Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
1.
Gait Posture ; 110: 122-128, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38569401

RESUMO

BACKGROUND: Landing from heights is a common movement for active-duty military personnel during training. And the additional load they carry while performing these tasks can affect the kinetics and ankle kinematic of the landing. Traditional motion capture techniques are limited in accurately capturing the in vivo kinematics of the talus. This study aims to investigate the effect of additional trunk load on the kinematics of the talocrural and subtalar joints during landing, using a dual fluoroscopic imaging system (DFIS). METHODS: Fourteen healthy male participants were recruited. Magnetic resonance imaging was performed on the right ankle of each participant to create three-dimensional (3D) models of the talus, tibia, and calcaneus. High-speed DFIS was used to capture the images of participants performing single-leg landing jumps from a height of 40 cm. A weighted vest was used to apply additional load, with a weight of 16 kg. Fluoroscopic images were acquired with or without additional loading condition. Kinematic data were obtained by importing the DFIS data and the 3D models in virtual environment software for 2D-3D registration. The kinematics and kinetics were compared between with or without additional loading conditions. RESULTS: During added trunk loading condition, the medial-lateral translation range of motion (ROM) at the talocrural joint significantly increased (p < 0.05). The subtalar joint showed more extension at 44-56 ms (p < 0.05) after contact. The subtalar joint was more eversion at 40-48 ms (p < 0.05) after contact under the added trunk load condition. The peak vertical ground reaction force (vGRF) significantly increased (p < 0.05). CONCLUSIONS: With the added trunk load, there is a significant increase in peak vGRF during landing. The medial-lateral translation ROM of the talocrural joint increases. And the kinematics of the subtalar joint are affected. The observed biomechanical changes may be associated with the high incidence of stress fractures in training with added load.


Assuntos
Articulação Talocalcânea , Suporte de Carga , Humanos , Masculino , Fenômenos Biomecânicos , Articulação Talocalcânea/fisiologia , Articulação Talocalcânea/diagnóstico por imagem , Suporte de Carga/fisiologia , Adulto Jovem , Fluoroscopia , Adulto , Imageamento por Ressonância Magnética , Tálus/fisiologia , Tálus/diagnóstico por imagem , Imageamento Tridimensional , Tronco/fisiologia , Amplitude de Movimento Articular/fisiologia , Articulação do Tornozelo/fisiologia
2.
J Sports Sci ; 42(4): 365-372, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38507567

RESUMO

Patellofemoral pain syndrome (PFPS) is a common injury among runners, and it is thought that abnormal lower extremity biomechanics contribute to its development. However, the relationship between biomechanical changes after a marathon and PFPS injury remains limited. This study aims to investigate whether differences in knee and hip kinematics and lower extremity muscle activities exist in recreational runners before and after a marathon. Additionally, it aims to explore the relationship between these biomechanical changes and the development of PFPS injury. 12 recreational runners participated in the study. Kinematics and muscle activities of the lower extremity were recorded during walking (5 km/h) and running (10 km/h) tasks within 24 hours before and within 5 hours after a marathon. After the marathon, there was a significant decrease in peak knee flexion (walking: p = 0.006; running: p = 0.006) and an increase in peak hip internal rotation (walking: p = 0.026; running: p = 0.015) during the stance phase of both walking and running compared to before the marathon. The study demonstrates a decrease in knee flexion and an increase in hip internal rotation during the stance phase of gait tasks after completing a marathon, which may increase the risk of developing PFPS injury.


Assuntos
Extremidade Inferior , Corrida de Maratona , Músculo Esquelético , Síndrome da Dor Patelofemoral , Caminhada , Humanos , Fenômenos Biomecânicos , Caminhada/fisiologia , Masculino , Adulto , Músculo Esquelético/fisiologia , Extremidade Inferior/fisiologia , Feminino , Corrida de Maratona/fisiologia , Síndrome da Dor Patelofemoral/fisiopatologia , Corrida/fisiologia , Marcha/fisiologia , Articulação do Quadril/fisiologia , Quadril/fisiologia , Eletromiografia , Joelho/fisiologia , Adulto Jovem , Articulação do Joelho/fisiologia , Rotação , Estudos de Tempo e Movimento
3.
Front Bioeng Biotechnol ; 12: 1360560, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38511128

RESUMO

Introduction: This study employed surgical robot to perform anatomic single-bundle reconstruction using the modified transtibial (TT) technique and anteromedial (AM) portal technique. The purpose was to directly compare tunnel and graft characteristics of the two techniques. Methods: Eight cadaveric knees without ligament injury were used in the study. The modified TT and AM portal technique were both conducted under surgical robotic system. Postoperative data acquisition of the tunnel and graft characteristics included tibial tunnel position, tunnel angle, tunnel length and femoral tunnel-graft angle. Results: The mean tibial tunnel length of the modified TT technique was significantly shorter than in the AM portal technique (p < 0.001). The mean length of the femoral tunnel was significantly longer for the modified TT technique than for the AM portal technique (p < 0.001). The mean coronal angle of the tibial tunnel was significantly lower for the modified TT technique than for the AM portal technique (p < 0.001). The mean coronal angle of the femoral tunnel was significantly lower for the AM portal technique than for the modified TT technique (p < 0.001). The AM portal technique resulted in a graft bending angle that was significantly more angulated in the coronal (p < 0.001) and the sagittal planes (p < 0.001) compared with the modified TT technique. Discussion: Comparison of the preoperative planning and postoperative femoral tunnel positions showed that the mean difference of the tunnel position was 1.8 ± 0.4 mm. It suggested that the surgical navigation robot could make predictable tunnel position with high accuracy. The findings may support that the modified TT technique has benefits on femoral tunnel length and obliquity compared with AM portal technique. The modified TT technique showed a larger femoral tunnel angle in the coronal plane than the AM portal technique. Compared with the modified TT technique, the more horizontal trajectory of the femoral tunnel in the AM portal technique creates a shorter femoral tunnel length and a more acute graft bending angle.

4.
Zhongguo Zhen Jiu ; 44(2): 216-220, 2024 Feb 12.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38373770

RESUMO

Professor LIU Cunzhi's team from Beijing University of Chinese Medicine published Efficacy of intensive acupuncture versus sham acupuncture in knee osteoarthritis: a randomized controlled trial in Arthritis & Rheumatology on November 10th, 2021, which demonstrates that three-session per week acupuncture is safe and effective for knee osteoarthritis patients. Experts from home and abroad discussed in depth the study design, acupuncture protocol, and interpretation of the results of the trial, emphasizing the importance of pretrial implementation, acupuncture dosage, reasonable setting of control group and assessing the efficacy of acupuncture, and pointed out that the mechanism of acupuncture for knee osteoarthritis still needs further study, and how to promote acupuncture for knee osteoarthritis according to the clinical practice abroad while ensuring the efficacy of acupuncture is worthwhile to explore.


Assuntos
Terapia por Acupuntura , Osteoartrite do Joelho , Reumatologia , Humanos , Osteoartrite do Joelho/terapia , Terapia por Acupuntura/métodos , Projetos de Pesquisa , Fatores de Tempo , Resultado do Tratamento
5.
Am J Sports Med ; 52(2): 474-484, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38197156

RESUMO

BACKGROUND: Knowledge of acromioclavicular (AC) joint kinematics and distance may provide insight into the biomechanical function and development of new treatment methods. However, accurate data on in vivo AC kinematics and distance between the clavicle and acromion remain unknown. PURPOSE/HYPOTHESIS: The purpose of this study was to investigate 3-dimensional AC kinematics and distance during arm elevation in abduction, scaption, and forward flexion in a healthy population. It was hypothesized that AC kinematics and distance would vary with the elevation angle and plane of the arm. STUDY DESIGN: Controlled laboratory study. METHODS: A total of 19 shoulders of healthy participants were enrolled. AC kinematics and distance were investigated with a combined dual fluoroscopic imaging system and computed tomography. Rotation and translation of the AC joint were calculated. The AC distance was measured as the minimum distance between the medial border of the acromion and the articular surface of the distal clavicle (ASDC). The minimum distance point (MDP) ratio was defined as the length between the MDP and the posterior edge of the ASDC divided by the anterior-posterior length of the ASDC. AC kinematics and distance between different elevation planes and angles were compared. RESULTS: Progressive internal rotation, upward rotation, and posterior tilt of the AC joint were observed in all elevation planes. The scapula rotated more upward relative to the clavicle in abduction than in scaption (P = .002) and flexion (P = .005). The arm elevation angle significantly affected translation of the AC joint. The acromion translated more laterally and more posteriorly in scaption than in abduction (P < .001). The AC distance decreased from the initial position to 75° in all planes and was significantly greater in flexion (P < .001). The MDP ratio significantly increased with the elevation angle (P < .001). CONCLUSION: Progressive rotation and significant translation of the AC joint were observed in different elevation planes. The AC distance decreased with the elevation angle from the initial position to 75°. The minimum distance between the ASDC and the medial border of the acromion moved anteriorly as the shoulder elevation angle increased. CLINICAL RELEVANCE: These results could serve as benchmark data for future studies aiming to improve the surgical treatment of AC joint abnormalities to restore optimal function.


Assuntos
Articulação Acromioclavicular , Articulação do Ombro , Humanos , Fenômenos Biomecânicos , Imageamento Tridimensional , Úmero , Escápula , Acrômio/diagnóstico por imagem , Articulação Acromioclavicular/diagnóstico por imagem , Articulação Acromioclavicular/cirurgia , Amplitude de Movimento Articular
6.
World Neurosurg ; 184: e203-e210, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38266986

RESUMO

OBJECTIVE: This study examined cervical center of rotation (COR) positions in 7 postures using validated cone beam computed tomography (CBCT) combined with 3D-3D registration in healthy volunteers. METHODS: CBCT scans were performed on 20 healthy volunteers in 7 functional positions, constructing a three-dimensional (3D) model. Images were registered to the neutral position using 3D-3D registration, allowing analysis of kinematic differences and rotational axes. COR measurements were obtained for each segment (C2/3 to C6/7) in each posture. RESULTS: The CORs of C2/3 to C6/7 were predominantly posterior (-5.3 ± 3.8 ∼ -0.6 ± 1.2 mm) and superior (16.5 ± 6.0 ∼ 23.6 ± 3.2 mm) to the intervertebral disc's geometric center (GC) in flexion and extension. However, the C4/5 segment's COR was anterior to the GC (2.0 ± 9.8 mm) during flexion and close to it in the right-left direction. During left-right twisting, the CORs of C2/3-C6/7 were posterior (-21.8 ± 10.5 ∼-0.9 ± 0.8 mm) and superior (3.1 ± 7.5 ∼23.2 ± 3.6 mm) to the GCs in anterior-posterior and superior-inferior directions, without consistent right-left directionality. During left-right bending, each segment's COR was predominantly posterior (-25.2 ± 13.1 ∼-6.5 ± 9.9 mm) and superior (0.3 ± 12.5 ∼12.1 ± 5.1 mm) to the GC in anterior-posterior and superior-inferior directions, except for the C2/3 segment, located inferiorly (-5.9 ± 4.1 mm) in left bending. The right-left COR position varied across segments. CONCLUSIONS: Our findings reveal segment-specific and posture-dependent COR variations. Notably, the CORs of C3/4, C4/5, and C5/6 consistently align near the intervertebral disc's GC at different postures, supporting their suitability for total disc replacement surgery within the C3/4 to C5/6 segments.


Assuntos
Vértebras Cervicais , Disco Intervertebral , Humanos , Rotação , Fenômenos Biomecânicos , Vértebras Cervicais/cirurgia , Postura , Disco Intervertebral/diagnóstico por imagem , Amplitude de Movimento Articular
7.
J Sport Health Sci ; 13(1): 108-117, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37220811

RESUMO

BACKGROUND: Foot kinematics, such as excessive eversion and malalignment of the hindfoot, are believed to be associated with running-related injuries. The majority of studies to date show that different foot strike patterns influence these specific foot and ankle kinematics. However, technical deficiencies in traditional motion capture approaches limit knowledge of in vivo joint kinematics with respect to rearfoot and forefoot strike patterns (RFS and FFS, respectively). This study uses a high-speed dual fluoroscopic imaging system (DFIS) to determine the effects of different foot strike patterns on 3D in vivo tibiotalar and subtalar joints kinematics. METHODS: Fifteen healthy male recreational runners underwent foot computed tomography scanning for the construction of 3-dimensional models. A high-speed DFIS (100 Hz) was used to collect 6 degrees of freedom kinematics for participants' tibiotalar and subtalar joints when they adopted RFS and FFS in barefoot condition. RESULTS: Compared with RFS, FFS exhibited greater internal rotation at 0%-20% of the stance phase in the tibiotalar joint. The peak internal rotation angle of the tibiotalar joint under FFS was greater than under RFS (p < 0.001, Cohen's d = 0.92). RFS showed more dorsiflexion at 0%-20% of the stance phase in the tibiotalar joint than FFS. RFS also presented a larger anterior translation (p < 0.001, Cohen's d = 1.28) in the subtalar joint at initial contact than FFS. CONCLUSION: Running with acute barefoot FFS increases the internal rotation of the tibiotalar joint in the early stance. The use of high-speed DFIS to quantify the movement of the tibiotalar and subtalar joint was critical to revealing the effects of RFS and FFS during running.


Assuntos
Corrida , Articulação Talocalcânea , Humanos , Masculino , Fenômenos Biomecânicos , Articulação do Tornozelo , Tornozelo
8.
Eur Spine J ; 33(2): 571-581, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37831181

RESUMO

PURPOSE: This study aimed to find a standard of the vertebra kinematics during functional weight-bearing activities in degenerative lumbar scoliosis (DLS) patients. METHODS: Fifty-four patients were involved into this study with forty-two in DLS group and twelve in the control group. The three-dimensional (3D) vertebral models from L1 to S1 of each participant were reconstructed by computed tomography (CT). Dual-orthogonal fluoroscopic imaging, along with FluoMotion and Rhinoceros software, was used to record segmental vertebral kinematics during functional weight-bearing activities. The primary and coupled motions of each vertebra were analyzed in patients with DLS. RESULTS: During flexion-extension of the trunk, anteroposterior (AP) translation and craniocaudal (CC) translation at L5-S1 were higher than those at L2-3 (9.3 ± 5.1 mm vs. 6.4 ± 3.5 mm; P < 0.05). The coupled mediolateral (ML) translation at L5-S1 in patients with DLS was approximately three times greater than that in the control group. During left-right bending of the trunk, the coupled ML rotation at L5-S1 was higher in patients with DLS than that in the control group (17.7 ± 10.3° vs. 8.4 ± 4.4°; P < 0.05). The AP and CC translations at L5-S1 were higher than those at L1-2, L2-3, and L3-4. During left-right torsion of the trunk, the AP translation at L5-S1 was higher as compared to other levels. CONCLUSIONS: The greatest coupled translation was observed at L5-S1 in patients with DLS. Coupled AP and ML translations at L5-S1 were higher than those in healthy participants. These data improved the understanding of DLS motion characteristics.


Assuntos
Vértebras Lombares , Escoliose , Humanos , Vértebras Lombares/diagnóstico por imagem , Escoliose/diagnóstico por imagem , Fenômenos Biomecânicos , Amplitude de Movimento Articular , Rotação
9.
Front Med (Lausanne) ; 10: 1218720, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38034536

RESUMO

Pelvic fractures mostly result from high-energy injuries in life; the longitudinal fracture of the sacrum is the most common type of sacrum fracture. This study was designed to evaluate the accuracy, safety, and efficacy of percutaneous sacroiliac joint screw placement in the treatment of longitudinal sacrum fractures with the assistance of unobstructed orthopaedic surgery robots. According to different surgical methods, 32 patients were divided into robot group and free hand group, with 16 patients in each group. The operation time, intra-operative blood loss, intra-operative fluoroscopy times, screw placement angle deviation were collected. There were statistically significant differences in terms of angle deviation of screw placement (1.96 ± 0.75° vs. 2.87 ± 1.03°; p = 0.0145), deviation of the guide needle (1.92 ± 0.93 mm vs. 2.91 ± 1.22 mm; p = 0.0209), intra-operative fluoroscopy time (7.25 ± 1.72 s vs. 20.93 ± 5.64 s; p = 0.0000), insertion time of each sacroiliac joint screw (14.72 ± 2.66 min vs. 29.21 ± 5.18 min; p = 0.0000). There was no statistically significant difference in terms of blood loss (100.21 ± 7.37 mL vs. 102.52 ± 8.15 mL; p = 0.4136). These results suggest that orthopaedic surgery robot for the treatment of longitudinal sacrum fracture is safer and provides less irradiation than the traditional freehand methods.

10.
Front Bioeng Biotechnol ; 11: 1255944, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37901843

RESUMO

Objective: Ankle braces can affect the kinematics of the ankle joint during landing tasks. Previous studies were primarily relied on traditional marker-based motion capture systems, which pose limitations in non-invasively capturing the motion of the talus bone. The effect of ankle braces on the in vivo kinematics of the tibiotalar and subtalar joints during landing remains unknown. This study used a high-speed dual fluoroscopic imaging system (DFIS) and magnetic resonance imaging (MRI) to investigate effect of ankle braces on the in vivo kinematics of the tibiotalar and subtalar joints during landing. Methods: Fourteen healthy participants were recruited for this study. During the experiment, static three-dimensional MRI data were collected for each participant, and 3D ankle joint models for the calcaneus, talus, and tibia were constructed. The DFIS was used to capture the images of each participant performing a single-leg landing-jump task at a height of 40 cm. The images were captured once with and without a brace in the fatigue condition, which was induced by running. The six-degree-of-freedom (6DOF) kinematic data were obtained by 2D-3D registration. Results: The flexion-extension range of motion (ROM) (42.73 ± 4.76° vs. 38.74 ± 5.43°, p = 0.049) and anterior-posterior translation ROM (16.86 ± 1.74 mm vs. 15.03 ± 1.73 mm, p = 0.009) of the tibiotalar joint were decreased. The maximum inversion angle (-3.71 ± 2.25° vs. 2.11 ± 1.83°, p = 0.047) of the subtalar joint was decreased. Conclusion: The ankle brace limited the flexion-extension ROM of the tibiotalar joints and the inversion angle of the subtalar joint during landing.

11.
Front Bioeng Biotechnol ; 11: 1252044, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37829568

RESUMO

Objective: Fatigue can affect the ankle kinematic characteristics of landing movements. Traditional marker-based motion capture techniques have difficulty in accurately obtaining the kinematics of the talocrural and subtalar joints. This study aimed to investigate the effects of fatigue on the talocrural and subtalar joints during the landing using dual fluoroscopic imaging system (DFIS). Methods: This study included fourteen healthy participants. The foot of each participant was scanned using magnetic resonance imaging to create 3D models. High-speed DFIS was used to capture images of the ankle joint during participants performing a single-leg landing jump from a height of 40 cm. Fatigue was induced by running and fluoroscopic images were captured before and after fatigue. Kinematic data were obtained by 3D/2D registration in virtual environment software. The joint kinematics in six degrees of freedom and range of motion (ROM) were compared between the unfatigued and fatigued conditions. Results: During landing, after the initial contact with the ground, the main movement of the talocrural joint is extension and abduction, while the subtalar joint mainly performs extension, eversion, and abduction. Compared to unfatigued, during fatigue the maximum medial translation (1.35 ± 0.45 mm vs. 1.86 ± 0.69 mm, p = 0.032) and medial-lateral ROM (3.19 ± 0.60 mm vs. 3.89 ± 0.96 mm, p = 0.029) of the talocrural joint significantly increased, the maximum flexion angle (0.83 ± 1.24° vs. 2.11 ± 1.80°, p = 0.037) of the subtalar joint significantly increased, and the flexion-extension ROM (6.17 ± 2.21° vs. 7.97 ± 2.52°, p = 0.043) of the subtalar joint significantly increased. Conclusion: This study contributes to the quantitative understanding of the normal function of the talocrural and subtalar joints during high-demand activities. During landing, the main movement of the talocrural joint is extension and abduction, while the subtalar joint mainly performs extension, eversion, and abduction. Under fatigue conditions, the partial ROM of the talocrural and subtalar joints increases.

12.
J Biomech ; 150: 111474, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36871431

RESUMO

Kinematics of the knee during gait has mostly been studied using optical motion capture systems (MCS). The presence of soft tissue artifacts (STA) between the skin markers and the underlying bone presents a major impediment to obtaining a reliable joint kinematics assessment. In this study, we determined the effects of STA on the calculation of knee joint kinematics during walking and running, through the combination of high-speed dual fluoroscopic imaging system (DFIS) and magnetic resonance imaging technique. Ten adults walked and ran while data was collected simultaneously from MCS and high-speed DFIS. The study showed that measured STA underestimated knee flexion angle, but overestimated knee external and varus rotation. The absolute error values of the skin markers derived from knee flexion-extension angle, internal-external rotation, and varus-valgus rotation during walking were -3.2 ± 4.3 deg, 4.6 ± 3.1 deg, and 4.5 ± 3.2 deg respectively, and during running were -5.8 ± 5.4 deg, 6.6 ± 3.7 deg, and 4.8 ± 2.5 deg respectively. Average errors relative to the DFIS for flexion-extension angle, internal-external rotation, and varus-valgus rotation were 78 %, 271 %, 265 % during walking respectively, and were 43 %, 106 %, 200 % during running respectively. This study offers reference for the kinematic differences between MCS and high-speed DFIS, and will contribute to optimizing methods for analyzing knee kinematics during walking and running.


Assuntos
Artefatos , Corrida , Adulto , Humanos , Fenômenos Biomecânicos , Articulação do Joelho , Caminhada , Amplitude de Movimento Articular
13.
Zhongguo Zhen Jiu ; 43(3): 341-4, 2023 Mar 12.
Artigo em Chinês | MEDLINE | ID: mdl-36858400

RESUMO

The cases of feeling comfort during acupuncture and moxibustion treatment in literature were summarized and its biological basis was explored. A simple classification of comfort was made, and the importance of obtaining comfort in acupuncture treatment was pointed out. Considering the pursuit of less pain and harmlessness in modern clinical treatment, sugar needle should be advocated and popularized in current clinical practice of acupuncture and moxibustion.


Assuntos
Terapia por Acupuntura , Moxibustão , Açúcares , Emoções , Agulhas
14.
Gait Posture ; 101: 101-105, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36773479

RESUMO

BACKGROUND: Gait asymmetry, negative psychological factors and quadriceps strength deficits are common after anterior cruciate ligament reconstruction (ACLR). Whether quadriceps strength and psychological factors have impacts on multiplanar knee kinematics remains unclear. RESEARCH QUESTION: What are the relationships of multiplanar knee kinematics during the gait cycle and psychological readiness to quadriceps strength after ACLR? METHOD: In total, 45 patients were enrolled in this study at 8.3 ± 1.5 months after ACLR. All patients underwent gait analysis and isokinetic testing. Interlimb differences in the range of motion (ROM) and maximum and initial contact (IC) angles in abduction-adduction, flexion-extension, and internal-external rotation were calculated. The limb symmetry index (LSI) for quadriceps strength was calculated. Psychological readiness was measured using the Anterior Cruciate Ligament Return to Sport After Injury (ACL-RSI) scale. The paired t test analyzed the differences between contralateral and affected limbs in quadriceps and hamstrings strength. Pearson or Spearman correlation was used to assess relationships between the variables of interest. RESULTS: Significant differences between contralateral and affected limbs were observed in isokinetic knee quadriceps strength (P < 0.001) and hamstring strength (P = 0.009). The ACL-RSI score correlated negatively with interlimb differences in the knee flexion angle at IC (r = -0.35, P = 0.02) and ROM in the transverse plane (r = -0.41, P = 0.003). The LSI for quadriceps strength correlated negatively with the peak knee flexion angle (r = -0.37, P = 0.02) and positively with the ACL-RSI score (r = 0.3, P = 0.05). SIGNIFICANCE: Greater psychological readiness and quadriceps strength are associated with more symmetrical multiplanar knee kinematics. The improvement of these parameters may aid the recovery of knee kinematics after ACLR, and reduce the rate of reinjury and incidence of posttraumatic osteoarthritis.


Assuntos
Lesões do Ligamento Cruzado Anterior , Reconstrução do Ligamento Cruzado Anterior , Humanos , Fenômenos Biomecânicos , Lesões do Ligamento Cruzado Anterior/cirurgia , Lesões do Ligamento Cruzado Anterior/psicologia , Volta ao Esporte , Articulação do Joelho/cirurgia , Músculo Quadríceps/cirurgia , Reconstrução do Ligamento Cruzado Anterior/psicologia , Força Muscular
15.
J Orthop Surg Res ; 18(1): 101, 2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36782204

RESUMO

BACKGROUND: Measurement of knee laxity after anterior cruciate ligament (ACL) injury is crucial for appropriate treatment and rehabilitation decision-making. This study examined the potential of a new digital arthrometer (Ligs, Innomotion, Shanghai, China) to quantify anterior tibial translation (ATT) in patients with ACL injuries and in healthy subjects. METHODS: A total of 60 participants included 30 subjects with single-leg ACL injuries and 30 healthy subjects included as controls. The lower leg was immobilized. The thruster is positioned posterior to the lower leg and parallel to the tibial tuberosity in the sagittal plane. The load is applied vertically to the tibia under a dynamic load of 0-150 N, with continuous displacement recorded. The intrarater and interrater reliability will be examined. ATT and side-to-side differences (SSD) between the control and ACL injury groups were compared. Receiver operating characteristic (ROC) curves were analyzed, and the area under the curve (AUC) was calculated to determine the diagnostic accuracy of the Ligs. RESULTS: The interrater ICC was 0.909 and the intrarater ICC was 0.943. Significant differences in the SSD were observed between the control and ACL injury groups (for all P < 0.05), with the largest effect size (ES = 1.12) at 80 N. When comparing ATT at different loads between injured and healthy sides in the ACL injury group, displacement was statistically significant at different loads. At a load of 150 N, the AUC was the maximum (0.857) and the sensitivity and specificity were 0.87 and 0.73, respectively. CONCLUSIONS: A digital arthrometer can be used as a quantitative instrument to quantify knee laxity. Quantitative measurement of ATT and SSD under controlled loading can be an objective and effective tool for clinical practice.


Assuntos
Lesões do Ligamento Cruzado Anterior , Instabilidade Articular , Humanos , Lesões do Ligamento Cruzado Anterior/diagnóstico , Tíbia , Reprodutibilidade dos Testes , China , Articulação do Joelho , Instabilidade Articular/diagnóstico , Fenômenos Biomecânicos
16.
Heliyon ; 9(2): e13116, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36747530

RESUMO

Objective: Traditional knee braces unloading forces primarily from a single compartment are insufficient for patients with knee injuries or knee osteoarthritis (KOA) involving multiple compartments. We investigated how knee kinematics were altered by an overall unloading brace (OUB) designed to unload both the medial and lateral tibiofemoral (TF) compartments simultaneously during dynamic movement. Methods: Gait analysis was performed on 32 adults with normal knee alignment and no history of knee disease. Three-dimensional (3D) knee kinematic data collected during treadmill walking (3 km/h) and jogging (5 km/h) with an optical motion capture system were compared with versus without the OUB. Results: In the stance phase, wearing the OUB, versus not wearing it, increased the proximal-distal translational range of motion (ROM) of the knee by 4.04 mm (Effect size, ES = 0.97) during walking and by 3.43 mm (ES = 0.97) during jogging, decreased abduction-adduction rotational ROM by 3.09°(ES = 1.05) during walking and by 2.88°(ES = 1.50) during jogging, and decreased internal-external rotation by 2.14°(ES = 0.81) during walking and by 4.66°(ES = 1.61) during jogging. In the swing phase, the OUB increased proximal-distal translational ROM by 12.64 mm (ES = 1.31) during walking and by 9.23 mm (ES = 0.92) during jogging, decreased abduction-adduction rotational ROM by 2.83°(ES = 0.54) during walking and by 3.37°(ES = 0.67) during jogging, and decreased internal-external rotational ROM by 2.71°(ES = 0.68) during jogging. Conclusions: OUB use increased proximal-distal translation while reducing abduction-adduction rotation. This effect may increase the joint gap of the tibiofemoral joint, thereby reducing joint stress, and may contribute to disease rehabilitation in the knee of clinical orthopedics, rehabilitation, and sports medicine fields. However, additional studies are needed to assess the range of possible clinical and prophylactic benefits of OUB.

17.
Zhen Ci Yan Jiu ; 48(1): 3-13, 2023 Jan 25.
Artigo em Chinês | MEDLINE | ID: mdl-36734490

RESUMO

For more than half a century,the modern bioresearch in acupuncture has made remarkable advancements, proving scientific basis underlying the traditional, intuitive treatment, as well as leading to some new discoveries with the potential to enhance the effectiveness of acupuncture as we know it. Meanwhile, the clinical researches have started to shift its paradigm from traditional individual observation to modern evidence-based medicine. However, there is little interaction between basic and clinic researches, which are like two separate worlds, not benefiting each other. Also the education and training of acupuncture are still traditional style, little combining with modern studies. To bridging the large gap, we need translational science involving in. In this article, with a critical reviews of the limitations of the traditional methods of acupuncture, the challenges faced by clinic practices and placebo-control studies, and the advantages and disadvantages of basic research, we propose a methodological paradigm of the translational research, Translational Acupuncture Research Spectrum, that meets the current situation of acupuncture researches, hoping to give insights into this field and to promote modern acupuncture to move towards a new stage.


Assuntos
Terapia por Acupuntura , Acupuntura , Pesquisa Translacional Biomédica , Ciência Translacional Biomédica , Acupuntura/educação , Medicina Tradicional Chinesa
19.
Front Bioeng Biotechnol ; 11: 1298402, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38188490

RESUMO

Purpose: Increased incidence of anterior cruciate ligament injuries has amplified the need for quantitative research in clinical and academic settings. We used a novel digital arthrometer to measure knee laxity in healthy people and patients with anterior cruciate ligament injuries. Changes in stiffness were also assessed to develop new indicators for detecting anterior cruciate ligament injury. The purpose of this study was to use arthrometer to measure the quantitative indicator of knee laxity, bringing clinicians a new perspective on how to identify injury to the ACL. Methods: In this cross-sectional study, anterior tibial displacement under continuous loading was measured using a novel digital arthrometer in 30 patients with unilateral anterior cruciate ligament injury and 30 healthy controls. Load-displacement curves were plotted, using real-time load and displacement changes. Stiffness was defined by the slope of the applied load to tibial displacement. Anterior tibial displacement and instantaneous stiffness values under different loads were compared. The restricting contribution of the anterior cruciate ligament transformed the displacement-stiffness curve from a sharp decrease to a stable increase, resulting in a minimum stiffness value. Using the minimum stiffness as the turning point, the load-displacement curve was divided into regions 1 and 2. The two regions' stiffness changes were compared. Based on the findings, receiver operating characteristic curves were plotted and the area under the curve was calculated to estimate the diagnostic accuracy. Results: Anterior tibial displacement was significantly greater in the anterior cruciate ligament injury group than in the controls under each 10-N increase load (p < 0.05). In the anterior cruciate ligament injury group, instantaneous stiffness was significantly lower on the injured side than on the healthy side (p < 0.05). In the two regions of the load-displacement curve, stiffness was significantly lower in the anterior cruciate ligament injury group than in the control group (all, p < 0.05). Receiver operating characteristic curves were plotted, using changes in stiffness under the two regions in both groups. Stiffness in region 2 had the largest area under the curve (0.94; 95% CI, 0.88-0.99). Using the cut-off value of 9.62 N/mm to detect ACL injury, the sensitivity and specificity were 93% and 82%, respectively. Conclusion: Our investigation of ligament stiffness provides novel insights into the properties of knee laxity. Stiffness in the later stages of increased loading <9.62 N/mm could be a valid indicator for identifying knee laxity.

20.
Front Bioeng Biotechnol ; 10: 959807, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36524051

RESUMO

Accurately obtaining the in vivo motion of the medial longitudinal arch (MLA), first metatarsophalangeal joint (MTPJ), and plantar fascia (PF) is essential for analyzing the biomechanics of these structures in different running strike patterns. Most previous studies on the biomechanics of the MLA, first MTPJ, and PF have been based on traditional skin-marker-based motion capture, which cannot acquire the natural foot motion. Therefore, this study aimed to 1) describe the movement of the MLA, first MTPJ, and PF during running by using the high-speed dual fluoroscopic imaging system (DFIS) and 2) explore changes of the in vivo kinematics of the MLA and first MTPJ, and the length of the PF during the stance phase of running with different foot strike patterns. Fifteen healthy male runners all of whom ran with a regular rearfoot strike (RFS) pattern were required to run with forefoot strike (FFS) and RFS patterns. Computed tomography scans were taken from each participant's right foot for the construction of 3D models (the calcaneus, first metatarsal, and first proximal phalanges) and local coordinate systems. A high-speed DFIS (100 Hz) and 3D force platform (2,000 Hz) were used to acquire X-ray images of the foot bones and ground reaction force data during the stance phase of running (3 m/s ± 5%) simultaneously. Then, 3D-2D registration was used to obtain the in vivo kinematic data of the MLA and first MTPJ and the length of the PF. When compared with RFS, in FFS, 1) the range of motion (ROM) of the medial/lateral (5.84 ± 5.61 mm vs. 0.75 ± 3.38 mm, p = 0.002), anterior/posterior (14.64 ± 4.33 mm vs. 11.18 ± 3.56 mm, p = 0.010), plantarflexion/dorsiflexion (7.13 ± 3.22° vs. 1.63 ± 3.29°, p < 0.001), and adduction/abduction (-3.89 ± 3.85° vs. -0.64 ± 4.39°, p = 0.034) motions of the MLA were increased significantly; 2) the ROM of the anterior/posterior (7.81 ± 2.84 mm vs. 6.24 ± 3.43 mm, p = 0.003), superior/inferior (2.11 ± 2.06 mm vs. -0.57 ± 1.65 mm, p = 0.001), and extension/flexion (-9.68 ± 9.16° vs. -5.72 ± 7.33°, p = 0.018) motions of the first MTPJ were increased significantly; 3) the maximum strain (0.093 ± 0.023 vs. 0.075 ± 0.020, p < 0.001) and the maximum power (4.36 ± 1.51 W/kg vs. 3.06 ± 1.39 W/kg, p < 0.001) of the PF were increased significantly. Running with FFS may increase deformation, energy storage, and release of the MLA and PF, as well as the push-off effect of the MTPJ. Meanwhile, the maximum extension angle of the first MTPJ and MLA deformation increased in FFS, which showed that the PF experienced more stretch and potentially indicated that FFS enhanced the PF mechanical responses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA