RESUMO
Trihalomethanes (THMs) are the most common disinfection by-products in swimming pools; however, they exhibit strong cytotoxicity and genotoxicity, posing health risks. Children are more vulnerable to swimming-related health risks than adults; therefore, a rapid and accurate assessment of internal THM exposure in children swimmers is important for health risk assessment. For internal exposure measurement, collecting exhaled breath samples is more convenient, non-invasive, and easier to perform than collecting blood and urine. Therefore, this study aimed to develop a rapid, accurate, and reproducible method for determining THMs in children swimmers' exhaled breath using solid-phase microextraction (SPME)-gas chromatography-mass spectrometry (GC-MS). The factors influencing the pretreatment procedure, including selecting SPME fibers, extraction temperature, and time, were systematically evaluated. Under the optimized conditions, the instrumental linearity range was 1-200 ng L-1 with correlation coefficients >0.998. The limit of detection for this method was 0.3-0.5 ng L-1. The recovery values ranged between 76.87 and 111.49%. Detecting THMs at three different calibration levels using this method had an intra-day precision of 1.31-5.07%, while the inter-day precision was 1.59-11.10% (n = 6). Additionally, the SPME-GC-MS method was used to detect the concentration of THMs in children swimmers' exhaled breath before and after swimming. Trichloromethane was the most abundant THM in the air around the pool and children's exhaled breath, and THM concentrations in the children swimmers' exhaled breath increased significantly after swimming. This study found no significant differences in the concentrations of THMs in the children swimmers' exhaled breath with different swimming durations or frequencies, which may be a result of the unrepresentative sample population and small sample size, and more in-depth and comprehensive studies are needed to verify this conclusion.
RESUMO
Although the effects of traditional perfluorinated and polyfluorinated substances (PFASs) exposure have been extensively explored, research on novel PFASs remains limited, and there is a lack of data regarding their placental transfer and fetal impact. Herein, we aimed to examine maternal and fetal PFASs exposure levels, placental transfer efficiency (TTE), and the consequences of prenatal exposure on birth weight. The study included 214 mother-child pairs recruited in Wuxi birth cohort from 2019 to 2021. Twenty-three PFASs were quantified in maternal serum during the second trimester and umbilical serum during delivery. Median concentrations of ∑23PFASs in maternal and cord sera were 9.34 and 6.88 ng/mL, respectively. The novel alternatives exhibited elevated levels of maternal and fetal exposure, such as perfluorovaleric acid (PFPeA, 2.00 ng/mL and 1.66 ng/mL, respectively) and perfluorohexane sulfonate (PFHxS, 1.77 and 1.14 ng/mL, respectively). With increasing carbon chain length, the TTE of perfluorocarbonic acid (PFCAs) displayed a pattern of initially decreasing before subsequently increasing, with novel alternatives exhibiting a relatively high TTE. Multiple linear regression showed that exposure to perfluorobutane sulfonate (PFBS) and PFPeA in cord serum positively correlated with the birth weight of female infants (ß = 231.04 g, 95% confidence interval [CI]: 21.73-440.36; ß = 121.26 g, 95% CI: 29.51-213.00). No nonlinear relationship was observed between cord serum PFASs and birth weight. The weighted quantile sum (WQS) regression analysis has reaffirmed that PFPeA and PFBS were predominant contributors to the positive correlation observed between the mixture of PFASs and birth weight. Our findings suggest that novel PFASs may exhibit a heightened susceptibility for transplacental transfer and that exposure to PFBS and PFPeA during pregnancy could be linked to increased birth weight.
RESUMO
Background: The biochemical and genetic characteristics of four very-long-chain acyl-coenzyme A dehydrogenase deficiency (VLCADD) patients, clarifying their pathogenic genetic factors and evaluating the application value of genetic diagnosis in the early diagnosis of VLCADD, are reported and discussed in this article. Methods: Patients underwent blood tandem mass spectrometry (MS/MS), urine gas chromatography (GC/MS), and high-throughput sequencing technology. New variants were analyzed for pathogenicity using bioinformatics software. Swiss-PdbViewer software was used to predict the effect of variants on the structure of the very-long-chain acyl-CoA dehydrogenase (VLCAD) protein. Result: A total of four VLCADD patients were diagnosed. They revealed elevated levels of C14, C14:1, C14:2, C14:1/C2, C14:1/C10, and C14:1/C12:1. Two patients were early-onset neonatal cases and died during infancy and the neonatal period, respectively. Seven kinds of variants were detected, including four novel variants. Bioinformatics software revealed that the variants were harmful, and the Swiss-PdbViewer results suggest that variation affects protein conformation. Conclusion: This study identified four novel ACADVL gene variants. These findings contribute to the understanding of the genetic basis and pathogenesis of VLCADD. Meanwhile, the study enriches the genetic mutation spectrum and the correlation between genotypes and phenotypes of VLCADD, indicating that genetic diagnosis plays an essential role in the early diagnosis and treatment of VLCADD.
RESUMO
OBJECTIVE: To determine the association between maternal blood glucose patterns throughout pregnancy and neonatal amino acids and acylcarnitines. RESEARCH DESIGN AND METHODS: We conducted a prospective cohort study involving 11,457 singleton pregnant women without preexisting diabetes from the Beijing Birth Cohort Study, along with their neonates born between July 2021 and October 2022 in Beijing, China. Distinct maternal glucose trajectories were identified using a latent class model based on blood glucose levels across the three trimesters, and their association with neonatal circulating metabolites, including 11 amino acids and 33 acylcarnitines, was examined, adjusting for potential confounding factors. RESULTS: Three distinct groups of maternal glucose trajectories were identified: consistent normoglycemia (n = 8,648), mid-to-late gestational hyperglycemia (n = 2,540), and early-onset hyperglycemia (n = 269). Mid-to-late gestational hyperglycemia was associated with decreased levels of amino acids (alanine, arginine, ornithine, and proline) involved in the arginine and proline metabolism and urea cycle pathway, as well as increased levels of C4DC+C5-OH and decreased level of C6DC and C10:1. Early-onset hyperglycemia was associated with elevated levels of free acylcarnitine and C4DC+C5-OH and a decreased level of C10:1, involved in the fatty acid oxidation pathway. However, these associations were primarily observed in male neonates rather than in female neonates. CONCLUSIONS: Our findings revealed a significant link between maternal glucose trajectories throughout pregnancy and neonatal arginine and proline metabolism, urea cycle pathway, and fatty acid oxidation pathway. These results highlight the importance of maintaining optimal blood glucose levels throughout pregnancy to promote healthy neonatal metabolic outcomes.
RESUMO
The development of new electromagnetic absorbing materials is the main strategy to address electromagnetic radiation. Once traditional electromagnetic wave-absorbing materials are prepared, it is difficult to dynamically change their electromagnetic wave-absorbing performance. Facing the complexity of the information age and the rapid development of modern radar, it is significant to develop intelligent modulation of electromagnetic wave-absorbing materials. Here, CNTs/VO2/ANF composite aerogels with dynamic frequency tunability and switchable absorption on/off were synthesized. Based on the phase change behavior of VO2, the degree of polarization and interfacial effects of multiple heterogeneous interfaces between VO2 and CNTs and aramid nanofibers (ANFs) were modulated at different temperatures. With the increase in temperature (from 25 to 200 °C), the maximum absorption frequency of the frequency tunable aerogel is modulated from 12.24 to 8.56 GHz in the X-band, and the absorption intensity remains stable. The maximum effective switching bandwidth (ΔEAB) of the wave-absorbing switchable aerogel is 3.70 GHz. This study provides insights into intelligent electromagnetic wave absorption performance and paves the way for temperature-driven application of intelligent modulation of electromagnetic absorbers.
Assuntos
Tronco Encefálico , COVID-19 , Humanos , COVID-19/complicações , Tronco Encefálico/diagnóstico por imagem , Tronco Encefálico/patologia , Medula Espinal/diagnóstico por imagem , Medula Espinal/irrigação sanguínea , SARS-CoV-2 , Masculino , Infarto/etiologia , Infarto/diagnóstico por imagem , Infartos do Tronco Encefálico/etiologia , Infartos do Tronco Encefálico/diagnóstico por imagem , Pessoa de Meia-Idade , Imageamento por Ressonância MagnéticaRESUMO
PURPOSE: Cerebral edema (CE) is the main secondary injury following traumatic brain injury (TBI) caused by road traffic accidents (RTAs). It is challenging to be predicted timely. In this study, we aimed to develop a prediction model for CE by identifying its risk factors and comparing the timing of edema occurrence in TBI patients with varying levels of injuries. METHODS: This case-control study included 218 patients with TBI caused by RTAs. The cohort was divided into CE and non-CE groups, according to CT results within 7 days. Demographic data, imaging data, and clinical data were collected and analyzed. Quantitative variables that follow normal distribution were presented as mean ± standard deviation, those that do not follow normal distribution were presented as median (Q1, Q3). Categorical variables were expressed as percentages. The Chi-square test and logistic regression analysis were used to identify risk factors for CE. Logistic curve fitting was performed to predict the time to secondary CE in TBI patients with different levels of injuries. The efficacy of the model was evaluated using the receiver operator characteristic curve. RESULTS: According to the study, almost half (47.3%) of the patients were found to have CE. The risk factors associated with CE were bilateral frontal lobe contusion, unilateral frontal lobe contusion, cerebral contusion, subarachnoid hemorrhage, and abbreviated injury scale (AIS). The odds ratio values for these factors were 7.27 (95% confidence interval (CI): 2.08 - 25.42, p = 0.002), 2.85 (95% CI: 1.11 - 7.31, p = 0.030), 2.62 (95% CI: 1.12 - 6.13, p = 0.027), 2.44 (95% CI: 1.25 - 4.76, p = 0.009), and 1.5 (95% CI: 1.10 - 2.04, p = 0.009), respectively. We also observed that patients with mild/moderate TBI (AIS ≤ 3) had a 50% probability of developing CE 19.7 h after injury (χ2 = 13.82, adjusted R2 = 0.51), while patients with severe TBI (AIS > 3) developed CE after 12.5 h (χ2 = 18.48, adjusted R2 = 0.54). Finally, we conducted a receiver operator characteristic curve analysis of CE time, which showed an area under the curve of 0.744 and 0.672 for severe and mild/moderate TBI, respectively. CONCLUSION: Our study found that the onset of CE in individuals with TBI resulting from RTAs was correlated with the severity of the injury. Specifically, those with more severe injuries experienced an earlier onset of CE. These findings suggest that there is a critical time window for clinical intervention in cases of CE secondary to TBI.
Assuntos
Acidentes de Trânsito , Edema Encefálico , Lesões Encefálicas Traumáticas , Humanos , Lesões Encefálicas Traumáticas/complicações , Fatores de Risco , Masculino , Feminino , Estudos de Casos e Controles , Edema Encefálico/etiologia , Edema Encefálico/diagnóstico por imagem , Adulto , Pessoa de Meia-Idade , Modelos LogísticosRESUMO
Encapsulating nanomaterials in carbon is one of the main ways to increase the cathode stability, but it is difficult to simultaneously optimize the rate capacity and enhance durability derived from the insufficient ion transport channels and deficient ion adsorption sites that constipate the ion transport and pseudocapacitive reaction. Herein, we develop the ligand-confined growth strategy to encapsulate the nano-Na3V2(PO4)3 cathode material in various carbon channels (microporous, mesoporous, and macroporous) to discriminate the optimal carbon channels for synchronously improving rate capacity and holding the high-rate cycle stability. Benefiting from the unobstructed ion/charge transport channels and flexible maskant created by the interconnected mesoporous carbon channels, the prepared Na3V2(PO4)3 nanoparticles confined in mesoporous carbon channel (Mes-NVP/C) achieve a discharge-specific capacity of 70 mAh g-1 even at the ultrahigh rate of 100 C, higher than those of the Na3V2(PO4)3 nanoparticles confined in microporous and macroporous carbon channel (Micr-NVP/C and Macr-NVP/C), respectively. Significantly, the capacity retention rate of Mes-NVP/C after 5000 cycles at 20 C is as high as 90.48%, exceeding most of the reported work. These findings hold great promise for traditional cathode materials to synergistically realize fast charging ability and long cycle life.
RESUMO
OBJECTIVES: To investigate if spatial recurrence pattern is associated with patient prognosis, and whether MRI vascular habitats can predict spatial pattern. METHODS: In this retrospective study, 69 patients with locally recurrent high-grade gliomas (HGGs) were included. The cohort was divided into intra-resection cavity recurrence (ICR) and extra-resection cavity recurrence (ECR) patterns, according to the distance between the location of the recurrent tumor and the resection cavity or surgical region. Four vascular habitats, high angiogenic tumor, low angiogenic tumor, infiltrated peripheral edema, and vasogenic peripheral edema, were segmented and vascular heterogeneity parameters were analyzed. The survival and diagnostic performance under different spatial recurrence patterns were analyzed by Kaplan-Meier and ROC. A nomogram model was constructed by regression analysis and validated by bootstrapping technique. RESULTS: Progression-free survival (PFS) and overall survival (OS) were longer for ICR (n = 32) than those for ECR (n = 37) (median PFS: 8 vs. 5 months, median OS: 17 vs. 13 months, p < 0.05). MRI vascular habitat analyses showed ECR had higher median relative cerebral blood volume (rCBVmedian) at each habitat than ICR (all p < 0.01). The rCBVmedian at IPE had good diagnostic performance (AUC: 0.727, 95%CI: 0.607, 0.828). The AUC of the nomogram based on MRI vascular habitats and clinical factors was 0.834 (95%CI: 0.726, 0.913) and was confirmed as 0.833 (95%CI: 0.830, 0.836) by bootstrapping validation. CONCLUSIONS: The spatial pattern of locally recurrent HGGs is associated with prognosis. MRI vascular heterogeneity parameter could be used as a non-invasive imaging marker to predict spatial recurrence pattern. CLINICAL RELEVANCE STATEMENT: Vascular heterogeneity parameters based on MRI vascular habitat analyses can non-invasively predict the spatial patterns of locally recurrent high-grade gliomas, providing a new diagnostic basis for clinicians to develop the extent of surgical resection and postoperative radiotherapy planning. KEY POINTS: ⢠Intra-resection cavity pattern was associated with longer progression-free survival and overall survival in locally recurrent high-grade gliomas. ⢠Higher vascular heterogeneities in extra-resection cavity recurrence than in intra-resection cavity recurrence and the vascular heterogeneity parameters had good diagnostic performance in discriminating spatial recurrence pattern. ⢠A nomogram model based on MRI vascular habitats and clinical factors had good performance in predicting spatial recurrence pattern.
Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/cirurgia , Estudos Retrospectivos , Glioma/diagnóstico por imagem , Glioma/cirurgia , Imageamento por Ressonância Magnética/métodos , EdemaRESUMO
Peripheral T-cell lymphoma (PTCL) is a highly heterogeneous group of mature T-cell malignancies. The efficacy of current first-line treatment is dismal, and novel agents are urgently needed to improve patient outcomes. A close association between the cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway and tumor promotion exists, revealing prospective therapeutic targets. This study, investigates the role of the cGAS-STING pathway and its underlying mechanisms in PTCL progression. Single-cell RNA sequencing showes that the cGAS-STING pathway is highly expressed and closely associated with PTCL proliferation. cGAS inhibition suppresses tumor growth and impaires DNA damage repair. Moreover, Cdc2-like kinase 1 (CLK1) is critical for residual tumor cell survival after treatment with cGAS inhibitors, and CLK1 suppression enhances sensitivity to cGAS inhibitors. Single-cell dynamic transcriptomic analysis indicates reduced proliferation-associated nascent RNAs as the underlying mechanism. In first-line therapy, chemotherapy-triggered DNA damage activates the cGAS-STING pathway, and cGAS inhibitors can synergize with chemotherapeutic agents to kill tumors. The cGAS-STING pathway is oncogenic in PTCL, whereas targeting cGAS suppresses tumor growth, and CLK1 may be a sensitivity indicator for cGAS inhibitors. These findings provide a theoretical foundation for optimizing therapeutic strategies for PTCL, especially in patients with relapsed/refractory disease.
Assuntos
Linfoma de Células T Periférico , Humanos , Nucleotidiltransferases , Sobrevivência Celular , Transformação Celular Neoplásica , Dano ao DNARESUMO
[This corrects the article DOI: 10.7150/thno.44427.].
RESUMO
Bromochloroacetamide (BCAcAm) is the main haloacetamide (HAcAm) detected in drinking water in different regions and exhibits strong cytotoxicity and genotoxicity. However, there is no appropriate method for detecting BCAcAm in urine or other biological samples, and thus, the internal exposure level in the population cannot be accurately assessed. In this study, a gas chromatography-electron capture detector (GC-ECD) was combined with salting-out assisted dispersive liquid-liquid microextraction (SA-DLLME) to develop a rapid and robust method for BCAcAm detection in urine of mice continuously exposed to BCAcAm. The factors influencing the pre-treatment procedure, including the type and volume of extraction and disperser solvents, extraction and standing time, and the amount of salt, were evaluated systematically. Under the optimised conditions, the analyte achieved good linearity in the spiked concentration range of 1.00-400.00 µg L-1, and the correlation coefficient was higher than 0.999. The limit of detection (LOD) and the limit of quantification (LOQ) were 0.17 µg L-1 and 0.50 µg L-1, respectively. The recoveries ranged from 84.20% to 92.17%. The detection of BCAcAm at three different calibration levels using this method afforded an intra-day precision of 1.95-4.29%, while the inter-day precision range was 5.54-9.82% (n = 6). This method has been successfully applied to monitor the concentration of BCAcAm in mouse urine in toxicity experiments and can provide technical support for assessing human internal exposure levels and health risks in later studies.
Assuntos
Microextração em Fase Líquida , Humanos , Camundongos , Animais , Microextração em Fase Líquida/métodos , Solventes/química , Cromatografia Gasosa/métodos , Limite de Detecção , Cloreto de SódioRESUMO
BACKGROUND: The intratumoral heterogeneity of high-grade gliomas (HGGs) is associated with isocitrate dehydrogenase (IDH) status and prognosis, which can be established by quantitative radioanalysis of spatial tumor habitats. Therefore, we designed a framework for tackling tumors based on spatial metabolism using the hemodynamic tissue signature (HTS), focusing on metabolic changes in tumor habitat to predict IDH status and assess prognosis in patients with HGG. METHODS: Preoperative data for 121 patients with HGG with subsequent histologic confirmation of HGG were prospectively collected (January 2016 to December 2020). The HTS was mapped from the image data, chemical shift imaging voxels were selected from the HTS habitat as the region of interest, and the metabolic ratio of the HTS was calculated using weighted least square method fitting. The metabolic rate of the tumor enhancement area was used as a control to analyze the efficacy of each HTS metabolic rate in predicting the IDH status and prognosis of HGG. RESULTS: Total choline (Cho)/total creatine and Cho/N-acetyl-aspartate showed significant differences between IDH-wildtype and IDH-mutant in high- and low-angiogenic enhanced tumor sites (P < 0.05); Cho/total creatine was an independent risk factor for prognosis of HGG patients in high-angiogenic enhanced tumor habitats, with significant differences in survival time between groups (P < 0.05). The metabolic ratio in the tumor enhanced area could not predict IDH status or evaluate prognosis. CONCLUSIONS: Spectral analysis based on hemodynamic habitat imaging can clearly distinguish IDH mutations and the prognosis assessment is more accurate, rendering it superior to traditional spectral analysis in tumor enhancement areas.
Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Creatina , Glioma/diagnóstico por imagem , Glioma/genética , Glioma/metabolismo , Prognóstico , Imageamento por Ressonância Magnética/métodos , Mutação , HemodinâmicaRESUMO
Background: Maple syrup urine disease (MSUD) is a rare autosomal recessive amino acid metabolic disease. This study is to identify the pathogenic genetic factors of six cases of MUSD and evaluates the application value of high-throughput sequencing technology in the early diagnosis of MUSD. Methods: Clinical examination was carried out for patients and used blood tandem mass spectrometry (MS/MS), urine gas chromatography-mass spectrometry (GC/MS), and the application of high-throughput sequencing technology for detection. Validate candidate mutations by polymerase chain reaction (PCR)-Sanger sequencing technology. Bioinformatics software analyzed the variants' pathogenicity. Using Swiss PDB Viewer software to predict the effect of mutation on the structure of BCKDHA and BCKDHB proteins. Result: A total of six MSUD patients were diagnosed, including four males and two females. Nine variants were found in three genes of six MSUD families by high-throughput sequencing, including four missense mutations: c.659C>T(p.A220V), c.818C>T(p.T273I), c.1134C>G(p.D378E), and c.1006G>A(p.G336S); two non-sense mutations: c.1291C>T(p.R431*) and c.331C>T(p.R111*); three deletion mutations: c.550delT (p.S184Pfs*46), c.718delC (p.P240Lfs*14), and c.795delG (p.N266Tfs*64). Sanger sequencing's results were consistent with the high-throughput sequencing. The bioinformatics software revealed that the mutations were harmful, and the prediction results of Swiss PDB Viewer suggest that variation affects protein conformation. Conclusion: This study identified nine pathogenic variants in the BCKDHA, BCKDHB, and DBT genes in six MSUD families, including two novel pathogenic variants in the BCKDHB gene, which enriched the genetic mutational spectrum of the disease. High-throughput sequencing is essential for the MSUD's differential diagnosis, early treatment, and prenatal diagnosis.
RESUMO
BACKGROUND: The currently preferred minimally invasive approaches have substantially improved outcomes of infected walled-off pancreatic necrosis (iWON). However, iWON with deep extension (iWONde) still poses a tricky challenge for sufficient necrosis evacuation by one stand-alone approach, often requiring repeated interventions. The aim of this study was to assess the effectiveness and safety of a minimal-access video-assisted retroperitoneal and/or transperitoneal debridement (hereafter called VARTD) in the management of iWONde. METHODS: Patients who had developed an iWONde were recruited to receive the VARTD in this prospective single-arm study. The primary efficacy endpoint was clinical improvement up to day 28 after the VARTD, defined as a ≥ 75% reduction in size of necrotic collection (in any axis) on CT and clinical resolution of sepsis or organ dysfunction. The primary safety endpoint was a composite of major complications or death during follow-up. Six-month postdischarge follow-up was available. RESULTS: Between July 18, 2018, and November 12, 2020, we screened 95 patients with necrotizing pancreatitis; of these, 21 iWONde patients (mean [SD] age, 42.9 [11.7] years; 10 [48%] women) were finally enrolled. The primary efficacy endpoint was achieved by most participants (14/21, 67%). No participants required repeated interventions. The primary safety endpoint occurred in six patients (29%). Except one in-hospital death attributable to repeated intra-abdominal hemorrhage, others were discharged without any major complication. CONCLUSIONS: The VARTD approach appears to have a reasonable efficacy with acceptable complication rates and thus might be an option for improving clinical management of iWONde. TRIAL REGISTRATION: This study is registered with Chinese Clinical Trial Registry (chictr.org.cn number, ChiCTR1800016950).
Assuntos
Pancreatite Necrosante Aguda , Adulto , Feminino , Humanos , Masculino , Assistência ao Convalescente , Desbridamento , Drenagem , Mortalidade Hospitalar , Pancreatite Necrosante Aguda/cirurgia , Alta do Paciente , Estudos Prospectivos , Resultado do Tratamento , Cirurgia VídeoassistidaRESUMO
S-adenosyl-L-methionine (SAM), used in diverse pharmaceutical applications, was biosynthesized from L-methionine (L-met) and adenosine triphosphate (ATP). This study aims to increase the accumulation of SAM in Saccharomyces cerevisiae by promoting ATP availability. Strain ΔSOD1 was obtained from the parent strain WT15-33 (CCTCC M 2021915) by deleting gene sod1, which improved the supply of ATP. The SAM content in strain ΔSOD1 exhibited a 22.3% improvement compared to the parent strain, which reached 93.6 mg g-1. The transformation of NADH (reduced nicotinamide adenine dinucleotide) and the relative expression of ATPase essential genes were investigated, respectively. The results showed that the lack of gene sod1 benefited the generation of ATP, which positively regulated the synthesis of SAM. Besides that, the production of SAM was further enhanced by improving substrate assimilation. With the infusion of 1.44 g L-1L-met and 0.60 g L-1 adenosine at 24 h (h) and 0 h following fermentation, the optimum medium could produce 1.54 g L-1 SAM. Based on the regulations mentioned above, the SAM concentration of strain ΔSOD1 enhanced from 7.3 g L-1 to 10.1 g L-1 in a 5-L fermenter in 118 h. This work introduces a novel idea for the biosynthesis of ATP and SAM, and the strain ΔSOD1 has the potential for industrial production.
Assuntos
S-Adenosilmetionina , Saccharomyces cerevisiae , Trifosfato de Adenosina/metabolismo , Fermentação , Metionina/metabolismo , S-Adenosilmetionina/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Superóxido Dismutase-1RESUMO
Phytoextraction in phytoremediation is one of the environmentally friendly methods used for restoring soils contaminated by heavy metals (HMs). The screening and identification of HM-resistant plants and their regulatory genes associated with HM ion transport are the key research aims in this field. In this study, a plant cadmium (Cd) resistance (PCR) gene family member, SlPCR6, was identified in roots of Salix linearistipularis, which exhibits strong HM resistance. The results revealed that SlPCR6 expression was induced in S. linearistipularis roots in response to Cd stress. Furthermore, SlPCR6 was mainly localized on the plasma membrane. Compared with the wild type, SlPCR6 overexpression reduced the Cd and copper (Cu) contents in the transgenic poplar (84 K) and increased its Cd and Cu resistance. The roots of transgenic poplar seedlings had lower net Cd and Cu uptake rates than wild type roots. Further investigation revealed that the transcript levels of multiple HM ion transporters were not significantly different between the roots of the wild type and those of the transgenic poplar. These results suggest that SlPCR6 is directly involved in Cd and Cu transport in S. linearistipularis roots. Therefore, SlPCR6 can serve as a candidate gene to improve the phytoextraction of the HMs Cd and Cu through genetic engineering.
Assuntos
Metais Pesados , Populus , Salix , Poluentes do Solo , Biodegradação Ambiental , Cádmio/metabolismo , Cobre/análise , Metais Pesados/análise , Raízes de Plantas/metabolismo , Populus/genética , Populus/metabolismo , Salix/genética , Salix/metabolismo , Solo , Poluentes do Solo/análiseRESUMO
This study aims to study the effects of extra arginine (Arg) supplementation during the suckling period on the weaning stress and intestinal barrier function of breastfed piglets. Forty 7-day-old breastfed piglets divided into the control group (CON) and Arg group (Arg) were fed with extra saline or Arg (250 mg per kg per d body weight), respectively. All piglets were weaned when they were 21 days old. Eight piglets from each group were sacrificed before weaning and on the 3rd-day after weaning, respectively. The results showed that Arg improved the average daily weight gain of piglets before weaning (P < 0.01) and decreased the average daily weight loss after weaning (P < 0.05). Weaning decreased the ratio of the villus length versus crypt depth (V/C) in the SI (P < 0.001), while Arg increased the V/C of the jejunum (P < 0.05). Arg increased the levels of immunoglobulins in the serum and SI (P < 0.05), decreased pro-inflammatory cytokines and increased anti-inflammatory cytokines in the SI (P < 0.05). In addition, Arg supplementation increased the numbers of SWC3a+CD40+ (P < 0.01) and SWC3a+SLAII+ DCs (P < 0.05), down-regulated Notch2 expression and up-regulated Jagged1 expression in the ilea of weaning piglets (P < 0.05). In conclusion, Arg supplementation during the suckling period decreased the LDH leakage in the SI, improved the intestinal morphology, down-regulated the contents of pro-inflammatory cytokines, accelerated the accumulation of DC precursors before weaning and increased the number of mature DCs after weaning, and thus improved the growth performance and reduced the weaning stress of piglets, and this might be associated with the regulation of Notch2 signaling.
Assuntos
Arginina , Suplementos Nutricionais , Animais , Arginina/metabolismo , Arginina/farmacologia , Citocinas/metabolismo , Células Dendríticas/metabolismo , Dieta , Mucosa Intestinal/metabolismo , Suínos , Desmame , Aumento de PesoRESUMO
Background: A tumor occurs because of abnormal cell multiplication caused by many variables like a significant disturbance in the regulation of cell growth and the instability of chromosome mitosis. Budding uninhibited by benzimidazoles 1 (BUB1), BUB1 mitotic checkpoint serine/threonine kinase B (BUB1B), and budding uninhibited by benzimidazoles 3 (BUB3) are key regulators of mitosis, and their abnormal expression is highly correlated with breast cancer (BrCa), sarcoma, hepatic carcinoma, and other malignant tumors. However, the occurrence of BUBs (BUB1, BUB1B, and BUB3) and the development of BrCa have not been systematically explained. Methods: Find out the target gene by looking up literature on PubMed and CNKI. Using the R software, TCGA, GEO, Kaplan-Meier Plotter, TIMER, and other databases, we studied the level of transcription, genetic changes, and physiological functions of BUBs in BrCa patients and their relationship with the origin, development, prognosis, immunity, and drug resistance of BrCa patients. Findings. We found that the high expression level of BUBs in BrCa tissues proposed a poor prognosis. The multivariate Cox regression analysis suggested that BUB1B and BUB3 might be independent prognostic factors of BrCa. In addition, the Metascape functional enrichment analysis showed that BUBs may be involved in the composition of the spindle, chromosome, and other structures and play a role in mitosis, sister chromatid separation, and other processes. Pathway enrichment suggests that BUBs may affect the cell cycle and lead to abnormal proliferation. Meanwhile, we also found that BUB3 can negatively regulate B lymphocytes, and BUB1 and BUB1B inhibit immune responses by promoting the secretion level of checkpoint molecules of the immune system, leading to immune escape of tumor cells. Conclusion: We speculate that BUB1, BUB1B, and BUB3 may be therapeutic targets for BrCa patients and also provide new therapeutic strategies for BrCa treatment.