RESUMO
Upon chronic stress, ß-adrenergic receptor activation induces cardiac fibrosis and leads to heart failure. The small molecule compound IMM-H007 has demonstrated protective effects in cardiovascular diseases via activation of AMP-activated protein kinase (AMPK). This study aimed to investigate IMM-H007 effects on cardiac fibrosis induced by ß-adrenergic receptor activation. Because adenosine analogs also exert AMPK-independent effects, we assessed AMPK-dependent and -independent IMM-H007 effects in murine models of cardiac fibrosis. Continual subcutaneous injection of isoprenaline for 7 days caused cardiac fibrosis and cardiac dysfunction in mice in vivo. IMM-H007 attenuated isoprenaline-induced cardiac fibrosis, diastolic dysfunction, α-smooth muscle actin expression, and collagen I deposition in both wild-type and AMPKα2-/- mice. Moreover, IMM-H007 inhibited transforming growth factor ß1 (TGFß1) expression in wild-type, but not AMPKα2-/- mice. By contrast, IMM-H007 inhibited Smad2/3 signaling downstream of TGFß1 in both wild-type and AMPKα2-/- mice. Surface plasmon resonance and molecular docking experiments showed that IMM-H007 directly interacts with TGFß1, inhibits its binding to TGFß type II receptors, and downregulates the Smad2/3 signaling pathway downstream of TGFß1. These findings suggest that IMM-H007 inhibits isoprenaline-induced cardiac fibrosis via both AMPKα2-dependent and -independent mechanisms. IMM-H007 may be useful as a novel TGFß1 antagonist.
Assuntos
Proteínas Quinases Ativadas por AMP , Fator de Crescimento Transformador beta1 , Proteínas Quinases Ativadas por AMP/metabolismo , Actinas/metabolismo , Adenosina/análogos & derivados , Adenosina/farmacologia , Animais , Colágeno , Fibrose , Isoproterenol/toxicidade , Camundongos , Simulação de Acoplamento Molecular , Receptores Adrenérgicos beta , Transdução de Sinais , Fator de Crescimento Transformador beta1/metabolismoRESUMO
Acute sympathetic stress quickly induces cardiac inflammation and injury, suggesting that pathogenic signals rapidly spread among cardiac cells and that cell-to-cell communication may play an important role in the subsequent cardiac injury. However, the underlying mechanism of this response is unknown. Our previous study demonstrated that acute ß-adrenergic receptor (ß-AR) signaling activates inflammasomes in the heart, which triggers the inflammatory cascade. In the present study, ß-AR overactivation induced inflammasome activation in both the cardiomyocytes and cardiac fibroblasts (CFs) of mice hearts following a subcutaneous injection of isoproterenol (ISO, 5 mg/kg body weight), a selective agonist of ß-AR. In isolated cardiac cells, ISO treatment only activated the inflammasomes in the cardiomyocytes but not the CFs. These results demonstrated that inflammasome activation was propagated from cardiomyocytes to CFs in the mice hearts. Further investigation revealed that the inflammasomes were activated in the cocultured CFs that connected with cardiomyocytes via membrane nanotubes (MNTs), a novel membrane structure that mediates distant intercellular connections and communication. Disruption of the MNTs with the microfilament polymerization inhibitor cytochalasin D (Cyto D) attenuated the inflammasome activation in the cocultured CFs. In addition, the MNT-mediated inflammasome activation in the CFs was blocked by deficiency of the inflammasome component NOD-like receptor protein 3 (NLRP3) in the cardiomyocytes, but not NLRP3 deficiency in the CFs. Moreover, ISO induced pyroptosis in the CFs cocultured with cardiomyocytes, and this process was inhibited by disruption of the MNTs with Cyto D or by the NLRP3 inhibitor MCC950 and the caspase-1 inhibitor Z-YVAD-FMK (FMK). Our study revealed that MNTs facilitate the rapid propagation of inflammasome activation among cardiac cells to promote pyroptosis in the early phase of ß-adrenergic insult. Therefore, preventing inflammasome transfer is a potential therapeutic strategy to alleviate acute ß-AR overactivation-induced cardiac injury.
Assuntos
Membrana Celular/patologia , Coração/fisiopatologia , Isoproterenol/farmacologia , Traumatismo por Reperfusão Miocárdica/patologia , Miócitos Cardíacos/patologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/fisiologia , Receptores Adrenérgicos beta/química , Agonistas Adrenérgicos beta/farmacologia , Animais , Animais Recém-Nascidos , Membrana Celular/efeitos dos fármacos , Membrana Celular/imunologia , Membrana Celular/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/imunologia , Fibroblastos/metabolismo , Fibroblastos/patologia , Inflamação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Traumatismo por Reperfusão Miocárdica/etiologia , Traumatismo por Reperfusão Miocárdica/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/imunologia , Miócitos Cardíacos/metabolismo , Nanotubos , PiroptoseRESUMO
Acute sympathetic stress causes excessive secretion of catecholamines and induces cardiac injuries, which are mainly mediated by ß-adrenergic receptors (ß-ARs). However, α1-adrenergic receptors (α1-ARs) are also expressed in the heart and are activated upon acute sympathetic stress. In the present study, we investigated whether α1-AR activation induced cardiac inflammation and the underlying mechanisms. Male C57BL/6 mice were injected with a single dose of α1-AR agonist phenylephrine (PE, 5 or 10 mg/kg, s.c.) with or without pretreatment with α-AR antagonist prazosin (5 mg/kg, s.c.). PE injection caused cardiac dysfunction and cardiac inflammation, evidenced by the increased expression of inflammatory cytokine IL-6 and chemokines MCP-1 and MCP-5, as well as macrophage infiltration in myocardium. These effects were blocked by prazosin pretreatment. Furthermore, PE injection significantly increased the expression of NOD-like receptor protein 3 (NLRP3) and the cleavage of caspase-1 (p20) and interleukin-18 in the heart; similar results were observed in both Langendorff-perfused hearts and cultured cardiomyocytes following the treatment with PE (10 µM). Moreover, PE-induced NLRP3 inflammasome activation and cardiac inflammation was blocked in Nlrp3-/- mice compared with wild-type mice. In conclusion, α1-AR overactivation induces cardiac inflammation by activating NLRP3 inflammasomes.