Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; : e2405420, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39159156

RESUMO

Functional segmental trachea reconstruction is a critical concern in thoracic surgery, and tissue-engineered trachea (TET) holds promise as a potential solution. However, current TET falls short in fully restoring physiological function due to the lack of the intricate multi-tissue structure found in natural trachea. In this research, a multi-tissue integrated tissue-engineered trachea (MI-TET) is successfully developed by orderly assembling various cells (chondrocytes, fibroblasts and epithelial cells) on 3D-printed PGS bioelastomer scaffolds. The MI-TET closely resembles the complex structures of natural trachea and achieves the integrated regeneration of four essential tracheal components: C-shaped cartilage ring, O-shaped vascularized fiber ring, axial fiber bundle, and airway epithelium. Overall, the MI-TET demonstrates highly similar multi-tissue structures and physiological functions to natural trachea, showing promise for future clinical advancements in functional TETs.

2.
Int J Mol Sci ; 25(13)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-39000082

RESUMO

Drought stress is one of the significant abiotic stresses that limit soybean (Glycine max [L.] Merr.) growth and production. Ankyrin repeat (ANK) proteins, being highly conserved, occupy a pivotal role in diverse biological processes. ANK genes were classified into nine subfamilies according to conserved domains in the soybean genome. However, the function of ANK-TM subfamily proteins (Ankyrin repeat proteins with a transmembrane domain) in the abiotic-stress response to soybean remains poorly understood. In this study, we first demonstrated the subcellular localization of GmANKTM21 in the cell membrane and nucleus. Drought stress-induced mRNA levels of GmANKTM21, which encodes proteins belonging to the ANK-TM subfamily, Transgenic 35S:GmANKTM21 soybean improved drought tolerance at the germination and seedling stages, with higher stomatal closure in soybean, lower water loss, lower malondialdehyde (MDA) content, and less reactive oxygen species (ROS) production compared with the wild-type soybean (Dongnong50). RNA-sequencing (RNA-seq) and RT-qPCR analysis of differentially expressed transcripts in overexpression of GmANKTM21 further identified potential downstream genes, including GmSPK2, GmSPK4, and GmCYP707A1, which showed higher expression in transgenic soybean, than those in wild-type soybean and KEGG enrichment analysis showed that MAPK signaling pathways were mostly enriched in GmANKTM21 overexpressing soybean plants under drought stress conditions. Therefore, we demonstrate that GmANKTM21 plays an important role in tolerance to drought stress in soybeans.


Assuntos
Secas , Regulação da Expressão Gênica de Plantas , Glycine max , Sistema de Sinalização das MAP Quinases , Proteínas de Plantas , Estômatos de Plantas , Plantas Geneticamente Modificadas , Estresse Fisiológico , Glycine max/genética , Glycine max/metabolismo , Glycine max/fisiologia , Glycine max/crescimento & desenvolvimento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estômatos de Plantas/genética , Estômatos de Plantas/fisiologia , Estômatos de Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Repetição de Anquirina/genética , Resistência à Seca
3.
Sci Rep ; 14(1): 14922, 2024 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-38942788

RESUMO

Studying the relationships between vegetation cover and geography in the Mongolian region of the Yellow River Basin will help to optimize local vegetation recovery strategies and achieve harmonious human relations. Based on MOD13Q1 data, the spatial and temporal variations in fractional vegetation cover (FVC) in the Mongolian Yellow River Basin during 2000-2020 were investigated via trend and correlative analysis. The results are as follows: (1) From 2000 to 2020, the vegetation cover in the Mongolian section of the Yellow River Basin recovered well, the mean increase in the FVC was 0.001/a, the distribution of vegetation showed high coverage in the southeast and low coverage in the northwest, and 31.19% of the total area showed an extremely significant and significant increase in vegetation cover. (2) The explanatory power of each geographic factor significantly differed. Precipitation, soil type, air temperature, land use type and slope were the main driving factors influencing the spatial distribution of the vegetation cover, and for each factor, the explanatory power of its interaction with other factors was greater than that of the single factor. (3) The correlation coefficients between FVC and temperature and precipitation are mainly positive. The mean value of the FVC and its variation trend are characterized by differences in terrain and soil characteristics, population density and land use. Land use conversion can reflect the characteristics of human activities, and positive effects, such as returning farmland to forest and grassland and afforestation of unused land, promote the significant improvement of regional vegetation, while negative effects, such as urban expansion, inhibit the growth of vegetation.


Assuntos
Conservação dos Recursos Naturais , Rios , China , Conservação dos Recursos Naturais/métodos , Humanos , Ecossistema , Geografia , Monitoramento Ambiental/métodos , Solo , Plantas , Mongólia
4.
Bioact Mater ; 39: 443-455, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38873087

RESUMO

The biomedical application of self-healing materials in wet or (under)water environments is quite challenging because the insulation and dissociation effects of water molecules significantly reduce the reconstruction of material-interface interactions. Rapid closure with uniform tension of high-tension wounds is often difficult, leading to further deterioration and scarring. Herein, a new type of thermosetting water-resistant self-healing bioelastomer (WRSHE) was designed by synergistically incorporating a stable polyglycerol sebacate (PGS) covalent crosslinking network and triple hybrid dynamic networks consisting of reversible disulfide metathesis (SS), and dimethylglyoxime urethane (Dou) and hydrogen bonds. And a resveratrol-loaded WRSHE (Res@WRSHE) was developed by a swelling, absorption, and crosslinked network locking strategy. WRSHEs exhibited skin-like mechanical properties in terms of nonlinear modulus behavior, biomimetic softness, high stretchability, and good elasticity, and they also achieved ultrafast and highly efficient self-healing in various liquid environments. For wound-healing applications of high-tension full-thickness skin defects, the convenient surface assembly by self-healing of WRSHEs provides uniform contraction stress to facilitate tight closure. Moreover, Res@WRSHEs gradually release resveratrol, which helps inflammatory response reduction, promotes blood vessel regeneration, and accelerates wound repair.

6.
Microbiol Res ; 282: 127660, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38442454

RESUMO

Nonresponse to biologic agents in patients with inflammatory bowel disease (IBD) poses a significant public health burden, and the prediction of response to biologics offers valuable insights for IBD management. Given the pivotal role of gut microbiota and their endogenous metabolites in IBD, we conducted a systematic review to investigate the potential of fecal microbiota and mucosal microbiota and endogenous metabolomic markers as predictors for biotherapy response in IBD patients. A total of 38 studies were included in the review. Following anti-TNF-α treatment, the bacterial community characteristics of IBD patients exhibited a tendency to resemble those observed in healthy controls, indicating an improved clinical response. The levels of endogenous metabolites butyrate and deoxycholic acid were significantly associated with clinical remission following anti-TNF-α therapy. IBD patients who responded well to vedolizumab treatment had higher levels of specific bacteria that produce butyrate, along with increased levels of metabolites such as butyrate, branched-chain amino acids and acetamide following vedolizumab treatment. Crohn's disease patients who responded positively to ustekinumab treatment showed higher levels of Faecalibacterium and lower levels of Escherichia/Shigella. In conclusion, fecal microbiota and mucosal microbiota as well as their endogenous metabolites could provide a predictive tool for assessing the response of IBD patients to various biological agents and serve as a valuable reference for precise drug selection in clinical IBD patients.


Assuntos
Produtos Biológicos , Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Humanos , Bactérias , Produtos Biológicos/uso terapêutico , Butiratos , Fezes/microbiologia , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/microbiologia , Inibidores do Fator de Necrose Tumoral/uso terapêutico
7.
Adv Mater ; 36(27): e2401009, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38548296

RESUMO

Tissue engineering and electrotherapy are two promising methods to promote tissue repair. However, their integration remains an underexplored area, because their requirements on devices are usually distinct. Triboelectric nanogenerators (TENGs) have shown great potential to develop self-powered devices. However, due to their susceptibility to moisture, TENGs have to be encapsulated in vivo. Therefore, existing TENGs cannot be employed as tissue engineering scaffolds, which require direct interaction with surrounding cells. Here, the concept of triboelectric scaffolds (TESs) is proposed. Poly(glycerol sebacate), a biodegradable and relatively hydrophobic elastomer, is selected as the matrix of TESs. Each hydrophobic micropore in multi-hierarchical porous TESs efficiently serves as a moisture-resistant working unit of TENGs. Integration of tons of micropores ensures the electrotherapy ability of TESs in vivo without encapsulation. Originally hydrophobic TESs are degraded by surface erosion and transformed into hydrophilic surfaces, facilitating their role as tissue engineering scaffolds. Notably, TESs seeded with chondrocytes obtain dense and large matured cartilages after subcutaneous implantation in nude mice. Importantly, rabbits with osteochondral defects receiving TES implantation show favorable hyaline cartilage regeneration and complete cartilage healing. This work provides a promising electronic biomedical device and will inspire a series of new in vivo applications.


Assuntos
Decanoatos , Interações Hidrofóbicas e Hidrofílicas , Polímeros , Regeneração , Engenharia Tecidual , Alicerces Teciduais , Alicerces Teciduais/química , Animais , Porosidade , Coelhos , Engenharia Tecidual/métodos , Decanoatos/química , Polímeros/química , Camundongos , Glicerol/química , Glicerol/análogos & derivados , Cartilagem/fisiologia , Condrócitos/citologia , Camundongos Nus , Materiais Biocompatíveis/química
8.
Cell Oncol (Dordr) ; 47(4): 1183-1199, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38315283

RESUMO

PURPOSE: Microbial dysbiosis is considered as a hallmark of colorectal cancer (CRC). Trimethylamine-N-oxide (TMAO) as a gut microbiota-dependent metabolite has recently been implicated in CRC development. Nevertheless, evidence relating TMAO to intestinal carcinogenesis remains largely unexplored. Herein, we aimed to examine the crucial role of TMAO in CRC progression. METHODS: Apcmin/+ mice were treated with TMAO or sterile PBS for 14 weeks. Intestinal tissues were isolated to evaluate the effects of TMAO on the malignant transformation of intestinal adenoma. The gut microbiota of mouse feces was detected by 16S rRNA sequencing analysis. HCT-116 cells were used to provide further evidence of TMAO on the progression of CRC. RESULTS: TMAO administration increased tumor cell and stem cell proliferation, and decreased apoptosis, accompanied by DNA damage and gut barrier impairment. Gut microbiota analysis revealed that TMAO induced changes in the intestinal microbial community structure, manifested as reduced beneficial bacteria. Mechanistically, TMAO bound to farnesoid X receptor (FXR), thereby inhibiting the FXR-fibroblast growth factor 15 (FGF15) axis and activating the Wnt/ß-catenin signaling pathway, whereas the FXR agonist GW4064 could blunt TMAO-induced Wnt/ß-catenin pathway activation. CONCLUSION: The microbial metabolite TMAO can enhance intestinal carcinogenesis by inhibiting the FXR-FGF15 pathway.


Assuntos
Carcinogênese , Microbioma Gastrointestinal , Metilaminas , Receptores Citoplasmáticos e Nucleares , Transdução de Sinais , Via de Sinalização Wnt , Metilaminas/metabolismo , Metilaminas/farmacologia , Receptores Citoplasmáticos e Nucleares/metabolismo , Animais , Humanos , Microbioma Gastrointestinal/efeitos dos fármacos , Carcinogênese/efeitos dos fármacos , Carcinogênese/metabolismo , Carcinogênese/patologia , Camundongos , Transdução de Sinais/efeitos dos fármacos , Via de Sinalização Wnt/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Células HCT116 , Proliferação de Células/efeitos dos fármacos , Neoplasias Intestinais/metabolismo , Neoplasias Intestinais/patologia , Neoplasias Intestinais/induzido quimicamente , Neoplasias Intestinais/microbiologia , Masculino , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Neoplasias Colorretais/microbiologia , Neoplasias Colorretais/induzido quimicamente , Apoptose/efeitos dos fármacos , Fatores de Crescimento de Fibroblastos/metabolismo
9.
Cell Commun Signal ; 22(1): 6, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38166927

RESUMO

Ferroptosis is a newly discovered form of cell death that is featured in a wide range of diseases. Exosome therapy is a promising therapeutic option that has attracted much attention due to its low immunogenicity, low toxicity, and ability to penetrate biological barriers. In addition, emerging evidence indicates that exosomes possess the ability to modulate the progression of diverse diseases by regulating ferroptosis in damaged cells. Hence, the mechanism by which cell-derived and noncellular-derived exosomes target ferroptosis in different diseases through the system Xc-/GSH/GPX4 axis, NAD(P)H/FSP1/CoQ10 axis, iron metabolism pathway and lipid metabolism pathway associated with ferroptosis, as well as its applications in liver disease, neurological diseases, lung injury, heart injury, cancer and other diseases, are summarized here. Additionally, the role of exosome-regulated ferroptosis as an emerging repair mechanism for damaged tissues and cells is also discussed, and this is expected to be a promising treatment direction for various diseases in the future. Video Abstract.


Assuntos
Exossomos , Ferroptose , Lesão Pulmonar , Humanos , Morte Celular , NAD
10.
Microbiome ; 12(1): 4, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172943

RESUMO

BACKGROUND: The overgrowth of Desulfovibrio, an inflammation promoting flagellated bacteria, has been found in ulcerative colitis (UC) patients. However, the molecular mechanism in promoting colitis remains unestablished. METHODS: The relative abundance Desulfovibrio vulgaris (D. vulgaris) in stool samples of UC patients was detected. Mice were treated with dextran sulfate sodium to induce colitis with or without administration of D. vulgaris or D. vulgaris flagellin (DVF), and the severity of colitis and the leucine-rich repeat containing 19 (LRRC19) signaling were assessed. The interaction between DVF and LRRC19 was identified by surface plasmon resonance and intestinal organoid culture. Lrrc19-/- and Tlr5-/- mice were used to investigate the indispensable role of LRRC19. Finally, the blockade of DVF-LRRC19 interaction was selected through virtual screening and the efficacy in colitis was assessed. RESULTS: D. vulgaris was enriched in fecal samples of UC patients and was correlated with the disease severity. D. vulgaris or DVF treatment significantly exacerbated colitis in germ-free mice and conventional mice. Mechanistically, DVF could interact with LRRC19 (rather than TLR5) in colitis mice and organoids, and then induce the production of pro-inflammatory cytokines. Lrrc19 knockdown blunted the severity of colitis. Furthermore, typhaneoside, a blockade of binding interfaces, blocked DVF-LRRC19 interaction and dramatically ameliorated DVF-induced colitis. CONCLUSIONS: D. vulgaris could promote colitis through DVF-LRRC19 interaction. Targeting DVF-LRRC19 interaction might be a new therapeutic strategy for UC therapy. Video Abstract.


Assuntos
Colite Ulcerativa , Colite , Desulfovibrio vulgaris , Humanos , Camundongos , Animais , Receptor 5 Toll-Like/metabolismo , Receptor 5 Toll-Like/uso terapêutico , Desulfovibrio vulgaris/metabolismo , Colite/induzido quimicamente , Colite/metabolismo , Colite Ulcerativa/microbiologia , Inflamação/metabolismo , Sulfato de Dextrana/efeitos adversos , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Colo/metabolismo , Receptores de Superfície Celular/metabolismo , Receptores de Superfície Celular/uso terapêutico
11.
Adv Sci (Weinh) ; 11(9): e2305580, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38127989

RESUMO

Tissue-engineered bone has emerged as a promising alternative for bone defect repair due to the advantages of regenerative bone healing and physiological functional reconstruction. However, there is very limited breakthrough in achieving favorable bone regeneration due to the harsh osteogenic microenvironment after bone injury, especially the avascular and hypoxic conditions. Inspired by the bone developmental mode of endochondral ossification, a novel strategy is proposed for tolerant and rapid endochondral bone regeneration using framework-enhanced 3D biomineralized matrix hydrogels. First, it is meticulously designed 3D biomimetic hydrogels with both hypoxic and osteoinductive microenvironment, and then integrated 3D-printed polycaprolactone framework to improve their mechanical strength and structural fidelity. The inherent hypoxic 3D matrix microenvironment effectively activates bone marrow mesenchymal stem cells self-regulation for early-stage chondrogenesis via TGFß/Smad signaling pathway due to the obstacle of aerobic respiration. Meanwhile, the strong biomineralized microenvironment, created by a hybrid formulation of native-constitute osteogenic inorganic salts, can synergistically regulate both bone mineralization and osteoclastic differentiation, and thus accelerate the late-stage bone maturation. Furthermore, both in vivo ectopic osteogenesis and in situ skull defect repair successfully verified the high efficiency and mechanical maintenance of endochondral bone regeneration mode, which offers a promising treatment for craniofacial bone defect repair.


Assuntos
Osso e Ossos , Hidrogéis , Osteogênese , Regeneração Óssea , Engenharia Tecidual
12.
Clin Cancer Res ; 30(5): 1009-1021, 2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38109209

RESUMO

PURPOSE: Multiple myeloma is a plasma cell malignancy with an unmet clinical need for improved imaging methods and therapeutics. Recently, we identified CD46 as an overexpressed therapeutic target in multiple myeloma and developed the antibody YS5, which targets a cancer-specific epitope on this protein. We further developed the CD46-targeting PET probe [89Zr]Zr-DFO-YS5 for imaging and [225Ac]Ac-DOTA-YS5 for radiopharmaceutical therapy of prostate cancer. These prior studies suggested the feasibility of the CD46 antigen as a theranostic target in multiple myeloma. Herein, we validate [89Zr]Zr-DFO-YS5 for immunoPET imaging and [225Ac]Ac-DOTA-YS5 for radiopharmaceutical therapy of multiple myeloma in murine models. EXPERIMENTAL DESIGN: In vitro saturation binding was performed using the CD46 expressing MM.1S multiple myeloma cell line. ImmunoPET imaging using [89Zr]Zr-DFO-YS5 was performed in immunodeficient (NSG) mice bearing subcutaneous and systemic multiple myeloma xenografts. For radioligand therapy, [225Ac]Ac-DOTA-YS5 was prepared, and both dose escalation and fractionated dose treatment studies were performed in mice bearing MM1.S-Luc systemic xenografts. Tumor burden was analyzed using BLI, and body weight and overall survival were recorded to assess antitumor effect and toxicity. RESULTS: [89Zr]Zr-DFO-YS5 demonstrated high affinity for CD46 expressing MM.1S multiple myeloma cells (Kd = 16.3 nmol/L). In vitro assays in multiple myeloma cell lines demonstrated high binding, and bioinformatics analysis of human multiple myeloma samples revealed high CD46 expression. [89Zr]Zr-DFO-YS5 PET/CT specifically detected multiple myeloma lesions in a variety of models, with low uptake in controls, including CD46 knockout (KO) mice or multiple myeloma mice using a nontargeted antibody. In the MM.1S systemic model, localization of uptake on PET imaging correlated well with the luciferase expression from tumor cells. A treatment study using [225Ac]Ac-DOTA-YS5 in the MM.1S systemic model demonstrated a clear tumor volume and survival benefit in the treated groups. CONCLUSIONS: Our study showed that the CD46-targeted probe [89Zr]Zr-DFO-YS5 can successfully image CD46-expressing multiple myeloma xenografts in murine models, and [225Ac]Ac-DOTA-YS5 can effectively inhibit the growth of multiple myeloma. These results demonstrate that CD46 is a promising theranostic target for multiple myeloma, with the potential for clinical translation.


Assuntos
Mieloma Múltiplo , Masculino , Humanos , Animais , Camundongos , Mieloma Múltiplo/diagnóstico por imagem , Mieloma Múltiplo/tratamento farmacológico , Medicina de Precisão , Actínio , Radioisótopos , Compostos Radiofarmacêuticos , Zircônio , Linhagem Celular Tumoral , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Anticorpos , Proteína Cofatora de Membrana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA