Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Biochem Genet ; 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38898268

RESUMO

Osteoporosis, in which bones become fragile owing to low bone density and impaired bone mass, is a global public health concern. Bone mineral density (BMD) has been extensively evaluated for the diagnosis of low bone mass and osteoporosis. Circulating monocytes play an indispensable role in bone destruction and remodeling. This work proposed a machine learning-based framework to investigate the impact of circulating monocyte-associated genes on bone loss in osteoporosis patients. Females with discordant BMD levels were included in the GSE56815, GSE7158, GSE7429, and GSE62402 datasets. Circulating monocyte types were quantified via CIBERSORT, with subsequent selection of plasma cell-associated DEGs. Generalized linear models, random forests, extreme gradient boosting (XGB), and support vector machines were adopted for feature selection. Artificial neural networks and nomograms were subsequently constructed for osteoporosis diagnosis, and the molecular machinery underlying the identified genes was explored. SVM outperformed the other tuned models; thus, the expression of several genes (DEFA4, HLA-DPB1, LCN2, HP, and GAS7) associated with osteoporosis were determined. ANNs and nomograms were proposed to robustly distinguish low and high BMDs and estimate the risk of osteoporosis. Clozapine, aspirin, pyridoxine, etc. were identified as possible treatment agents. The expression of these genes is extensively posttranscriptionally regulated by miRNAs and m6A modifications. Additionally, they participate in modulating key signaling pathways, e.g., autophagy. The machine learning framework based on plasma cell-associated feature genes has the potential for estimating personalized risk stratification and treatment vulnerability in osteoporosis patients.

3.
Acta Pharmacol Sin ; 45(3): 480-489, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37993535

RESUMO

Dopaminergic neurons in the substantia nigra (SN) expressing SUR1/Kir6.2 type ATP-sensitive potassium channels (K-ATP) are more vulnerable to rotenone or metabolic stress, which may be an important reason for the selective degeneration of neurons in Parkinson's disease (PD). Baicalein has shown neuroprotective effects in PD animal models. In this study, we investigated the effect of baicalein on K-ATP channels and the underlying mechanisms in rotenone-induced apoptosis of SH-SY5Y cells. K-ATP currents were recorded from SH-SY5Y cells using whole-cell voltage-clamp recording. Drugs dissolved in the external solution at the final concentration were directly pipetted onto the cells. We showed that rotenone and baicalein opened K-ATP channels and increased the current amplitudes with EC50 values of 0.438 µM and 6.159 µM, respectively. K-ATP channel blockers glibenclamide (50 µM) or 5-hydroxydecanoate (5-HD, 250 µM) attenuated the protective effects of baicalein in reducing reactive oxygen species (ROS) content and increasing mitochondrial membrane potential and ATP levels in rotenone-injured SH-SY5Y cells, suggesting that baicalein protected against the apoptosis of SH-SY5Y cells by regulating the effect of rotenone on opening K-ATP channels. Administration of baicalein (150, 300 mg·kg-1·d-1, i.g.) significantly inhibited rotenone-induced overexpression of SUR1 in SN and striatum of rats. We conducted surface plasmon resonance assay and molecular docking, and found that baicalein had a higher affinity with SUR1 protein (KD = 10.39 µM) than glibenclamide (KD = 24.32 µM), thus reducing the sensitivity of K-ATP channels to rotenone. Knockdown of SUR1 subunit reduced rotenone-induced apoptosis and damage of SH-SY5Y cells, confirming that SUR1 was an important target for slowing dopaminergic neuronal degeneration in PD. Taken together, we demonstrate for the first time that baicalein attenuates rotenone-induced SH-SY5Y cell apoptosis through binding to SUR1 and activating K-ATP channels.


Assuntos
Flavanonas , Neuroblastoma , Canais de Potássio Corretores do Fluxo de Internalização , Humanos , Ratos , Animais , Canais KATP , Rotenona/farmacologia , Receptores de Sulfonilureias , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Glibureto/farmacologia , Simulação de Acoplamento Molecular , Apoptose , Neurônios Dopaminérgicos/metabolismo , Trifosfato de Adenosina/farmacologia
4.
J Heart Lung Transplant ; 43(3): 496-507, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37839791

RESUMO

BACKGROUD: Diseased animal models play an extremely important role in preclinical research. Lacking the corresponding animal models, many basic research studies cannot be carried out, and the conclusions obtained are incomplete or even incorrect. Right ventricular (RV) outflow tract (RVOT) obstruction leads to RV pressure overload (PO) and reduced pulmonary blood flow (RPF), which are 2 of the most important pathophysiological characteristics in pediatric cardiovascular diseases and seriously affect the survival rate and long-term quality of life of many children. Due to the lack of a neonatal mouse model for RVOT obstruction, it is largely unknown how RV PO and RPF regulate postnatal RV and pulmonary development. The aim of this study was to construct a neonatal RVOT obstruction mouse model. METHODS AND RESULTS: Here, we first introduced a neonatal mouse model of RVOT obstruction by pulmonary artery banding (PAB) on postnatal day 1. PAB induced neonatal RVOT obstruction, RV PO, and RPF. Neonatal RV PO induced cardiomyocyte proliferation, and neonatal RPF induced pulmonary dysplasia, the 2 features that are not observed in adult RVOT obstruction. As a result, PAB neonates exhibited overall developmental dysplasia, a sign similar to that of children with RVOT obstruction. CONCLUSIONS: Because many pediatric cardiovascular diseases are associated with RV PO and RPF, the introduction of a neonatal mouse model of RVOT obstruction may greatly enhance our understanding of these diseases and eventually improve or save the lives of many children.


Assuntos
Procedimentos Cirúrgicos Cardíacos , Doenças Cardiovasculares , Tetralogia de Fallot , Obstrução da Via de Saída Ventricular Direita , Obstrução do Fluxo Ventricular Externo , Humanos , Criança , Adulto , Recém-Nascido , Animais , Camundongos , Tetralogia de Fallot/cirurgia , Procedimentos Cirúrgicos Cardíacos/métodos , Artéria Pulmonar/cirurgia , Qualidade de Vida , Obstrução do Fluxo Ventricular Externo/etiologia , Obstrução do Fluxo Ventricular Externo/cirurgia
5.
Biomed Pharmacother ; 168: 115837, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37931518

RESUMO

Heart failure with preserved ejection fraction (HFpEF) is a morbid, fatal, and common syndrome for which lack of evidence-based therapies. Salvianolic acid A (SAA), a major active ingredient of Salvia miltiorrhiza Burge, has shown potential to protect against cardiovascular diseases. This study aims to elucidate whether SAA possessed therapeutic activity against HFpEF and explore the potential mechanism. HFpEF mouse model was established infusing a combination of high-fat diet (HFD) and Nω-nitro-L-arginine methyl ester (L-NAME) for 14 weeks. After 10 weeks of feeding, HFpEF mice were given SAA (2.5, 5, 10 mg/kg) via oral gavage for four weeks. Body weight, blood pressure, blood lipids, glucose tolerance, exercise performance, cardiac systolic/diastolic function, cardiac pathophysiological changes, and inflammatory factors were assessed. Experimental results showed that SAA reduced HFpEF risk factors, such as body weight gain, glucose intolerance, lipid disorders, and increased exercise tolerance in HFpEF mice. Moreover, SAA not only relieved myocardial hypertrophy and fibrosis by reducing interventricular septal wall thickness, left ventricular posterior wall thickness, left ventricular mass, heart index, cardiomyocyte cross-sectional area and cardiac collagen content, but also improved cardiac diastolic function via reducing E/E' ratio. Finally, SAA inhibited TLR2/TLR4-mediated Myd88 activation and its downstream molecules TRAF6 and IRAK4, which decreases the release of proinflammatory cytokines and mediators through NF-κB and p38 MAPK pathways. In conclusion, SAA could attenuate cardiac inflammation and cardiac disfunction by TLR/Myd88/TRAF/NF-κB and p38MAPK/CREB signaling pathways in HFpEF mice, which provides evidence for SAA as a potential drug for treatment of HFpEF in clinic.


Assuntos
Insuficiência Cardíaca , Animais , Camundongos , Peso Corporal , Insuficiência Cardíaca/tratamento farmacológico , Fator 88 de Diferenciação Mieloide , Miócitos Cardíacos , NF-kappa B/uso terapêutico , Transdução de Sinais , Volume Sistólico/fisiologia
6.
Int J Mol Sci ; 24(17)2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37685976

RESUMO

Diabetic cardiomyopathy (DCM) is a critical complication of long-term chronic diabetes mellitus, and it is characterized by myocardial fibrosis and myocardial hypertrophy. Previous studies have shown that the pyroptosis pathway was significantly activated in DCM and may be related to the P2X7 receptor. However, the role of the P2X7 receptor in the development of DCM with pyroptosis is still unclear. In this study, we aimed to explore the mechanism of puerarin and whether the P2X7 receptor can be used as a new target for puerarin in the treatment of DCM. We adopted systematic pharmacology and bioinformatic approaches to identify the potential targets of puerarin for treating DCM. Additionally, we employed D-glucose-induced H9C2 rat cardiomyocytes and lipopolysaccharide-treated RAW264.7 mouse mononuclear macrophages as the in vitro model on DCM research, which is close to the pathological conditions. The mRNA expression of cytokines in H9C2 cells and RAW264.7 macrophages was detected. The protein expressions of NLRP3, N-GSDMD, cleaved-caspase-1, and the P2X7 receptor were investigated with Western blot analysis. Furthermore, molecular docking of puerarin and the P2X7 receptor was conducted based on CDOCKER. A total of 348 puerarin targets and 4556 diabetic cardiomyopathy targets were detected, of which 218 were cross targets. We demonstrated that puerarin is effective in enhancing cardiomyocyte viability and improving mitochondrial function. In addition, puerarin is efficacious in blocking NLRP3-Caspase-1-GSDMD-mediated pyroptosis in H9C2 cells and RAW264.7 cells, alleviating cellular inflammation. On the other hand, similar experimental results were obtained by intervention with the P2X7 receptor antagonist A740003, suggesting that the protective effects of puerarin are related to the P2X7 receptor. The molecular docking results indicated key binding activity between the P2X7 receptor and puerarin. These findings indicate that puerarin effectively regulated the pyroptosis signaling pathway during DCM, and this regulation was associated with the P2X7 receptor.


Assuntos
Cardiomiopatias Diabéticas , Miócitos Cardíacos , Camundongos , Animais , Ratos , Piroptose , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Receptores Purinérgicos P2X7/genética , Caspase 1 , Cardiomiopatias Diabéticas/tratamento farmacológico , Simulação de Acoplamento Molecular , Macrófagos
7.
Mar Life Sci Technol ; 5(2): 232-241, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37275544

RESUMO

Metabolites of microorganisms have long been considered as potential sources for drug discovery. In this study, five new depsidone derivatives, talaronins A-E (1-5) and three new xanthone derivatives, talaronins F-H (6-8), together with 16 known compounds (9-24), were isolated from the ethyl acetate extract of the mangrove-derived fungus Talaromyces species WHUF0362. The structures were elucidated by analysis of spectroscopic data and chemical methods including alkaline hydrolysis and Mosher's method. Compounds 1 and 2 each attached a dimethyl acetal group at the aromatic ring. A putative biogenetic relationship of the isolated metabolites was presented and suggested that the depsidones and the xanthones probably had the same biosynthetic precursors such as chrysophanol or rheochrysidin. The antimicrobial activity assay indicated that compounds 5, 9, 10, and 14 showed potent activity against Helicobacter pylori with minimum inhibitory concentration (MIC) values in the range of 2.42-36.04 µmol/L. While secalonic acid D (19) demonstrated significant antimicrobial activity against four strains of H. pylori with MIC values in the range of 0.20 to 1.57 µmol/L. Furthermore, secalonic acid D (19) exhibited cytotoxicity against cancer cell lines Bel-7402 and HCT-116 with IC50 values of 0.15 and 0.19 µmol/L, respectively. The structure-activity relationship of depsidone derivatives revealed that the presence of the lactone ring and the hydroxyl at C-10 was crucial to the antimicrobial activity against H. pylori. The depsidone derivatives are promising leads to inhibit H. pylori and provide an avenue for further development of novel antibiotics. Supplementary Information: The online version contains supplementary material available at 10.1007/s42995-023-00170-5.

8.
Int J Mol Sci ; 24(12)2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37373355

RESUMO

Pulmonary hypertension (PH) is a disease which affects the cardiopulmonary system; it is defined as a mean pulmonary artery pressure (mPAP) > 20 mmHg as measured by right heart catheterization at rest, and is caused by complex and diverse mechanisms. In response to stimuli such as hypoxia and ischemia, the expression and synthesis of endothelin (ET) increase, leading to the activation of various signaling pathways downstream of it and producing effects such as the induction of abnormal vascular proliferation during the development of the disease. This paper reviews the regulation of endothelin receptors and their pathways in normal physiological processes and disease processes, and describes the mechanistic roles of ET receptor antagonists that are currently approved and used in clinical studies. Current clinical researches on ET are focused on the development of multi-target combinations and novel delivery methods to improve efficacy and patient compliance while reducing side effects. In this review, future research directions and trends of ET targets are described, including monotherapy and precision medicine.


Assuntos
Hipertensão Pulmonar , Humanos , Hipertensão Pulmonar/tratamento farmacológico , Receptores de Endotelina , Antagonistas dos Receptores de Endotelina/uso terapêutico , Antagonistas dos Receptores de Endotelina/farmacologia , Pulmão/metabolismo , Endotelinas/farmacologia , Endotelina-1
9.
J Vis Exp ; (196)2023 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-37358276

RESUMO

Right ventricular (RV) volume overload (VO) is common in children with congenital heart disease. In view of distinct developmental stages,the RV myocardium may respond differently to VO in children compared to adults. The present study aims to establish a postnatal RV VO model in mice using a modified abdominal arteriovenous fistula. To confirm the creation of VO and the following morphological and hemodynamic changes of the RV, abdominal ultrasound, echocardiography, and histochemical staining were performed for 3 months. As a result, the procedure in postnatal mice showed an acceptable survival and fistula success rate. In VO mice, the RV cavity was enlarged with a thickened free wall, and the stroke volume was increased by about 30%-40% within 2 months after surgery. Thereafter, the RV systolic pressure increased, corresponding pulmonary valve regurgitation was observed, and small pulmonary artery remodeling appeared. In conclusion, modified arteriovenous fistula (AVF) surgery is feasible to establish the RV VO model in postnatal mice. Considering the probability of fistula closure and elevated pulmonary artery resistance, abdominal ultrasound and echocardiography must be performed to confirm the model status before application.


Assuntos
Insuficiência Cardíaca , Disfunção Ventricular Direita , Camundongos , Animais , Ventrículos do Coração/diagnóstico por imagem , Modelos Animais de Doenças , Volume Sistólico , Hemodinâmica , Função Ventricular Direita
10.
Front Microbiol ; 14: 1138830, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36922969

RESUMO

Introduction: Dimeric natural products are widespread in plants and microorganisms, which usually have complex structures and exhibit greater bioactivities than their corresponding monomers. In this study, we report five new dimeric tetrahydroxanthones, aculeaxanthones A-E (4-8), along with the homodimeric tetrahydroxanthone secalonic acid D (1), chrysoxanthones B and C (2 and 3), and 4-4'-secalonic acid D (9), from different fermentation batches of the title fungus. Methods: A part of the culture was added to a total of 60 flasks containing 300 ml each of number II fungus liquid medium and culture 4 weeks in a static state at 28˚C. The liquid phase (18 L) and mycelia was separated from the fungal culture by filtering. A crude extract was obtained from the mycelia by ultrasound using acetone. To obtain a dry extract (18 g), the liquid phase combined with the crude extract were further extracted by EtOAc and concentrated in vacuo. The MIC of anaerobic bacteria was examined by a broth microdilution assay. To obtain MICs for aerobic bacteria, the agar dilution streak method recommended in Clinical and Laboratory Standards Institute document (CLSI) M07-A10 was used. Compounds 1-9 was tested against the Bel-7402, A-549 and HCT-116 cell lines according to MTT assay. Results and Discussion: The structures of these compounds were elucidated on the base of 1D and 2D NMR and HR-ESIMS data, and the absolute configurations of the new xanthones 4-8 were determined by conformational analysis and time-dependent density functional theory-electronic circular dichroism (TDDFT-ECD) calculations. Compounds 1-9 were tested for cytotoxicity against the Bel-7402, A549, and HCT-116 cancer cell lines. Of the dimeric tetrahydroxanthone derivatives, only compound 6 provided cytotoxicity effect against Bel-7402 cell line (IC50, 1.96 µM). Additionally, antimicrobial activity was evaluated for all dimeric tetrahydroxanthones, including four Gram-positive bacteria including Enterococcus faecium ATCC 19434, Bacillus subtilis 168, Staphylococcus aureus ATCC 25923 and MRSA USA300; four Gram-negative bacteria, including Helicobacter pylori 129, G27, as well as 26,695, and multi drug-resistant strain H. pylori 159, and one Mycobacterium M. smegmatis ATCC 607. However, only compound 1 performed activities against H. pylori G27, H. pylori 26695, H. pylori 129, H. pylori 159, S. aureus USA300, and B. subtilis 168 with MIC values of 4.0, 4.0, 2.0, 2.0, 2.0 and 1.0 µg/mL, respectively.

11.
Biomed Pharmacother ; 160: 114382, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36773525

RESUMO

Salvianolic acid A (SAA) is a traditional Chinese medicine that has a good therapeutic effect on cardiovascular disease. However, the underlying mechanisms by which SAA improves mitochondrial respiration and cardiac function in diabetic cardiomyopathy (DCM) remain unknown. This study aims to elucidate whether SAA had any cardiovascular protection on the pathophysiology of DCM and explored the potential mechanisms. Diabetes was induced in rats by 30 mg/kg of streptozotocin (STZ) treatment. After a week of stability, 5 mg/kg isoprenaline (ISO) was injected into the rats subcutaneously. 3 mg/kg SAA was orally administered for six weeks and 150 mg/kg Metformin was selected as a positive group. At the end of this period, cardiac function was assessed by ultrasound, electrocardiogram, and relevant cardiac injury biomarkers testing. Treatment with SAA improved cardiac function, glucose, and lipid levels, mitochondrial respiration, and suppressed myocardial inflammation and apoptosis. Furthermore, SAA treatment inhibits the apoptosis pathway through CRYAB in diabetic cardiomyopathy rats. As a result, this study not only provides new insights into the mechanism of SAA against DCM but also provides new therapeutic ideas for the discovery of anti-DCM compounds in the clinic.


Assuntos
Diabetes Mellitus , Cardiomiopatias Diabéticas , Animais , Ratos , Apoptose , Cardiomiopatias Diabéticas/metabolismo , Ratos Sprague-Dawley , Respiração , Coração
12.
J Craniofac Surg ; 34(5): e411-e415, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36534028

RESUMO

BACKGROUND: This study aims to observe and investigate the clinical value of scar loosening and tissue-expansive autologous skin grafting in the treatment of postburn scars and independent risk characteristics for surgery-related complications. METHODS: We retrospectively analyzed 94 cases with postburn scars, and all patients were treated with scar loosening and autologous skin grafting. Overall therapeutic effects were evaluated using the standard of cure and improvement of clinical diseases. Burn Specific Health Scale-brief was used to analyze patients' quality of life. The visual analog scale scores were used to analyze esthetic satisfaction. Surgery-related complications were recorded, and logistic regression model was used to analyze independent factors affecting surgery-related complications. RESULTS: As for overall efficacy evaluation, 50 cases were cured, 19 cases were markedly improved, 17 cases improved, and 8 cases were detected and tested, and the overall effective rate was 91.4%. The Burn Specific Health Scale-brief and visual analog scale score showed a trend of increasing gradually. It indicated that the patients were satisfied with the operation and their quality of life was improved. The logistic regression model showed that history of skin disease (OR=1.53 (1.08-2.16), P =0.02) and skin area (OR=2.50 (1.22-4.50), P <0.01) were significantly associated with surgery-related complications. CONCLUSIONS: Scar loosening and autologous skin grafting is a safe and effective treatment. The history of skin disease and skin area was the independent factors for surgery-related complications.


Assuntos
Queimaduras , Cicatriz , Humanos , Cicatriz/etiologia , Cicatriz/cirurgia , Prognóstico , Transplante de Pele , Estudos Retrospectivos , Qualidade de Vida , Estética Dentária , Queimaduras/complicações , Queimaduras/cirurgia
13.
Pharm Biol ; 61(1): 69-79, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36546685

RESUMO

CONTEXT: Dan-Shen Decoction, which is composed of Danshen, Tanxiang and Sharen, has a good therapeutic effect on ischemic heart disease (IHD). However, systematic research on the exact mechanism of action of Dan-Shen Decoction is still lacking. The anti-IHD effect of Dan-Shen Decoction was examined in this study using a systematic pharmacological method. OBJECTIVE: This study validates the efficacy and explores the potential mechanisms of Dan-Shen Decoction in treating IHD by integrating network pharmacology analyses and experimental verification. MATERIALS AND METHODS: The active components, critical targets and potential mechanisms of Dan-Shen Decoction against IHD were predicted by network pharmacology and molecule docking. H9c2 cells were pretreated with various 1 µg/mL Dan-Shen Decoction for 2 h before induction with 1000 µmol/L CoCl2 for 24 h. The cell viability was detected by CCK8, and protein expression was detected by western blots. RESULTS: The network pharmacology approach successfully identified 69 active components in Dan-Shen Decoction, and 122 potential targets involved in the treatment of IHD. The in vitro experiments indicate that the anti-IHD effect of Dan-Shen Decoction may be closely associated with targets such as AKT1 and MAPK1, as well as biological processes such as cell proliferation, inflammatory response, and metabolism. CONCLUSIONS: This study not only provides new insights into the mechanism of Dan-Shen Decoction against IHD, but also provides important information and new research ideas for the discovery of anti-IHD compounds from traditional Chinese medicine.


Assuntos
Medicamentos de Ervas Chinesas , Isquemia Miocárdica , Salvia miltiorrhiza , Humanos , Farmacologia em Rede , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Medicina Tradicional Chinesa , Isquemia Miocárdica/tratamento farmacológico , Simulação de Acoplamento Molecular
14.
Int J Mol Sci ; 23(21)2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36361807

RESUMO

There is a new form of puerarin, puerarin-V, that has recently been developed, and it is unclear whether puerarin-V has a cardioprotective effect on diabetic cardiomyopathy (DCM). Here, we determined whether puerarin-V had any beneficial influence on the pathophysiology of DCM and explored its possible mechanisms. By injecting 30 mg/kg of STZ intraperitoneally, diabetes was induced in rats. After a week of stability, the rats were injected subcutaneously with ISO (5 mg/kg). We randomly assigned the rats to eight groups: (1) control; (2) model; (3) metformin; (4-6) puerarin-V at different doses; (7) puerarin (API); (8) puerarin injection. DCM rats were found to have severe cardiac insufficiency (arrythmia, decreased LVdP/dt, and increased E/A ratio). In addition, cardiac injury biomarkers (cTn-T, NT-proBNP, AST, LDH, and CK-MB), inflammatory cytokines (IL-1ß, IL-18, IL-6, and TNF-α), and oxidative damage markers (MDA, SOD and GSH) were markedly increased. Treatment with puerarin-V positively adjusts these parameters mentioned above by improving cardiac function and mitochondrial respiration, suppressing myocardial inflammation, and maintaining the structural integrity of the cardiac muscle. Moreover, treatment with puerarin-V inhibits the P2X7 receptor-mediated pyroptosis pathway that was upregulated in diabetic hearts. Given these results, the current study lends credence to the idea that puerarin-V can reduce myocardial damage in DCM rats. Furthermore, it was found that the effect of puerarin-V in diabetic cardiomyopathy is better than the API, the puerarin injection, and metformin. Collectively, our research provides a new therapeutic option for the treatment of DCM in clinic.


Assuntos
Diabetes Mellitus Experimental , Cardiomiopatias Diabéticas , Metformina , Ratos , Animais , Cardiomiopatias Diabéticas/tratamento farmacológico , Receptores Purinérgicos P2X7 , Piroptose , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Miocárdio , Respiração , Metformina/uso terapêutico
15.
Front Biosci (Landmark Ed) ; 27(10): 279, 2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-36336858

RESUMO

BACKGROUND: This study aimed to investigate the mechanisms of acute rejection for vascularized composite allotransplantation (VCA) using microRNAs (miRNAs) differential expression in a VCA animal model. METHODS: Brown Norway rats were used as transplant donors and Lewis rats as VCA receptors. The changes were divided into different stages before and after transplantation in Lewis rats, and all appearance changes were recorded. Also, histological evaluations were performed on all recipients, and the expression of microRNAs was analyzed when acute immune rejection occurred. Then, we used GO and KEGG Pathway enrichment analyses to predict miRNA targets. Finally, differentially expressed miRNAs were detected by RT-qPCR. RESULTS: Compared to pre-operation, 22 miRNAs were differentially expressed after operations. Among them, nine were upregulated, and 13 were downregulated in skin tissues. The RT-qPCR results revealed that rno-miR-340-5p and rno-miR-21-5p were significantly upregulated and enriched in the PI3K-Akt signaling pathway. Moreover, rno-miR-145-5p and rno-miR-195-5p were significantly downregulated, and most of their target genes were enriched in the Hippo signaling pathway. The histological evaluations showed that, after VCA, the skin tissue presented severe acute rejection. CONCLUSIONS: The miRNAs rno-miR-340-5p, rno-miR-21-5p, rno-miR-145-5p, and rno-miR-195-5p were significantly regulated during VCA acute rejection, when the four miRNAs analyses were done on skin biopsies. These miRNAs might be potential biomarkers for objective, early, and minimally invasive rejection diagnosis.


Assuntos
MicroRNAs , Alotransplante de Tecidos Compostos Vascularizados , Animais , Ratos , Fosfatidilinositol 3-Quinases , Ratos Endogâmicos Lew , MicroRNAs/genética , MicroRNAs/metabolismo , Biomarcadores
16.
J Inflamm Res ; 15: 6021-6030, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36330168

RESUMO

Aim: The development of microsurgery has greatly advanced vascularized composite allotransplantation (VCA). However, like organ transplantation, VCA is also limited by acute rejection, and concerns regarding long-term survival and function of the transplanted graft. Therefore, it is necessary to elucidate the molecular mechanisms underlying acute rejection caused by VCA, in order to improve patient survival. Methods: Firstly, we used Brown Norway rats and Lewis rats to construct animal model of VCA. Regularly record the appearance changes of all subjects. Specimens were collected for histological examination, microRNAs (miRNAs) sequencing and RT-qPCR verification when acute immune rejection occurred. Then, bioinformatics analysis was employed to predict miRNA related molecules and pathway information. Finally, differentially expressed miRNAs were tested and verified. Results: MiRNAs are small non coding RNA transcripts that regulate gene expression at the post-transcriptional level. Studies have shown that miRNAs are involved in immune regulation and several miRNAs have been identified that are potential diagnostic and prognostic biomarkers of acute rejection. In this study, we found that the expression levels of rno-miR-21-5p, rno-miR-340-5p, rno-miR-1-3p and rno-miR-195-5p are significantly associated with acute rejection following VCA. Conclusion: This miRNA signature can potentially an auxiliary diagnostic indicator of rejection, which can help clinicians adjust the immunosuppressive program in time during acute rejection.

17.
Sci Data ; 9(1): 544, 2022 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-36071069

RESUMO

Illumina tRFs & tiRNAs-seq analysis was used to characterize the whole transcriptomes of acute rejection caused by vascularized composite allotransplantation (VCA). tRFs & tiRNAs-seq information for muscle samples with VCA was obtained and compared with similar information for same age- and sex-matched healthy control subjects. The expression of 16 tRFs and tiRNAs, including 5 up-regulated target genes and 11 down-regulated target genes, were significantly different. According to bioinformatics analysis and reverse transcription quantitative polymerase chain reaction, we speculate that tiRNA-1-34-Glu-CTC-1 plays an important role in VCA-induced acute rejection by regulating the CACNA1D gene in the MAPK signaling pathway The findings provide the whole-transcriptome signatures of acute rejection for VCA, allowing further exploration of gene expression patterns/signatures associated with the various clinical symptoms of acute rejection for VCA.


Assuntos
Pequeno RNA não Traduzido , Transcriptoma , Alotransplante de Tecidos Compostos Vascularizados , Humanos , Pequeno RNA não Traduzido/genética , Transdução de Sinais
18.
Int J Mol Sci ; 23(15)2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35955548

RESUMO

Heart failure (HF) is a clinical syndrome of cardiac insufficiency caused by abnormalities in cardiac structure and function that arise for various reasons, and it is the final stage of most cardiovascular diseases' progression. Total flavonoid extract from Dracocephalum moldavica L. (TFDM) has many pharmacological and biological roles, such as cardioprotective, neuroprotective, anti-atherogenic, antihypertensive, anti-diabetic, anti-inflammatory, antioxidant, etc. However, its effect on HF and its molecular mechanism are still unclear. In this study, we used systems pharmacology and an animal model of HF to investigate the cardioprotective effect of TFDM and its molecular mechanism. Eleven compounds in TFDM were obtained from the literature, and 114 overlapping genes related to TFDM and HF were collected from several databases. A PPI network and C-T network were established, and GO enrichment analysis and KEGG pathway analysis were performed. The top targets from the PPI network and C-T network were validated using molecular docking. The pharmacological activity was investigated in an HFpEF (heart failure with preserved ejection fraction) mouse model. This study shows that TFDM has a protective effect on HFpEF, and its protective mechanism may be related to the regulation of proinflammatory cytokines, apoptosis-related genes, fibrosis-related genes, etc. Collectively, this study offers new insights for researchers to understand the protective effect and mechanism of TFDM against HFpEF using a network pharmacology method and a murine model of HFpEF, which suggest that TFDM is a promising therapy for HFpEF in the clinic.


Assuntos
Insuficiência Cardíaca , Lamiaceae , Animais , Anti-Inflamatórios/metabolismo , Modelos Animais de Doenças , Flavonoides/metabolismo , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Insuficiência Cardíaca/metabolismo , Lamiaceae/química , Camundongos , Simulação de Acoplamento Molecular , Farmacologia em Rede , Volume Sistólico
19.
Biomater Adv ; 138: 212951, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35913242

RESUMO

Hypertrophic scar (HS) is the manifestation of pathological wound healing, which affects the beauty of patients, and even affects the normal physical functions of patients. We aimed to develop a 3D printing layer membranous nanofiber scaffold similar to skin structure. Among them, poly (lactic-co-glycolic acid) copolymer (PLGA) nanofibers were used as the "epidermis" layer above, and a decellular dermis matrix (dECM) nanofiber scaffold was used as the "dermis" layer below. In vitro, experimental results showed that PLGA and dECM nanofiber scaffolds had good biocompatibility. In vivo experiments showed that BLM nanofiber scaffolds could inhibit collagen fiber deposition and angiogenesis, to inhibit the formation of hypertrophic scars. This study shows a simple and effective method for preventing and inhibiting the formation of hypertrophic scars.


Assuntos
Cicatriz Hipertrófica , Nanofibras , Cicatriz Hipertrófica/prevenção & controle , Humanos , Hiperplasia , Nanofibras/uso terapêutico , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Impressão Tridimensional , Alicerces Teciduais/química
20.
Front Bioeng Biotechnol ; 10: 845345, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35646837

RESUMO

Postoperative wound edema, infection, and pain burden the patient's life. Therefore, the purpose of this study is to develop an effective antibacterial, multifunctional application to prevent postoperative edema and relieve postoperative pain by making full use of the dehydrating and analgesic effects of magnesium sulfate (MgSO4), magnesium oxide (MgO), sodium alginate (SA), and sodium carboxymethyl cellulose (Na-CMC) to make a composite hydrogel, which can promote postoperative detumescence. MgSO4//MgO/SA/Na-CMC composite hydrogel dressings have outstanding mechanical properties, high water absorption, and good biocompatibility. MgO endows the hydrogel dressing with excellent antibacterial properties and better antibacterial activity against common bacteria and multidrug-resistant bacteria. In addition, MgSO4/MgO/SA/Na-CMC hydrogel dressing shows superior dehydration and analgesic properties in the postoperative nude mice model. This study shows that the multifunctional MgSO4/MgO/SA/Na-CMC composite hydrogel dressing developed as a surgical incision dressing has broad prospects in the prevention of incision infection, postoperative edema, and analgesia.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA