Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Am Coll Emerg Physicians Open ; 5(3): e13187, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38846102

RESUMO

This article provides a report of a case of organ dysfunction, myonecrosis, rhabdomyolysis, multifocal ischemic cerebral infarcts, and cerebral edema after a patient's use of xylazine and fentanyl. Within the US opioid epidemic, xylazine is emerging as a troubling national sub-story. The prevalence of xylazine within illicitly manufactured opioids and the proportion of opioid-involved overdose deaths with detected xylazine are rising dramatically, the latter increasing 276% between 2019 and 2022. A 27-year-old woman with opioid use disorder, active intravenous drug use, and prior bacteremia presented to our institution's emergency department (ED) with left lower extremity pain and associated weakness, new acute bilateral hearing loss, multiple electrolyte derangements, and cerebral infarcts followed by cerebral edema, leading to an emergent sub-occipital decompressive craniectomy and placement of an external ventricular drain. A definitive mechanism was not determined; however, we hypothesized that xylazine toxicity played a role in her clinical presentation, which could have future clinical implications, including the possibility to incorporate xylazine as part of toxicology screens.

2.
Sci Rep ; 14(1): 9666, 2024 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-38671069

RESUMO

Redox is a unique, programmable modality capable of bridging communication between biology and electronics. Previous studies have shown that the E. coli redox-responsive OxyRS regulon can be re-wired to accept electrochemically generated hydrogen peroxide (H2O2) as an inducer of gene expression. Here we report that the redox-active phenolic plant signaling molecule acetosyringone (AS) can also induce gene expression from the OxyRS regulon. AS must be oxidized, however, as the reduced state present under normal conditions cannot induce gene expression. Thus, AS serves as a "pro-signaling molecule" that can be activated by its oxidation-in our case by application of oxidizing potential to an electrode. We show that the OxyRS regulon is not induced electrochemically if the imposed electrode potential is in the mid-physiological range. Electronically sliding the applied potential to either oxidative or reductive extremes induces this regulon but through different mechanisms: reduction of O2 to form H2O2 or oxidation of AS. Fundamentally, this work reinforces the emerging concept that redox signaling depends more on molecular activities than molecular structure. From an applications perspective, the creation of an electronically programmed "pro-signal" dramatically expands the toolbox for electronic control of biological responses in microbes, including in complex environments, cell-based materials, and biomanufacturing.


Assuntos
Escherichia coli , Oxirredução , Transdução de Sinais , Escherichia coli/genética , Escherichia coli/metabolismo , Peróxido de Hidrogênio , Regulon/genética , Regulação Bacteriana da Expressão Gênica , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Fenóis/química , Fenóis/metabolismo
3.
Curr Opin Biotechnol ; 85: 103052, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38150921

RESUMO

The ever-growing influence of technology in our lives has led to an increasing interest in the development of smart electronic devices to interrogate and control biological systems. Recently, redox-mediated electrogenetics introduced a novel avenue that enables direct bioelectronic control at the genetic level. In this review, we discuss recent advances in methodologies for bioelectronic control, ranging from electrical stimulation to engineering efforts that allow traditionally unexcitable cells to be electrically 'programmable.' Alongside ion-transport signaling, we suggest redox as a route for rational engineering because it is a native form of electronic communication in biology. Using redox as a common language allows the interfacing of electronics and biology. This newfound connection opens a gateway of possibilities for next-generation bioelectronic tools.


Assuntos
Eletrônica , Transdução de Sinais , Transdução de Sinais/genética , Oxirredução
4.
Nat Commun ; 14(1): 8514, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38129428

RESUMO

Microelectronic devices can directly communicate with biology, as electronic information can be transmitted via redox reactions within biological systems. By engineering biology's native redox networks, we enable electronic interrogation and control of biological systems at several hierarchical levels: proteins, cells, and cell consortia. First, electro-biofabrication facilitates on-device biological component assembly. Then, electrode-actuated redox data transmission and redox-linked synthetic biology allows programming of enzyme activity and closed-loop electrogenetic control of cellular function. Specifically, horseradish peroxidase is assembled onto interdigitated electrodes where electrode-generated hydrogen peroxide controls its activity. E. coli's stress response regulon, oxyRS, is rewired to enable algorithm-based feedback control of gene expression, including an eCRISPR module that switches cell-cell quorum sensing communication from one autoinducer to another-creating an electronically controlled 'bilingual' cell. Then, these disparate redox-guided devices are wirelessly connected, enabling real-time communication and user-based control. We suggest these methodologies will help us to better understand and develop sophisticated control for biology.


Assuntos
Escherichia coli , Proteínas , Escherichia coli/genética , Escherichia coli/metabolismo , Retroalimentação , Proteínas/metabolismo , Eletrônica , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA