targets and related therapeutic diseases, and construct the "Component-Target-Pathway" network of SE for central nervous system (CNS) diseases. Further, protein-protein interaction (PPI) network, Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) function annotation of depression-related targets were analyzed to predict the antidepressant mechanism of SE. Chronic unpredictable mild stress (CUMS) model was used to construct a mouse model with depression-like symptoms. And the animals were randomly divided into 6 groups (n=10) including the normal group (nonstressed mice administered with distilled water), the CUMS group (CUMS mice administered with distilled water), the venlafaxine group (CUMS mice administered with venlafaxine 9.38 mg/kg), SE high-, medium-, and low-dose groups (CUMS mice administered with SE 1.8, 1.35 and 0.9 g/kg, respectively). Then some relevant indicators were determined for experimental verification by the forced swim test (FST), the tail suspension test (TST) and open-field test (OFT). Dopamine (DA) concentration in hippocampus and cerebral cortex, IL-2 and corticosterone (CORT) levels in blood, and nuclear factor E2 related factor 2 (Nrf2), kelch-like epichlorohydrin related protein 1 (Keap1), NAD(P) H dehydrogenase [quinone] 1 (NQO1) and heme oxygenase-1 (HO-1) levels in mice were measured by enzyme linked immunosorbent assay (ELISA) and Western blot respectively to explore the possible mechanisms. RESULTS: The "target-disease" network diagram predicted by network pharmacology, showed that the potential target of SE involves a variety of CNS diseases, among which depression accounts for the majority. The experimental results showed that SE (1.8, 1.35 g/kg) significantly decreased the immobility period, compared with the CUMS group in FST and TST in mice after 3-week treatment, while SE exhibited no significant effect on exploratory behavior in OFT in mice. Compared with CUMS group, the SE group (0.9 g/kg) showed significant differences (P<0.05) in DA levels in the hippocampus and cerebral cortex. In addition, compared with CUMS control group, SE (1.8 g/kg) group showed a significant effect on decreasing the activities of CORT (P<0.05), and serum IL-2 level with no statistical significance. Finally, Western blot results showed that compared with the model group, Nrf2, Keap1, NQO1 and HO-1 protein expressions in SE group (1.8 g/kg) were up-regulated (all P<0.01). CONCLUSION: The SE extract may have an antidepressant effect, which appeared to regulate Nrf2-ARE pathway and increased levels of DA and CORT in the hippocampus and cortex.


Assuntos
Chenopodiaceae , Depressão , Animais , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Comportamento Animal , Chenopodiaceae/metabolismo , Depressão/tratamento farmacológico , Modelos Animais de Doenças , Hipocampo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Camundongos , Fator 2 Relacionado a NF-E2/metabolismo , Farmacologia em Rede , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Estresse Psicológico/tratamento farmacológico
15.
J Sci Food Agric ; 102(8): 3088-3098, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34775620

RESUMO

BACKGROUND: The incidence of metabolic syndrome (MetS) is increasing, and n-3 polyunsaturated fatty acids (PUFAs) in salmon (Oncorhynchus) phospholipids can effectively reduce the risk of MetS. RESULTS: Under the intervention of 4% salmon phospholipid, the levels of fasting blood glucose (FBG), insulin, monocyte chemoattractant protein-1 (MCP-1), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) were significantly reduced in the plasma of MetS mice, whereas adiponectin was significantly increased. By screening, we found that the 18 differential metabolites, consisting of seven triglycerides (TGs), six diglycerides (DGs), one phosphatidylethanolamine (PE), three sphingomyelins (SMs) and one eicosanoid, could be the key differential metabolites, and two metabolic pathways were significantly affected: glycerolipid metabolism and glycerophospholipid metabolism. CONCLUSION: 4% salmon phospholipids could affect MetS by inhibiting insulin resistance, reducing inflammatory factors and promoting the synthesis of PE, yet the mechanism required further study. Our results could help in the treatment of MetS. © 2021 Society of Chemical Industry.


Assuntos
Resistência à Insulina , Síndrome Metabólica , Animais , Lipidômica , Síndrome Metabólica/tratamento farmacológico , Camundongos , Fosfolipídeos , Salmão
16.
Cell Death Dis ; 12(8): 735, 2021 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-34301920

RESUMO

Non-coding RNAs (ncRNAs) involve in diverse biological processes by post-transcriptional regulation of gene expression. Emerging evidence shows that miRNA-4293 plays a significant role in the development of non-small cell lung cancer. However, the oncogenic functions of miR-4293 have not been studied. Our results demonstrated that miR-4293 expression is markedly enhanced in lung carcinoma tissue and cells. Moreover, miR-4293 promotes tumor cell proliferation and metastasis but suppresses apoptosis. Mechanistic investigations identified mRNA-decapping enzyme 2 (DCP2) as a target of miR-4293 and its expression is suppressed by miR-4293. DCP2 can directly or indirectly bind to WFDC21P and downregulates its expression. Consequently, miR-4293 can further promote WFDC21P expression by regulating DCP2. With a positive correlation to miR-4293 expression, WFDC21P also plays an oncogenic role in lung carcinoma. Furthermore, knockdown of WFDC21P results in functional attenuation of miR-4293 on tumor promotion. In vivo xenograft growth is also promoted by both miR-4293 and WFDC21P. Overall, our results establish oncogenic roles for both miR-4293 and WFDC21P and demonstrate that interactions between miRNAs and lncRNAs through DCP2 are important in the regulation of carcinoma pathogenesis. These results provided a valuable theoretical basis for the discovery of lung carcinoma therapeutic targets and diagnostic markers based on miR-4293 and WFDC21P.


Assuntos
Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , Regulação para Cima/genética , Adulto , Idoso , Animais , Apoptose/genética , Sequência de Bases , Carcinogênese/genética , Carcinogênese/patologia , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Feminino , Técnicas de Silenciamento de Genes , Humanos , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , MicroRNAs/genética , Pessoa de Meia-Idade , Modelos Biológicos , Ligação Proteica , RNA Longo não Codificante/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fator de Transcrição STAT3/metabolismo
17.
J Control Release ; 336: 396-409, 2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34175367

RESUMO

The emergence of multidrug resistance (MDR) in malignant tumors is the primary reason for invalid chemotherapy. Antitumor drugs are often adversely affected by the MDR of tumor cells. Treatments using conventional drugs, which have specific drug targets, hardly regulate the complex signaling pathway of MDR cells because of the complex formation mechanism of MDR. However, natural products have positive advantages, such as high efficiency, low toxicity, and ability to target multiple mechanism pathways associated with MDR. Natural products, as MDR reversal agents, synergize with chemotherapeutics and enhance the sensitivity of tumor cells to chemotherapeutics, and the co-delivery of natural products and antitumor drugs with nanocarriers maximizes the synergistic effects against MDR in tumor cells. This review summarizes the molecular mechanisms of MDR, the advantages of natural products combined with chemotherapeutics in offsetting complicated MDR mechanisms, and the types and mechanisms of natural products that are potential MDR reversal modulators. Meanwhile, aiming at the low bioavailability of cocktail combined natural products and chemotherapeutic in vivo, the advantages of nanoplatform-based co-delivery system and recent research developments are illustrated on the basis of our previous research. Finally, prospective horizons are analyzed, which are expected to considerably improve the nano-co-delivery of natural products and chemotherapeutic systems for MDR reversal in cancer.


Assuntos
Antineoplásicos , Produtos Biológicos , Neoplasias , Antineoplásicos/uso terapêutico , Produtos Biológicos/uso terapêutico , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Humanos , Neoplasias/tratamento farmacológico , Estudos Prospectivos
18.
Ann Gen Psychiatry ; 20(1): 24, 2021 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-33771161

RESUMO

BACKGROUND: Psychotic major depression (PMD) is a subtype of depression with a poor prognosis. Previous studies have failed to find many differences between patients with PMD and those with non-psychotic major depression (NMD) or schizophrenia (SZ). We compared sociodemographic factors (including season of conception) and clinical characteristics between patients with PMD, NMD, and schizophrenia. Our aim was to provide data to help inform clinical diagnoses and future etiology research. METHODS: This study used data of all patients admitted to Shandong Mental Health Center from June 1, 2016 to December 31, 2017. We analyzed cases who had experienced an episode of PMD (International Classification of Diseases, Tenth Revision codes F32.3, F33.3), NMD (F32.0-2/9, F33.0-2/9), and SZ (F20-20.9). Data on sex, main discharge diagnosis, date of birth, ethnicity, family history of psychiatric diseases, marital status, age at first onset, education, allergy history, and presence of trigger events were collected. Odds ratios (OR) were calculated using logistic regression analyses. Missing values were filled using the k-nearest neighbor method. RESULTS: PMD patients were more likely to have a family history of psychiatric diseases in their first-, second-, and third-degree relatives ([OR] 1.701, 95% confidence interval [CI] 1.019-2.804) and to have obtained a higher level of education (OR 1.451, 95% CI 1.168-1.808) compared with depression patients without psychotic features. Compared to PMD patients, schizophrenia patients had lower education (OR 0.604, 95% CI 0.492-0.741), were more often divorced (OR 3.087, 95% CI 1.168-10.096), had a younger age of onset (OR 0.934, 95% CI 0.914-0.954), less likely to have a history of allergies (OR 0.604, 95% CI 0.492-0.741), and less likely to have experienced a trigger event 1 year before first onset (OR 0.420, 95% CI 0.267-0.661). Season of conception, ethnicity, and sex did not differ significantly between PMD and NMD or schizophrenia and PMD. CONCLUSIONS: PMD patients have more similarities with NMD patients than SZ patients in terms of demographic and clinical characteristics. The differences found between PMD and SZ, and PMD and NMD correlated with specificity of the diseases. Furthermore, allergy history should be considered in future epidemiological studies of psychotic disorders.

19.
Ultrasound Med Biol ; 47(1): 33-42, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33109380

RESUMO

Global myocardial work (MW) analysis by pressure-strain loops (PSL) allows the non-invasive assessment of left ventricular (LV) function. We aimed to investigate the relationship between LV global MW and the degree of coronary artery stenosis in suspected coronary artery disease (CAD) patients with normal LV ejection fraction and regional wall motion. A total of 164 suspected CAD patients were divided into four groups according to coronary artery angiography. The results showed that global work efficiency (GWE) as the most significant predictor in all MW parameters had the optimal cut-off value of 94.5% for detecting moderate stenosis, and the sensitivity and specificity was 89.7% and 85.8%, respectively. A cut-off value of 94.0% for GWE was the most significant predictor of severe stenosis, and the sensitivity and specificity was 81.4% and 76.1%, respectively. In conclusion, LV global MW is a sensitive tool in detecting the degree of coronary artery stenosis and a potential valuable method to provide early diagnosis for CAD patients.


Assuntos
Doença da Artéria Coronariana/fisiopatologia , Estenose Coronária/diagnóstico por imagem , Estenose Coronária/fisiopatologia , Ecocardiografia , Função Ventricular Esquerda , Idoso , Fenômenos Biomecânicos , Doença da Artéria Coronariana/complicações , Estenose Coronária/complicações , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
20.
Chronobiol Int ; 37(11): 1644-1649, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33297785

RESUMO

Few studies have investigated relationships between birth season and early-onset bipolar affective disorder (BAD) in young adults. In the current study, birth season was compared in patients with early-onset BAD and in sex-matched and age-matched controls. A total of 957 patients aged <25 years of age from three hospitals in the North China Plain region were enrolled in the study. Sex-matched and age-matched control group data were collected in universities and schools via questionnaires. The R*C chi-square test was used to assess distributional differences in season of birth both in the patient and control group. A binary logistic regression model adjusted for age and sex was used to evaluate associations between season of birth and BAD. Using spring as the reference season, BAD patients showed significantly lower odds ratios of being born in any other season. There were associations between birth season and early-onset BAD, and early-onset BAD patients were more likely to have been born in spring. These data have implications for future disease prevention strategies and future research.


Assuntos
Transtorno Bipolar , Ritmo Circadiano , Transtornos do Humor , Idoso , Transtorno Bipolar/epidemiologia , Estudos de Casos e Controles , China/epidemiologia , Feminino , Humanos , Gravidez , Estações do Ano , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA