Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 448
Filtrar
1.
Polymers (Basel) ; 16(13)2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-39000747

RESUMO

The characteristics of fiber morphology and paper structure are critical to the barrier properties of food packaging paper. Herein, this study aimed to use pulp fibrillation, paper semi-dry pressing and carboxymethyl starch (CMS) coating to flatten the fibers, which were formed on the paper surface with good barrier properties due to the tight bond between fibers. The results showed that the permeability of paper was reduced by 87.56%, from 81.44 µm/Pa·s to 10.13 µm/Pa·s after the pulp fibrillation treatment (60 °SR). Moreover, semi-dry pressing treatment contributed to decreasing the water vapor transmission coefficient (WVP) by 50.98% to 2.74 × 10-10 g/m·s·Pa, and the oxygen permeation coefficient (OP) decreased by 98.04% to 1.93 × 10-14 cm3·cm/cm2·s·Pa. After coating the paper surface with titanium dioxide (TiO2) and CMS, the WVP of the paper was further reduced to 1.55 × 10-10 g/m·s·Pa, and OP was reduced to 0.19 × 10-14 cm3·cm/cm2·s·Pa. These values were 72.27% and 99.8% lower than those of the original paper, respectively. Therefore, through pulp fibrillation, semi-dry pressing of paper, TiO2 filling, and surface coating with CMS, there is no need to use synthetic polymer surface film-forming agents to achieve the high barrier properties that are required for low water and oxygen molecules permeation in food packaging paper.

2.
Polymers (Basel) ; 16(12)2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38932051

RESUMO

Lignin is an important component of plant fiber raw materials, and is a three-dimensional network structure aromatic polymer with abundant resources and a complex structure in nature. Lignin is generally used as industrial waste, and its potential value has not been fully utilized. Modern agriculture extensively uses chemical fertilizers, leading to the gradual degradation of soil fertility and structure, which seriously affects crop growth, nutrient transport, and root respiration function. Based on soil bulk density, porosity, aggregates, and their stability indicators, this study analyzed the effects of aminated industrial lignin and its loading with arbuscular mycorrhizal fungi on soil structure improvement and plant growth. It was hoped that resource-rich lignin could play a beneficial role in improving soil structure and promoting crop growth. The phenolic hydroxyl group of lignin was epoxidized and further aminated to load with arbuscular mycorrhizal fungi. The results indicated that amine-modified lignin could effectively load with arbuscular mycorrhizal fungi. The application of arbuscular mycorrhizal fungi-supported aminated lignin to soil aggregate structure improvement greatly reduced the bulk density of soil, and increased the porosity of soil and the content of large granular soil. Compared with unmodified soil, soil bulk density decreased by 73.08%, the porosity of soil increased by 70.43%, and the content of large granular soil increased by 56.38%. Using the improved soil for corn cultivation efficiently increased the biomass of corn. The plant height was increased by 72.16%, the root-shoot ratio was increased by 156.25%, and other indexes were also improved to varying degrees. The experimental method provides an important basis for the effective utilization of lignin materials in agriculture in the future.

3.
Nat Prod Res ; : 1-8, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38838282

RESUMO

One new flavonostilbene glycoside, polygonflavanol C (1), two new dimeric stilbene glycosides, multiflorumiside M and multiflorumiside N (2-3), one new diphenyl ethanol glycoside, (R)-2,3,5,4'-tetrahydroxy-diphenylethanol 2-O-ß-D-glucopyranoside (4), and one new deoxybenzoin glycoside, 2,4,3',5'-tetrahydroxy-6-methyl-deoxybenzoin 2-O-ß-D-glucopyranoside (5), together with six known ones (6-11), were isolated from the roots of Polygonum multiflorum. Their structures were elucidated by the comprehensive spectroscopic analyses. In addition, compounds 1 and 7 showed significantly in vitro anti-inflammatory activity.

4.
RSC Adv ; 14(21): 14775-14783, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38716102

RESUMO

The global outbreak of monkeypox virus (MPXV) has highlighted the need for rapid molecular diagnostics techniques. In this study, a single-step recombinase polymerase amplification (RPA)-CRISPR/Cas12a system was developed for rapid and sensitive detection of MPXV. The limit of detection of this assay was 1 copy per µL of extracted nucleic acids. A heating lysis method was integrated to further simplify the sample processing workflow and shorten the assay time to 40 min from sample to result. The reaction mixture can be lyophilized to improve its accessibility in resource-limited settings. The analysis results of the proposed single-step RPA-CRISPR/Cas12a assay for clinical MPXV positive and negative samples were 100% consistent with standard PCR assay. These results demonstrate the feasibility and efficiency of this method for rapid and accurate MPXV detection in real-world settings, showcasing its potential utility in urgent and practical settings.

5.
BMC Infect Dis ; 24(1): 521, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38783182

RESUMO

BACKGROUND: Invasive fungal infection (IFI) has become an increasing problem in NICU neonates, and end-organ damage (EOD) from IFI is one of the leading causes of morbidity and mortality in neonates. This study was conducted to summarize clinical data on epidemiology, risk factors, causative pathogens, and clinical outcomes of IFI-associated EOD among neonates in a center in China for the sake of providing references for prevention and treatment of fungal infections in neonates in future. METHODS: The clinical data of IFI neonates who received treatment in a tertiary NICU of China from January 2009 to December 2022 were retrospectively analyzed, including causative pathogens and the incidence of EOD. The neonates were divided into EOD group and non-EOD (NEOD) group. The general characteristics, risk factors and clinical outcomes of the two groups were compared. RESULTS: Included in this study were 223 IFI neonates (137 male and 86 female) with a median gestational age (GA) of 30.71 (29,35) weeks and a median birth weight (BW) of 1470 (1120,2150) g. Of them, 79.4% were preterm infants and 50.2% were born at a GA of ≥ 28, <32 weeks, and 37.7% with BW of 1000-1499 g. Candida albicans (C. albicans) was the most common Candida spp. in these neonates, accounting for 41.3% of all cases, followed by C. parapsilosis (30.5%) and C. glabrata (7.2%). EOD occurred in 40 (17.9%) of the 223 cases. Fungal meningitis was the most common EOD, accounting for 13.5% of the 40 EOD cases. There was no significant difference in the premature birth rate, delivery mode, GA and BW between EOD and NEOD groups, but the proportion of male infants with EOD was higher than that without. There was no significant difference in antenatal corticosteroid use, endotracheal intubation, invasive procedures, use of antibiotics, total parenteral nutrition, blood transfusion, postnatal corticosteroid use, fungal prophylaxis and the incidence of necrotizing enterocolitis between the two groups, but the proportion of C. albicans infection cases in EOD group was higher than that in NEOD group (57.5% vs. 37.7%). Compared with NEOD group, the proportion of cured or improved infants in EOD group was significantly lower (P < 0.05), and the number of infants who died or withdrew from treatment was larger (P < 0.05). CONCLUSIONS: Our retrospective study showed that preterm infants were prone to fungal infection, especially very preterm infants. C. albicans was the most common Candida spp. for IFI, and was a high-risk factor for EOD. EOD can occur in both full-term and premature infants, so the possibility of EOD should be considered in all infants with IFI.


Assuntos
Infecções Fúngicas Invasivas , Centros de Atenção Terciária , Humanos , Recém-Nascido , Estudos Retrospectivos , Feminino , Masculino , China/epidemiologia , Infecções Fúngicas Invasivas/epidemiologia , Infecções Fúngicas Invasivas/tratamento farmacológico , Infecções Fúngicas Invasivas/microbiologia , Centros de Atenção Terciária/estatística & dados numéricos , Fatores de Risco , Incidência , Unidades de Terapia Intensiva Neonatal/estatística & dados numéricos , Recém-Nascido Prematuro , Antifúngicos/uso terapêutico , Idade Gestacional
6.
Trends Plant Sci ; 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38616477

RESUMO

Recent research reveals that plant mRNAs, packaged in extracellular vesicles, are delivered into fungal pathogen cells. Remarkably, the transferred mRNAs are translated by fungal ribosomes, generating functional proteins that impede infection. These findings offer new promising avenues to modify cellular performance by rapid delivery of mRNAs in plant-derived vesicles.

7.
Am J Cancer Res ; 14(3): 934-958, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38590424

RESUMO

Pyroptosis, a gasdermin-mediated lytic cell death, is a new hotspot topic in cancer research, and induction of tumor pyroptosis has emerged as a new target in cancer management. Quercetin (Que), a natural substance, demonstrates promising anticancer action. However, further information is required to fully comprehend the function and mechanism of Que in pyroptosis in colon cancer. This study revealed the underlying mechanism of Que-induced pyroptosis in colon cancer in vitro and in vivo. Que inhibited colon cancer cell growth through gasdermin D (GSDMD)-mediated pyroptosis. Depletion of GSDMD, rather than gasdermin E (GSDME), reversed the cytotoxic effects of Que on colon cancer cells. Que treatment upregulated NIMA-related kinase 7 (NEK7) protein expression, thus facilitating the assembly of the NLRP3 inflammasome and cleavage of GSDMD. NEK7 silencing resulted in colon cancer cell growth in vitro and in vivo. Mechanistically, NEK7 depression restrained the activation of the NLRP3 inflammasome-GSDMD pathway, thus attenuating pyroptosis triggered by Que in colon cancer cells. Furthermore, lower NEK7 and NLRP3 expression levels indicated colon cancer progression. Our results unveiled a novel pattern of anti-colon cancer activity of Que, and activation of NEK7-mediated pyroptosis is potentially a promising therapeutic target for colon cancer, which provides novel experimental proof for the clinical application of Que.

9.
ACS Pharmacol Transl Sci ; 7(4): 1178-1190, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38633583

RESUMO

A promising alternative for cancer treatment involves targeted inhibition of the epigenetic regulator bromodomain-containing protein 4 (BRD4); however, available BRD4 inhibitors are constrained by their potency, oral bioavailability, and cytotoxicity. Herein, to overcome the drawback of the translational BRD4 inhibitors, we describe a novel BRD4-p53 inhibitor, SDU-071, which suppresses BRD4 interaction with the p53 tumor suppressor and its biological activity in MDA-MB-231 triple-negative breast cancer (TNBC) cells in vitro and in vivo. This novel small-molecule BRD4-p53 inhibitor suppresses cell proliferation, migration, and invasion by downregulating the expression of BRD4-targeted genes, such as c-Myc and Mucin 5AC, and inducing cell cycle arrest and apoptosis, as demonstrated in cultured MDA-MB-231 TNBC cells. Its antitumor activity is illustrated in an orthotopic mouse xenograft mammary tumor model. Overall, our results show that SDU-071 is a viable option for potentially treating TNBC as a new BRD4-p53 inhibitor.

10.
Bioorg Chem ; 147: 107357, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38604020

RESUMO

Turmeric (Curcuma longa), a typical source with recognized anti-inflammatory activity, is one such medicine-food homology source, yet its anti-inflammatory mechanisms and specific component combinations remain unclear. In this study, a net fishing method combining bio-affinity ultrafiltration and ultra-high performance liquid chromatography-mass spectrometry (AUF-LC/MS) was employed and 13 potential COX-2 inhibitors were screened out from C. longa. 5 of them (C1, 17, 20, 22, 25) were accurately isolated and identified. Initially, their IC50 values were measured (IC50 of C1, 17, 20, 22 and 25 is 55.08, 48.26, 29.13, 111.28 and 150.48 µM, respectively), and their downregulation of COX-2 under safe concentrations (400, 40, 120, 50 and 400 µM for C1, 17, 20, 22 and 25, respectively) was confirmed on RAW 264.7 cells. Further, in transgenic zebrafish (Danio rerio), significant anti-inflammatory activity at safe concentrations (15, 3, 1.5, 1.5 and 3 µg/mL for C1, 17, 20, 22 and 25, respectively) were observed in a dose-dependent manner. More importantly, molecular docking analysis further revealed the mode of interaction between them and the key active site residues of COX-2. This study screened out and verified unreported COX-2 ligands, potentially accelerating the discovery of new bioactive compounds in other functional foods.


Assuntos
Curcuma , Inibidores de Ciclo-Oxigenase 2 , Ciclo-Oxigenase 2 , Ultrafiltração , Peixe-Zebra , Animais , Curcuma/química , Inibidores de Ciclo-Oxigenase 2/farmacologia , Inibidores de Ciclo-Oxigenase 2/química , Camundongos , Ciclo-Oxigenase 2/metabolismo , Cromatografia Líquida de Alta Pressão , Células RAW 264.7 , Relação Dose-Resposta a Droga , Simulação de Acoplamento Molecular , Estrutura Molecular , Relação Estrutura-Atividade , Espectrometria de Massas , Humanos
11.
Spectrochim Acta A Mol Biomol Spectrosc ; 316: 124315, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38688213

RESUMO

In this study, Cu-doped NH2-MIL-88(Fe) metal-organic frameworks (MOF) were synthesized via a one-step method. Characterization techniques such as XPS, XRD and FTIR confirmed the successful incorporation of Cu2+ into NH2-MIL-88(Fe), naming this MOF as NH2-MIL-88(Fe)@Cu2+. This MOF was employed to develop a highly sensitive fluorescence sensing platform for detecting 3-nitro-L-tyrosine(3-NT). The potential for fluorescence resonance energy transfer (FRET) was suggested by the spectral overlap between NH2-MIL-88(Fe)@Cu2+'s emission and 3-NT's UV absorption. To augment this effect, cationic surfactant hexadecyltrimethylammonium bromide (CTAB), which self-assembled into nanostructured microspheres above its critical micelle concentration, was utilized. The charged surface of these microspheres, formed by the self-assembly of CTAB, is bound to the MOF surface through electrostatic force and simultaneously attracts 3-NT. Adjusting the solution's pH strengthened the interaction between NH2-MIL-88(Fe)@Cu2+ and 3-NT, thereby enhancing their mutual FRET interaction. Experimental results indicated that CTAB's introduction markedly improved the FRET effects, potentially converting a weak FRET into a strong one and enhancing detection sensitivity and accuracy. Under optimal conditions, NH2-MIL-88(Fe)@Cu2+ detected 3-NT within 0-30 µM range, with a limit of detection (LOD, S/N = 3) of 41.1 nM. Finally, the applicability of the sensor is tested by calibrating measurements in fetal bovine serum samples, achieving good performance in terms of sensitivity, selectivity and reproducibility. This research provides a method for efficient and highly sensitive 3-NT detection and insights into the FRET effect between MOF and target molecules, likely advancing related fields and inspiring future fluorescence sensor designs.

12.
Fitoterapia ; 175: 105969, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38643860

RESUMO

Ischemic stroke (IS) has attracted worldwide attention due to the high mortality and disability rate. Raw rhubarb (RR) is a traditional medicinal plant and whole-food that has been used in China for its various pharmacological activities, such as antioxidant and anti-inflammatory properties. Recent pharmacological research has shown the role of RR against IS, but its mechanism of action remains unclear, particularly in the context of the brain-gut axis. To address this gap in knowledge, the present study was conducted in the middle cerebral artery occlusion/reperfusion (MCAO/R) model with the aim of investigating the effects of RR on regulating the intestinal microbiota barrier and metabolism and thereby reducing inflammatory response so as to improve the IS. The results showed that pre-treatment of RR attenuated cerebral infarct area and inflammation response in MCAO rats. Furthermore, RR also improved intestinal barrier function, including the integrity and permeability of the intestinal barrier. Additionally, RR intervention significantly attenuated gut microbiota dysbiosis caused by ischemic stroke, especially the increased Firmicutes. Notably, the pseudo-germ-free (PGF) rats further demonstrated that the anti-stroke effect of RR might rely on intestinal microbiota. In addition, the UPLC/Q-Orbitrap-MS-Based metabolomics revealed the disrupted metabolic profiles caused by MCAO/R, and a total of 11 differential metabolites were modulated by RR administration, especially bile acids. Further correlation analysis and network pharmacology analysis also demonstrated a strong association between specific bacteria, such as Firmicutes and bile acids. In conclusion, our work demonstrated that RR could effectively ameliorate ischemic stroke by modulating the microbiota and metabolic disorders.


Assuntos
Eixo Encéfalo-Intestino , Microbioma Gastrointestinal , AVC Isquêmico , Ratos Sprague-Dawley , Rheum , Animais , Rheum/química , Microbioma Gastrointestinal/efeitos dos fármacos , AVC Isquêmico/tratamento farmacológico , Ratos , Masculino , Eixo Encéfalo-Intestino/efeitos dos fármacos , Metaboloma , Infarto da Artéria Cerebral Média , Disbiose , Modelos Animais de Doenças
13.
Adv Mater ; 36(24): e2311562, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38507724

RESUMO

A robust perovskite-buried interface is pivotal for achieving high-performance flexible indoor photovoltaics as it significantly influences charge transport and extraction efficiency. Herein, a molecular bridge strategy is introduced utilizing sodium 2-cyanoacetate (SZC) additive at the perovskite-buried interface to simultaneously achieve in situ passivation of interfacial defects and bottom-up crystallization modulation, resulting in high-performance flexible indoor photovoltaic applications. Supported by both theoretical calculations and experimental evidences, it illustrates how SZCs serve as molecular bridges, establishing robust bonds between SnO2 transport layer and perovskite, mitigating oxygen vacancy defects and under-coordinated Pb defects at interface during flexible fabrication. This, in turn, enhances interfacial energy level alignment and facilitates efficient carrier transport. Moreover, this in situ investigation of perovskite crystallization dynamics reveals bottom-up crystallization modulation, extending perovskite growth at the buried interface and influencing subsequent surface recrystallization. This results in larger crystalline grains and improved lattice strain of the perovskite during flexible fabrication. Finally, the optimized flexible solar cells achieve an impressive efficiency exceeding 41% at 1000 lux, with a fill factor as high as 84.32%. The concept of the molecular bridge represents a significant advancement in enhancing the performance of perovskite-based flexible indoor photovoltaics for the upcoming era of Internet of Things (IoT).

14.
Environ Toxicol ; 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38517198

RESUMO

BACKGROUND: Non-small cell lung cancer (NSCLC) is a highly malignant tumor with limited effective treatment options. This study aimed to investigate the regulatory mechanism of Glabrene on NSCLC through its interaction with FGFR3. METHODS: HCC827 cells were implanted into nude mice and treated with Glabrene. Tumor volume was monitored at 0, 3, 6, and 9 days after medical treatment. Tissue analysis included Hematoxylin and Eosin (HE) and Terminal deoxynucleotidyl transferase (TdT)-mediated dUTP Nick End Labeling (TUNEL) staining, as well as immunohistochemistry for Ki67, ERK1/2, and p-ERK1/2 expression. Cell viability was determined with the CCK8 method. We utilized immunofluorescence techniques to observe apoptosis, as well as the levels of E-cadherin and Vimentin expression. Cellular proliferation was determined via plate cloning assay and cellular mobility was determined via scratch assay. Cellular invasion ability was assessed via a transwell assay. mRNA and protein levels of FGFR3, MMP1, MMP9, vimentin, E-cadherin, ERK1/2, and p-ERK1/2 were detected via qPCR and Western blot. IGF-1, VEGF, and Estradiol (E2) levels were measured through Enzyme linked immunosorbent assay (ELISA). RESULTS: This study verified that Glabrene was capable of suppressing tumor growth in NSCLC mice, reversing tumor tissue's pathological morphology, attenuating the capacities of cancerous cells' proliferation, migration, and invasion, and leading to apoptosis. Besides, Glabrene could reduce the FGFR3 expression in HCC827 cells. Over-expression of FGFR3 promotes the proliferation of HCC827 cells, increase both contents of IGF-1, VEGF, and E2, and expressions of MMP1, MMP9, vimentin, and p-ERK1/2, while Glabrene inhibited FGFR3. Glabrene, and inhibition of FGFR3 expression were capable of decreasing FGFR3, MMP1, MMP9, vimentin, and p-ERK1/2 expression, as well as contents of IGF-1, VEGF, and E2 in model mice and HCC827 cells, and promoting the expression of E-cadherin. CONCLUSION: Glabrene has the potential as a therapeutic agent for NSCLC by reducing cancer invasion and migration through the inhibition of ERK1/2 phosphorylation and suppression of epithelial-mesenchymal transition (EMT).

15.
ACS Appl Mater Interfaces ; 16(13): 16300-16308, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38513050

RESUMO

Halide perovskites are emerging as promising materials for X-ray detection owing to their compatibility with flexible fabrication, cost-effective solution processing, and exceptional carrier transport behaviors. However, the challenge of removing lead from high-performing perovskites, crucial for wearable electronics, while retaining their superior performance, persists. Here, we present for the first time a highly sensitive and robust flexible X-ray detector utilizing a biocompatible, metal-free perovskite, MDABCO-NH4I3 (MDABCO = methyl-N'-diazabicyclo[2.2.2]octonium). This wearable X-ray detector, based on a MDABCO-NH4I3 thick membrane, exhibits remarkable properties including a large resistivity of 1.13 × 1011 Ω cm, a high mobility-lifetime product (µ-τ) of 1.64 × 10-4 cm2 V-1, and spin Seebeck effect coefficient of 1.9 nV K-1. We achieve a high sensitivity of 6521.6 ± 700 µC Gyair-1 cm-2 and a low detection limit of 77 nGyair s-1, ranking among the highest for biocompatible X-ray detectors. Additionally, the device exhibits effective X-ray imaging at a low dose rate of 1.87 µGyair s-1, which is approximately one-third of the dose rate used in regular medical diagnostics. Crucially, both the MDABCO-NH4I3 thick membrane and the device showcase excellent mechanical robustness. These attributes render the flexible MDABCO-NH4I3 thick membranes highly competitive for next-generation, high-performance, wearable X-ray detection applications.

16.
Emerg Microbes Infect ; 13(1): 2332665, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38517731

RESUMO

With the large number of atypical cases in the mpox outbreak, which was classified as a global health emergency by the World Health Organization (WHO) on 23 July 2022, rapid diagnosis of mpox and diseases with similar symptoms to mpox such as chickenpox and respiratory infectious diseases in the early stages of viral infection is key to controlling the spread of the outbreak. In this study, antibodies against the monkeypox virus A29L protein were efficiently and rapidly identified by combining rapid mRNA immunization with high-throughput sequencing of individual B cells. We obtained eight antibodies with a high affinity for A29L validated by ELISA, which were was used as the basis for developing an ultrasensitive fluorescent immunochromatographic assay based on multilayer quantum dot nanobeads (SiTQD-ICA). The SiTQD-ICA biosensor utilizing M53 and M78 antibodies showed high sensitivity and stability of detection: A29L was detected within 20 min, with a minimum detection limit of 5 pg/mL. A specificity test showed that the method was non-cross-reactive with chickenpox or common respiratory pathogens and can be used for early and rapid diagnosis of monkeypox virus infection by antigen detection. This antibody identification method can also be used for rapid acquisition of monoclonal antibodies in early outbreaks of other infectious diseases for various studies.


Assuntos
Varicela , Doenças Transmissíveis , Mpox , Humanos , Monkeypox virus/genética , Mpox/diagnóstico , Imunização , Anticorpos Monoclonais , Sequenciamento de Nucleotídeos em Larga Escala , RNA Mensageiro
17.
Zhongguo Zhong Yao Za Zhi ; 49(1): 100-109, 2024 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-38403343

RESUMO

Hawthorn has the efficacy of eliminating turbidity and lowering the blood lipid level, and it is used for treating hyperlipidemia in clinic. However, the bioactive components of hawthorn are still unclear. In this study, the spectrum-effect relationship was employed to screen the bioactive components of hawthorn in the treatment of hyperlipidemia, and then the bioactive components screened out were verified in vivo. Furthermore, the quality control method for hawthorn was developed based on liquid chromatography-mass spectrometry(LC-MS). The hyperlipidemia model of rats was built, and different polar fractions of hawthorn extracts and their combinations were administrated by gavage. The effects of different hawthorn extract fractions on the total cholesterol(TC), triglycerides(TG), and low-density lipoprotein-cholesterol(LDL-C) in the serum of model rats were studied. The orthogonal projections to latent structures(OPLS) algorithm was used to establish the spectrum-effect relationship model between the 24 chemical components of hawthorn and the pharmacodynamic indexes, and the bioactive components were screened out and verified in vivo. Finally, 10 chemical components of hawthorn, including citric acid and quinic acid, were selected to establish the method for evaluating hawthorn quality based on LC-MS. The results showed that different polar fractions of hawthorn extracts and their combinations regulated the TG, TC, and LDL-C levels in the serum of the model rats. The bioactive components of hawthorn screened by the OPLS model were vitexin-4″-O-glucoside, vitexin-2″-O-rhamnoside, rutin, citric acid, malic acid, and quinic acid. The 10 chemical components of hawthorn, i.e., citric acid, quinic acid, rutin, gallic acid, vitexin-4″-O-glucoside, vitexin-2″-O-rhamnoside, malic acid, vanillic acid, neochlorogenic acid, and fumaric acid were determined, with the average content of 38, 11, 0.018, 0.009 5, 0.037, 0.017, 8.1, 0.009 5, 0.073, and 0.98 mg·g~(-1), respectively. This study provided a scientific basis for elucidating the material basis of hawthorn in treating hyperlipidemia and developed a content determination method for evaluating the quality of hawthorn.


Assuntos
Crataegus , Hiperlipidemias , Ratos , Animais , Crataegus/química , LDL-Colesterol , Ácido Quínico , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Rutina/química , Lipídeos , Hiperlipidemias/tratamento farmacológico , Controle de Qualidade , Glucosídeos , Ácido Cítrico
18.
Front Pharmacol ; 15: 1358640, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38384290

RESUMO

Moutan Cortex (MC) has been used in treating inflammation-associated diseases and conditions in China and other Southeast Asian countries. However, the active components of its anti-inflammatory effect are still unclear. The study aimed to screen and identify potential cyclooxygenase-2 (COX-2) inhibitors in MC extract. The effect of MC on COX-2 was determined in vitro by COX-2 inhibitory assays, followed by bio-affinity ultrafiltration in combination with ultra-performance liquid chromatography-mass spectrometry (BAUF-UPLC-MS). To verify the reliability of the constructed approach, celecoxib was applied as the positive control, in contrast to adenosine which served as the negative control in this study. The bioactivity of the MC components was validated in vitro by COX-2 inhibitor assay and RAW264.7 cells. Their in vivo anti-inflammatory activity was also evaluated using LPS-induced zebrafish inflammation models. Finally, molecular docking was hired to further explore the internal interactions between the components and COX-2 residues. The MC extract showed an evident COX-2-inhibitory effect in a concentration-dependent manner. A total of 11 potential COX-2 inhibitors were eventually identified in MC extract. The COX-2 inhibitory activity of five components, namely, gallic acid (GA), methyl gallate (MG), galloylpaeoniflorin (GP), 1,2,3,6-Tetra-O-galloyl-ß-D-glucose (TGG), and 1,2,3,4,6-Penta-O-galloyl-ß-D-glucopyranose (PGG), were validated through both in vitro assays and experiments using zebrafish models. Besides, the molecular docking analysis revealed that the potential inhibitors in MC could effectively inhibit COX-2 by interacting with specific residues, similar to the mechanism of action exhibited by celecoxib. In conclusion, BAUF-UPLC-MS combining the molecular docking is an efficient approach to discover enzyme inhibitors from traditional herbs and understand the mechanism of action.

19.
Front Bioeng Biotechnol ; 12: 1334695, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38333082

RESUMO

Introduction: ß-glucosidase is one class of pivotal glycosylhydrolase enzyme that can cleavage glucosidic bonds and transfer glycosyl group between the oxygen nucleophiles. Lactobacillus is the most abundant bacteria in the human gut. Identification and characterization of new ß-glucosidases from Lactobacillus are meaningful for food or drug industry. Method: Herein, an acid-adapted ß-glucosidase (LpBgla) was cloned and characterized from Lactobacillus paracasei. And the insight acid-adapted mechanism of LpBgla was investigated using molecular dynamics simulations. Results and Discussion: The recombinant LpBgla exhibited maximal activity at temperature of 30°C and pH 5.5, and the enzymatic activity was inhibited by Cu2+, Mn2+, Zn2+, Fe2+, Fe3+ and EDTA. The LpBgla showed a more stable structure, wider substrate-binding pocket and channel aisle, more hydrogen bonds and stronger molecular interaction with the substrate at pH 5.5 than pH 7.5. Five residues including Asp45, Leu60, Arg120, Lys153 and Arg164 might play a critical role in the acid-adapted mechanism of LpBgla. Moreover, LpBgla showed a broad substrate specificity and potential application in the bioconversion of glycosides, especially towards the arbutin. Our study greatly benefits for the development novel ß-glucosidases from Lactobacillus, and for the biosynthesis of aglycones.

20.
Food Chem ; 441: 138381, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38218150

RESUMO

The accumulation of the deoxynivalenol (DON) in the human body poses a significant health risk that is often overlooked, and we urgently need an ultra-sensitive rapid detection platform. Due to the porosity of NH2-MIL-101@MoS2, an increased loading of toluidine blue (TB) serves to create a signal reference. Cobalt@carbon (CoC) derived from metal organic frameworks was combined with NH2-MIL-101(NH2-MIL-101@CoC) to form an enzyme-free Nanoprobe (Apt-pro) with significant catalytic properties. The ratio (IBQ /ITB) was changed by varying the electrochemical signal of benzoquinone (BQ) (IBQ) and the amount of TB deposition (ITB). This aptasensor was successfully applied to detect DON in malt and peach seed, which exhibited a great linear range from 1 fg/mL to 10 ng/mL and low detection limit of 0.31 fg/mL for DON.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Nanopartículas Metálicas , Estruturas Metalorgânicas , Tricotecenos , Humanos , Estruturas Metalorgânicas/química , Peroxidase/química , Molibdênio , Corantes , Limite de Detecção , Técnicas Eletroquímicas , Aptâmeros de Nucleotídeos/química , Nanopartículas Metálicas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA