Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; : e202415318, 2024 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-39305146

RESUMO

AgGaS2 (AGS) is the most commonly used commercial infrared nonlinear optical material. However, AGS has a narrow band gap (Eg = 2.58 eV) and a low laser-induced damage threshold (LIDT), primarily attributed to its mobile liquid-like Ag+ constituent and the unstable Ag-S chemical bond. Herein, we propose a "band reformation of AGS" strategy, which leads to the success syntheses of four lanthanide sulfides, LiLnGeS4, crystalizing in an asymmetric Ama2 structure. LiLaGeS4 demonstrates that eliminating the presence of Ag-4d band increases the Eg to 3.32 eV and enhances the LIDT (14-29 × AGS, measured by both powder and single crystal); while increasing the nonbonding density of states of the S-3p band enhances the 2nd-nonlinear optical coefficient (1.06 × AGS). Besides, the bond length discrepancy between [LiS4], [GeS4] and [LaS8] units leads to a moderate birefringence (Δn = 0.052). Such a unique structure further results in extremely small thermal expansion with αL = 0.41-1.74 × 10-5 K-1, along different crystallographic axes. Our theoretical studies indicate that the synergy of the structure building units contribute to the second harmonic generation performance. These results suggest that the "band reformation of AGS" strategy provides effective guidance to discover new NLO crystals with optimized performance.

2.
Angew Chem Int Ed Engl ; 63(38): e202408551, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-38858167

RESUMO

Heat-activated second harmonic generation (SHG) switching materials are gaining interest for their ability to switch between SHG on and off states, offering potential in optoelectronic applications. The novel nonlinear optical (NLO) switch, (C5H6NO)+(CH3SO3)- (4-hydroxypyridinium methylsulfonate, 4HPMS), is a near-room-temperature thermal driven material with a strong SHG response (3.3 × KDP), making it one of the most potent heat-stimulated NLO switches. It offers excellent contrast of 13 and a high laser-induced damage threshold (2.5 × KDP), with reversibility > 5 cycles. At 73 °C, 4HPMS transitions from the noncentrosymmetric Pna21 room temperature phase (RTP) to the centrosymmetric P21/c phase, caused by the rotation of the (C5H6NO)+ and (CH3SO3)- due to partially thermal breaking of intermolecular hydrogen bonds. The reverse phase change exhibits a large 50 °C thermal hysteresis. Density functional theory (DFT) calculations show that (C5H6NO)+ primarily dictates both the SHG coefficient (dij) and birefringence (▵n(Zeiss) = 0.216 vs ▵n(cal.) = 0.202 at 546 nm; Δn(Immersion) = 0.210 vs ▵n(cal.) = 0.198 at 589.3 nm), while the band gap (Eg) is influenced synergistically by (C5H6NO)+ and (CH3SO3)-. Additionally, 4HPMS-RTP also exhibits mechanochromism upon grinding as well as an aggregation-enhanced emission in a mixture of acetone and water.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA