Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Food Chem ; 459: 140336, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-39003859

RESUMO

The cell membrane, consisting of a phospholipid bilayer, is an important defense system of lactic acid bacteria (LAB) against adverse conditions. However, this membrane gets damaged during the process of spray drying of LAB into powder. In this study, two strains of Lactobacillus bulgaricus L9-7 and L4-2-12 with significantly different survival rates of about 22.49% and 0.43% after spray drying were explored at the cell membrane level. A total of 65 significantly different lipid species were screened from the cell membranes of two strains, with cardiolipin (CL) 15:1_22:6_24:0_28:0 being the crucial lipid species affecting membrane resistance. Finally, the KEGG enrichment analysis revealed that glycerophospholipid metabolism was the most predominant pathway, and eleven lipid species were annotated, including CL. Overall, this paper provides valuable insights into enhancing the heat tolerance of LAB.

2.
Exploration (Beijing) ; 4(1): 20230034, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38854495

RESUMO

Plasma etching treatment is an effective strategy to improve the electrocatalytic activity, but the improvement mechanism is still unclear. In this work, a nitrogen-doped carbon nanotube-encased iron nanoparticles (Fe@NCNT) catalyst is synthesized as the model catalyst, followed by plasma etching treatment with different parameters. The electrocatalytic activity improvement mechanism of the plasma etching treatment is revealed by combining the physicochemical characterizations and electrochemical results. As a result, highly active metal-nitrogen species introduced by nitrogen plasma etching treatment are recognized as the main contribution to the improved electrocatalytic activity, and the defects induced by plasma etching treatment also contribute to the improvement of the electrocatalytic activity. In addition, the prepared catalyst also demonstrates superior ORR activity and stability than the commercial Pt/C catalyst.

3.
Adv Sci (Weinh) ; : e2400596, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38887178

RESUMO

Early-stage nonalcoholic fatty liver disease (NAFLD) is a silent condition, with most cases going undiagnosed, potentially progressing to liver cirrhosis and cancer. A non-invasive and cost-effective detection method for early-stage NAFLD detection is a public health priority but challenging. In this study, an adhesive, soft on-skin sensor with low electrode-skin contact impedance for early-stage NAFLD detection is fabricated. A method is developed to synthesize platinum nanoparticles and reduced graphene quantum dots onto the on-skin sensor to reduce electrode-skin contact impedance by increasing double-layer capacitance, thereby enhancing detection accuracy. Furthermore, an attention-based deep learning algorithm is introduced to differentiate impedance signals associated with early-stage NAFLD in high-fat-diet-fed low-density lipoprotein receptor knockout (Ldlr-/-) mice compared to healthy controls. The integration of an adhesive, soft on-skin sensor with low electrode-skin contact impedance and the attention-based deep learning algorithm significantly enhances the detection accuracy for early-stage NAFLD, achieving a rate above 97.5% with an area under the receiver operating characteristic curve (AUC) of 1.0. The findings present a non-invasive approach for early-stage NAFLD detection and display a strategy for improved early detection through on-skin electronics and deep learning.

4.
Angew Chem Int Ed Engl ; : e202404816, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38788189

RESUMO

Room-temperature sodium-sulfur (RT Na-S) batteries, noted for their low material costs and high energy density, are emerging as a promising alternative to lithium-ion batteries (LIBs) in various applications including power grids and standalone renewable energy systems. These batteries are commonly assembled with glass fiber membranes, which face significant challenges like the dissolution of polysulfides, sluggish sulfur conversion kinetics, and the growth of Na dendrites. Here, we develop an amorphous two-dimensional (2D) iron tin oxide (A-FeSnOx) nanosheet with hierarchical vacancies, including abundant oxygen vacancies (Ovs) and nano-sized perforations, that can be assembled into a multifunctional layer overlaying commercial separators for RT Na-S batteries. The Ovs offer strong adsorption and abundant catalytic sites for polysulfides, while the defect concentration is finely tuned to elucidate the polysulfides conversion mechanisms. The nano-sized perforations aid in regulating Na ions transport, resulting in uniform Na deposition. Moreover, the strategic addition of trace amounts of Ti3C2 (MXene) forms an amorphous/crystalline (A/C) interface that significantly improves the mechanical properties of the separator and suppresses dendrite growth. As a result, the task-specific layer achieves ultra-light (~0.1 mg cm-2), ultra-thin (~200 nm), and ultra-robust (modulus=4.9 GPa) characteristics. Consequently, the RT Na-S battery maintained a high capacity of 610.3 mAh g-1 and an average Coulombic efficiency of 99.9 % after 400 cycles at 0.5 C.

5.
ACS Nano ; 18(3): 2335-2345, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38189251

RESUMO

Stretchable sweat sensors have become a personalized wearable platform for continuous, noninvasive health monitoring through conformal integration with the human body. Typically, these devices are coupled with soft microfluidic systems to control sweat flow during advanced analysis processes. However, the implementation of these soft microfluidic devices is limited by their high fabrication costs and the need for skin adhesives to block natural perspiration. To overcome these limitations, a stretchable and smart wettable patch has been proposed for multiplexed in situ perspiration analysis. The patch includes a porous membrane in the form of a patterned microfoam and a nanofiber layer laminate, which extracts sweat selectively from the skin and directs its continuous flow across the device. The integrated electrochemical sensor array measures multiple biomarkers simultaneously such as pH, K+, and Na+. The soft sensing patch comprises compliant materials and structures that allow deformability of up to 50% strain, which enables a stable and seamless interface with the curvilinear human body. During continuous physical exercise, the device has demonstrated a special operating mode by actively accumulating sweat from the skin for multiplex electrochemical analysis of biomarker profiles. The smart wettable membrane provides an affordable solution to address the sampling challenges of in situ perspiration analysis.


Assuntos
Técnicas Biossensoriais , Dispositivos Eletrônicos Vestíveis , Humanos , Suor/química , Pele , Dispositivos Lab-On-A-Chip
6.
ACS Nano ; 18(4): 2685-2707, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38241491

RESUMO

Optical metasurfaces, capable of manipulating the properties of light with a thickness at the subwavelength scale, have been the subject of extensive investigation in recent decades. This research has been mainly driven by their potential to overcome the limitations of traditional, bulky optical devices. However, most existing optical metasurfaces are confined to planar and rigid designs, functions, and technologies, which greatly impede their evolution toward practical applications that often involve complex surfaces. The disconnect between two-dimensional (2D) planar structures and three-dimensional (3D) curved surfaces is becoming increasingly pronounced. In the past two decades, the emergence of flexible electronics has ushered in an emerging era for metasurfaces. This review delves into this cutting-edge field, with a focus on both flexible and conformal design and fabrication techniques. Initially, we reflect on the milestones and trajectories in modern research of optical metasurfaces, complemented by a brief overview of their theoretical underpinnings and primary classifications. We then showcase four advanced applications of optical metasurfaces, emphasizing their promising prospects and relevance in areas such as imaging, biosensing, cloaking, and multifunctionality. Subsequently, we explore three key trends in optical metasurfaces, including mechanically reconfigurable metasurfaces, digitally controlled metasurfaces, and conformal metasurfaces. Finally, we summarize our insights on the ongoing challenges and opportunities in this field.

7.
Bioeng Transl Med ; 9(1): e10616, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38193119

RESUMO

The characterization of atherosclerotic plaques to predict their vulnerability to rupture remains a diagnostic challenge. Despite existing imaging modalities, none have proven their abilities to identify metabolically active oxidized low-density lipoprotein (oxLDL), a marker of plaque vulnerability. To this end, we developed a machine learning-directed electrochemical impedance spectroscopy (EIS) platform to analyze oxLDL-rich plaques, with immunohistology serving as the ground truth. We fabricated the EIS sensor by affixing a six-point microelectrode configuration onto a silicone balloon catheter and electroplating the surface with platinum black (PtB) to improve the charge transfer efficiency at the electrochemical interface. To demonstrate clinical translation, we deployed the EIS sensor to the coronary arteries of an explanted human heart from a patient undergoing heart transplant and interrogated the atherosclerotic lesions to reconstruct the 3D EIS profiles of oxLDL-rich atherosclerotic plaques in both right coronary and left descending coronary arteries. To establish effective generalization of our methods, we repeated the reconstruction and training process on the common carotid arteries of an unembalmed human cadaver specimen. Our findings indicated that our DenseNet model achieves the most reliable predictions for metabolically vulnerable plaque, yielding an accuracy of 92.59% after 100 epochs of training.

8.
Adv Sci (Weinh) ; 11(3): e2304874, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37939293

RESUMO

Since the initial discovery of Ti3 C2 a decade ago, there has been a significant surge of interest in 2D MXenes and MXene-based composites. This can be attributed to the remarkable intrinsic properties exhibited by MXenes, including metallic conductivity, abundant functional groups, unique layered microstructure, and the ability to control interlayer spacing. These properties contribute to the exceptional electrical and mechanical performance of MXenes, rendering them highly suitable for implementation as candidate materials in flexible and wearable energy storage devices. Recently, a substantial number of novel research has been dedicated to exploring MXene-based flexible materials with diverse functionalities and specifically designed structures, aiming to enhance the efficiency of energy storage systems. In this review, a comprehensive overview of the synthesis and fabrication strategies employed in the development of these diverse MXene-based materials is provided. Furthermore, an in-depth analysis of the energy storage applications exhibited by these innovative flexible materials, encompassing supercapacitors, Li-ion batteries, Li-S batteries, and other potential avenues, is conducted. In addition to presenting the current state of the field, the challenges encountered in the implementation of MXene-based flexible materials are also highlighted and insights are provided into future research directions and prospects.

9.
Small ; 20(16): e2308499, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38009797

RESUMO

Efficient construction of proton transport channels in proton exchange membranes maintaining conductivity under varied humidity is critical for the development of fuel cells. Covalent organic frameworks (COFs) hold great potential in providing precise and fast ion transport channels. However, the preparation of continuous free-standing COF membranes retaining their inherent structural advantages to realize excellent proton conduction performance is a major challenge. Herein, a zwitterionic COF material bearing positive ammonium ions and negative sulphonic acid ions is developed. Free-standing COF membrane with adjustable thickness is constructed via surface-initiated polymerization of COF monomers. The porosity, continuity, and stability of the membranes are demonstrated via the transmission electron microscopy (TEM), atomic force microscopy (AFM), and scanning electron microscopy (SEM) characterization. The rigidity of the COF structure avoids swelling in aqueous solution, which improves the chemical stability of the proton exchange membranes and improves the performance stability. In the higher humidity range (50-90%), the prepared zwitterionic COF membrane exhibits superior capability in retaining the conductivity compared to COF membrane merely bearing sulphonic acid group. The established strategy shows the potential for the application of zwitterionic COF in the proton exchange membrane fuel cells.

10.
Sensors (Basel) ; 23(24)2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38139689

RESUMO

With the rapid development of multimedia technology, personnel verification systems have become increasingly important in the security field and identity verification. However, unimodal verification systems have performance bottlenecks in complex scenarios, thus triggering the need for multimodal feature fusion methods. The main problem with audio-visual multimodal feature fusion is how to effectively integrate information from different modalities to improve the accuracy and robustness of the system for individual identity. In this paper, we focus on how to improve multimodal person verification systems and how to combine audio and visual features. In this study, we use pretrained models to extract the embeddings from each modality and then perform fusion model experiments based on these embeddings. The baseline approach in this paper involves taking the fusion feature and passing it through a fully connected (FC) layer. Building upon this baseline, we propose three fusion models based on attentional mechanisms: attention, gated, and inter-attention. These fusion models are trained on the VoxCeleb1 development set and tested on the evaluation sets of the VoxCeleb1, NIST SRE19, and CNC-AV datasets. On the VoxCeleb1 dataset, the best system performance achieved in this study was an equal error rate (EER) of 0.23% and a detection cost function (minDCF) of 0.011. On the evaluation set of NIST SRE19, the EER was 2.60% and the minDCF was 0.283. On the evaluation set of the CNC-AV set, the EER was 11.30% and the minDCF was 0.443. These experimental results strongly demonstrate that the proposed fusion method can significantly improve the performance of multimodal character verification systems.


Assuntos
Identificação Biométrica , Tecnologia da Informação , Humanos
11.
ACS Nano ; 17(20): 19925-19937, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37805947

RESUMO

Additive manufacturing, commonly known as 3D printing, allows decentralized drug fabrication of orally administered tablets. Microneedles are comparatively favorable for self-administered transdermal drug delivery with improved absorption and bioavailability. Due to the cross-scale geometric characteristics, 3D-printed microneedles face a significant trade-off between the feature resolution and production speed in conventional layer-wise deposition sequences. In this study, we introduce an economical and scalable direct ink drawing strategy to create drug-loaded microneedles. A freestanding microneedle is efficiently generated upon each pneumatic extrusion and controlled drawing process. Sharp tips of ∼5 µm are formed with submillimeter nozzles, representing 2 orders of magnitude improved resolution. As the key enabler of this fabrication strategy, the yield-stress fluid inks are formulated by simply filling silica nanoparticles into regular polymer solutions. The approach is compatible with various microneedles based on dissolvable, biodegradable, and nondegradable polymers. Various matrices are readily adopted to adjust the release behaviors of the drug-loaded microneedles. Successful fabrication of multifunctional patches with heterogeneously integrated microneedles allows the treatment of melanoma via synergistic photothermal therapy and combination chemotherapy. The personalized patches are designed for cancer severity to achieve high therapeutic efficacy with minimal side effects. The direct ink drawing reported here provides a facile and low-cost fabrication strategy for multifunctional microneedle patches for self-administering transdermal drug delivery.


Assuntos
Tinta , Nanocompostos , Administração Cutânea , Sistemas de Liberação de Medicamentos , Agulhas , Preparações Farmacêuticas , Polímeros
12.
Sci Adv ; 9(42): eadj0540, 2023 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-37851816

RESUMO

The current cardiac pacemakers are battery dependent, and the pacing leads are prone to introduce valve damage and infection, plus a complete pacemaker retrieval is needed for battery replacement. Despite the reported wireless bioelectronics to pace the epicardium, open-chest surgery (thoracotomy) is required to implant the device, and the procedure is invasive, requiring prolonged wound healing and health care burden. We hereby demonstrate a fully biocompatible wireless microelectronics with a self-assembled design that can be rolled into a lightweight microtubular pacemaker for intravascular implantation and pacing. The radio frequency was used to transfer energy to the microtubular pacemaker for electrical stimulation. We show that this pacemaker provides effective pacing to restore cardiac contraction from a nonbeating heart and have the capacity to perform overdrive pacing to augment blood circulation in an anesthetized pig model. Thus, this microtubular pacemaker paves the way for the minimally invasive implantation of leadless and battery-free microelectronics.


Assuntos
Estimulação Cardíaca Artificial , Marca-Passo Artificial , Animais , Suínos , Estimulação Cardíaca Artificial/métodos , Próteses e Implantes , Coração , Estimulação Elétrica , Desenho de Equipamento , Resultado do Tratamento
13.
ACS Nano ; 17(19): 19232-19241, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37751200

RESUMO

Electricity generation from body heat has garnered significant interest as a sustainable power source for wearable bioelectronics. In this work, we report stretchable n-type thermoelectric fibers based on the hybrid of Ti3C2Tx MXene nanoflakes and polyurethane (MP) through a wet-spinning process. The proposed fibers are designed with a 3D interconnected porous network to achieve satisfactory electrical conductivity (σ), thermal conductivity (κ), and stretchability simultaneously. We systematically optimize the thermoelectric and mechanical traits of the MP fibers and the MP-60 (with 60 wt % MXene content) exhibits a high σ of 1.25 × 103 S m-1, an n-type Seebeck coefficient of -8.3 µV K-1, and a notably low κ of 0.19 W m-1 K-1. Additionally, the MP-60 fibers possess great stretchability and mechanical strength with a tensile strain of 434% and a breaking stress of 11.8 MPa. Toward practical application, a textile thermoelectric generator is constructed based on the MP-60 fibers and achieves a voltage of 3.6 mV with a temperature gradient between the body skin and ambient environment, highlighting the enormous potential of low-grade body heat energy harvesting.

14.
Small ; 19(52): e2304459, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37649202

RESUMO

Despite being one of the most promising materials in anode materials, molybdenum sulfide (MoS2 ) encounters certain obstacles, such as inadequate cycle stability, low conductivity, and unsatisfactory charge-discharge (CD) rate performance. In this study, a novel approach is employed to address the drawbacks of MoS2 . Carbon polymer dots (CPDs) are incorporated to prepare three-dimensional (3D) nanoflower-like spheres of MoS2 @CPDs through the self-assembly of MoS2 2D nanosheets, followed by annealing at 700 °C. The CPDs play a main role in the creation of the nanoflower-like spheres and also mitigate the MoS2 nanosheet limitations. The nanoflower-like spheres minimize volume changes during cycling and improve the rate performance, leading to exceptional rate performance and cycling stability in both Lithium-ion and Sodium-ion batteries (LIBs and SIBs). The optimized MoS2 @CPDs-2 electrode achieves a superb capacity of 583.4 mA h g-1 at high current density (5 A g-1 ) after 1000 cycles in LIBs, and the capacity remaining of 302.8 mA h g-1 after 500 cycles at 5 A g-1 in SIBs. Additionally, the full cell of LIBs/SIBs exhibits high capacity and good cycling stability, demonstrating its potential for practical application in fast-charging and high-energy storage.

15.
ACS Appl Mater Interfaces ; 15(23): 28675-28683, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37270696

RESUMO

In the rising field of stretchable electronics, liquid metals are ideal candidate conductors with metallic conductivity and intrinsic deformability. The complex patterning methods of liquid metal features have limited their widespread applications. In this study, we report a maskless fabrication approach for the facile and scalable patterning of liquid metal conductors on an elastomer substrate. Laser-activated patterns are employed as versatile templates to define arbitrary liquid metal patterns. The as-prepared liquid metal features show an excellent conductivity of 3.72 × 104 S/cm, a high resolution of 70 µm, ultrahigh stretchability of up to 1000% strain, and electromechanical durability. The practical suitability of liquid metal conductors is demonstrated by fabricating a stretchable light-emitting diode (LED) matrix and a smart sensing glove. The maskless fabrication technique introduced here allows versatile patterning of liquid metal conductors with affordable costs, which may stimulate a broad range of applications in stretchable electronic devices and systems.

16.
Food Chem ; 422: 136236, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37130453

RESUMO

Milk fat globule membrane (MFGM) contains lipids, which are essential for promoting infant brain development and improving cognition. In this study, the lipid differences between human MFGM and four dietary lipid sources (cow MFGM, soybean, krill, and yolk) were compared using the UHPLC-Q-Exactive MS-based lipidomics techniques. A total of 45 lipid classes and 5048 lipid species were detected. The analysis of phospholipid classes revealed that the lipid composition of human MFGM and cow MFGM was more similar than the other dietary-derived lipids. Additionally, the human MFGM lipid species were compared with cow MFGM, soybean, krill, and yolk, and 401, 416, 494, and 444 significantly different lipids were identified, respectively. Through lipid metabolic pathway analysis, differential lipids were mainly involved in the glycerophospholipid metabolic pathway. Overall, these results will provide a rationale for the future addition of lipids to infant formula to more closely approximate human MFGM lipid profiles.


Assuntos
Glicolipídeos , Lipidômica , Animais , Feminino , Bovinos , Lactente , Humanos , Gorduras na Dieta , Fórmulas Infantis , Fosfolipídeos , Encéfalo/metabolismo , Gotículas Lipídicas/metabolismo
17.
Circ Res ; 132(10): 1405-1424, 2023 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-37167356

RESUMO

SARS-CoV-2, the virus underlying COVID-19, has now been recognized to cause multiorgan disease with a systemic effect on the host. To effectively combat SARS-CoV-2 and the subsequent development of COVID-19, it is critical to detect, monitor, and model viral pathogenesis. In this review, we discuss recent advancements in microfluidics, organ-on-a-chip, and human stem cell-derived models to study SARS-CoV-2 infection in the physiological organ microenvironment, together with their limitations. Microfluidic-based detection methods have greatly enhanced the rapidity, accessibility, and sensitivity of viral detection from patient samples. Engineered organ-on-a-chip models that recapitulate in vivo physiology have been developed for many organ systems to study viral pathology. Human stem cell-derived models have been utilized not only to model viral tropism and pathogenesis in a physiologically relevant context but also to screen for effective therapeutic compounds. The combination of all these platforms, along with future advancements, may aid to identify potential targets and develop novel strategies to counteract COVID-19 pathogenesis.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Microfluídica , Sistemas Microfisiológicos
18.
Proc Natl Acad Sci U S A ; 120(23): e2300953120, 2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37253015

RESUMO

Self-healing is a bioinspired strategy to repair damaged conductors under repetitive wear and tear, thereby largely extending the life span of electronic devices. The self-healing process often demands external triggering conditions as the practical challenges for the widespread applications. Here, a compliant conductor with electrically self-healing capability is introduced by combining ultrahigh sensitivity to minor damages and reliable recovery from ultrahigh tensile deformations. Conductive features are created in a scalable and low-cost fabrication process comprising a copper layer on top of liquid metal microcapsules. The efficient rupture of microcapsules is triggered by structural damages in the copper layer under stress conditions as a result of the strong interfacial interactions. The liquid metal is selectively filled into the damaged site for the instantaneous restoration of the metallic conductivity. The unique healing mechanism is responsive to various structural degradations including microcracks under bending conditions and severe fractures upon large stretching. The compliant conductor demonstrates high conductivity of ∼12,000 S/cm, ultrahigh stretchability of up to 1,200% strain, an ultralow threshold to activate the healing actions, instantaneous electrical recovery in microseconds, and exceptional electromechanical durability. Successful implementations in a light emitting diode (LED) matrix display and a multifunctional electronic patch demonstrate the practical suitability of the electrically self-healing conductor in flexible and stretchable electronics. The developments provide a promising approach to improving the self-healing capability of compliant conductors.

19.
Adv Healthc Mater ; 12(23): e2300481, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37019442

RESUMO

Photodynamic therapy and sonodynamic therapy are two highly promising modalities for cancer treatment. The latter holds an additional advantage in deep-tumor therapy owing to the deep penetration of the ultrasonic radiation. The therapeutic efficacy depends highly on the photo/ultrasound-responsive properties of the sensitizers as well as their tumor-localization property and pharmacokinetics. A novel nanosensitizer system based on a polymeric phthalocyanine (pPC-TK) is reported herein in which the phthalocyanine units are connected with cleavable thioketal linkers. Such polymer could self-assemble in water forming nanoparticles with a hydrodynamic diameter of 48 nm. The degradable and flexible thioketal linkers could effectively inhibit the π-π stacking of the phthalocyanine units, rendering the resulting nanoparticles an efficient generator of reactive oxygen species upon light or ultrasonic irradiation. The nanosensitizer could be internalized into cancer cells readily, inducing cell death by efficient photodynamic and sonodynamic effects. The potency is significantly higher than that of the monomeric phthalocyanine (PC-4COOH). The nanosensitizer could also effectively inhibit the growth of tumor in liver tumor-bearing mice by these two therapies without causing noticeable side effects. More importantly, it could also retard the growth of a deep-located orthotopic liver tumor in vivo by sonodynamic therapy.


Assuntos
Neoplasias Hepáticas , Nanopartículas , Fotoquimioterapia , Terapia por Ultrassom , Animais , Camundongos , Fotoquimioterapia/métodos , Isoindóis , Indóis/farmacologia , Nanopartículas/uso terapêutico , Polímeros , Linhagem Celular Tumoral , Espécies Reativas de Oxigênio/metabolismo
20.
Adv Healthc Mater ; 12(21): e2203386, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37016763

RESUMO

Aggregation caused quenching (ACQ) effect can severely inhibit the application of hydrophobic photosensitizers (PSs) bearing planar and rigid structures. Most of the reported cases utilized random-coiled polymers for the in vivo delivery of PSs, which would inevitably aggravate ACQ effect due to the flexible chains. In this work, the role of polymers' secondary structures (especially α-helical conformation) in overcoming the PSs' aggregation is systemically investigated based on the design of α-helical polypeptides bearing tetraphenylporphyrin (TPP) side chains. Atomistic molecular dynamics simulation, fluorescence quantum yield, and reactive oxygen species (ROS) generation yield are evaluated to demonstrate that α-helical polypeptide backbones can significantly boost both fluorescence quantum yield and ROS by suppressing the π-π stacking interaction between TPP units. The enhanced in vitro and in vivo phototoxicity for helical polypeptides also reveal functions of secondary structures in inhibiting ACQ and improving the membrane activity. Successful in vivo photodynamic therapy (PDT) results in mice bearing H22 tumors showed great potentials for further clinical applications.


Assuntos
Neoplasias , Fotoquimioterapia , Animais , Camundongos , Fármacos Fotossensibilizantes/química , Espécies Reativas de Oxigênio , Fotoquimioterapia/métodos , Neoplasias/tratamento farmacológico , Polímeros/química , Peptídeos/farmacologia , Peptídeos/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA