Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 573
Filtrar
1.
J Gastrointest Oncol ; 15(2): 597-611, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38756631

RESUMO

Background: As one of the most common diseases in terms of cancer-related mortality worldwide, gastric adenocarcinoma (GA) frequently develops peritoneal metastases (PMs) in advanced stages. Systemic therapy or optimal supportive care are recommended for advanced GA; however, patients frequently develop drug resistance. Surgical resection is not recommended for stage IV patients, and there have been some controversies regarding the role of it in GA patients with PMs. The aim of the study was to preliminarily evaluate the possible effect of surgical treatments on patients with only PMs from GA. Methods: Data were collected from the Surveillance, Epidemiology and End Results (SEER) database (year 2000-2022). A propensity score matching (PSM) was performed to reduce the influence of selection bias and confounding variables on comparisons. Then Cox proportional hazard regression, Kaplan-Meier analysis, and log-rank test were performed to assess the efficacy of surgical treatment in patients with PMs from GA. Results: A total of 399 patients diagnosed with PMs from GA were enrolled for our analysis, of which, 180 (45.1%) patients did not receive surgery and 219 (54.9%) patients received surgery. Multivariate Cox regression analysis before PSM indicated higher rates of overall survival (OS) outcome for patients who had received surgery [hazard ratio (HR) =0.4342, 95% confidence interval (CI): 0.3283-0.5742, P<0.001]. After PSM, a total of 172 patients were enrolled, with 86 in each group. Multivariate Cox analysis showed that surgery was the independent factor reflecting patients' survival (HR =0.4382, 95% CI: 0.3037-0.6324, P<0.001). Subgroup survival analysis revealed that surgery may bring advantages to patients with grades I-IV, stages T1-T4, stage N0, and tumor size less than 71 mm (P<0.05). We also found that the OS of chemotherapy patients who had undergone surgery was better than that of chemotherapy patients who had not undergone surgery (P<0.01). Conclusions: Based on the SEER database, surgery has better OS for patients only with PMs from GA. Patients without lymph node metastasis and those who received chemotherapy before may benefit from surgery. These specific groups of patients may have surgery as an option to improve the prognosis.

2.
Front Microbiol ; 15: 1371247, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38774503

RESUMO

Introduction: Intestinal microorganisms play an important role in the health of both humans and animals, with their composition being influenced by changes in the host's environment. Methods: We evaluated the longitudinal changes in the fecal microbial community of rats at different altitudes across various time points. Rats were airlifted to high altitude (3,650 m) and acclimatized for 42 days (HAC), before being by airlifted back to low altitude (500 m) and de-acclimatized for 28 days (HADA); meanwhile, the control group included rats living at low altitude (500 m; LA). We investigated changes in the gut microbiota at 12 time points during high-altitude acclimatization and de-acclimatization, employing 16S rRNA gene sequencing technology alongside physiological indices, such as weight and daily autonomous activity time. Results: A significant increase in the Chao1 index was observed on day 14 in the HAC and HADA groups compared to that in the LA group, indicating clear differences in species richness. Moreover, the principal coordinate analysis revealed that the bacterial community structures of HAC and HADA differed from those in LA. Long-term high-altitude acclimatization and de- acclimatization resulted in the reduced abundance of the probiotic Lactobacillus. Altitude and age significantly influenced intestinal microbiota composition, with changes in ambient oxygen content and atmospheric partial pressure being considered key causal factors of altitude-dependent alterations in microbiota composition. High-altitude may be linked to an increase in anaerobic bacterial abundance and a decrease in non-anaerobic bacterial abundance. Discussion: In this study, the hypobaric hypoxic conditions at high-altitude increased the abundance of anaerobes, while reducing the abundance of probiotics; these changes in bacterial community structure may, ultimately, affect host health. Overall, gaining a comprehensive understanding of the intestinal microbiota alterations during high-altitude acclimatization and de-acclimatization is essential for the development of effective prevention and treatment strategies to better protect the health of individuals traveling between high- and low-altitude areas.

3.
Front Immunol ; 15: 1405621, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38774874

RESUMO

Ageing is an inevitable process that affects various tissues and organs of the human body, leading to a series of physiological and pathological changes. Mechanisms such as telomere depletion, stem cell depletion, macrophage dysfunction, and cellular senescence gradually manifest in the body, significantly increasing the incidence of diseases in elderly individuals. These mechanisms interact with each other, profoundly impacting the quality of life of older adults. As the ageing population continues to grow, the burden on the public health system is expected to intensify. Globally, the prevalence of musculoskeletal system diseases in elderly individuals is increasing, resulting in reduced limb mobility and prolonged suffering. This review aims to elucidate the mechanisms of ageing and their interplay while exploring their impact on diseases such as osteoarthritis, osteoporosis, and sarcopenia. By delving into the mechanisms of ageing, further research can be conducted to prevent and mitigate its effects, with the ultimate goal of alleviating the suffering of elderly patients in the future.


Assuntos
Envelhecimento , Doenças Musculoesqueléticas , Humanos , Envelhecimento/imunologia , Idoso , Doenças Musculoesqueléticas/etiologia , Animais , Senescência Celular
5.
J Surg Oncol ; 2024 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-38736301

RESUMO

BACKGROUND AND OBJECTIVES: Intraoperative bile duct injury is a significant complication in laparoscopic cholecystectomy (LC). Near-infrared fluorescence cholangiography (NIFC) can reduce this complication. Therefore, determining the optimal indocyanine green (ICG) dosage for effective NIFC is crucial. This study aimed to determine the optimal ICG dosage for NIFC. METHODS: This was a prospective, randomized, double-blind clinical trial at a single tertiary referral center, including 195 patients randomly assigned to three groups: lower dose (0.01 mg/BMI) ICG (n = 63), medium dose (0.02 mg/BMI) ICG (n = 68), and higher dose (0.04 mg/BMI) ICG (n = 64). Surgeon satisfaction and detection rates for seven biliary structures were compared among the three dose groups. RESULTS: Demographic parameters did not significantly differ among the groups. The medium dose (72.1%) and higher dose ICG groups (70.3%) exhibited superior visualization of the common hepatic duct compared to the lower dose group (41.3%) (p < 0.001). No differences existed between the medium and higher dose groups. Similar trends were observed for the common bile duct and cystic common bile duct junction. CONCLUSIONS: In patients undergoing fluorescent laparoscopic cholecystectomy, the 0.02 mg/BMI dose of indocyanine green demonstrated better biliary structure detection rates than the 0.01 mg/BMI dose and was non-inferior to the 0.04 mg/BMI dose.

6.
RSC Adv ; 14(20): 14465-14469, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38699687

RESUMO

A general, efficient and practical protocol for Ts2O promoted deoxygenative dithiocarbamation of quinoline N-oxides with in situ generated dithiocarbamic acids from CS2 and amines is reported. The reaction proceeded well under transition-metal free conditions to obtain a variety of novel quinoline-dithiocarbamate compounds with wide functional group tolerance and good to high yields.

7.
ACS Sens ; 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38709549

RESUMO

Here, we report on progress made in coupling advances in surface-enhanced Raman scattering (SERS) techniques with a deep-ocean deployable Raman spectrometer. Our SERS capability is provided by development of a Cu foam-loaded silver-nanobean (Ag/Cu foam) which we have successfully coupled to the tip of a Raman probe head capable of insertion into deep-sea sediments and associated fluids. Our purpose is to expand the range of molecular species which can be detected in deep-sea biogeochemical environments, and our initial targets are a series of amino acids reportedly found in pore waters of seep locations. Our work has progressed to the point of a full dock-based end-to-end test of the essential ship tether-ROV-deep-sea Raman system. We show here the initial results from this test as the essential requirement before at sea full ocean depth deployment. We describe in detail the procedures for preparing the Ag/Cu foam bean and demonstrate in our end-to-end test that this, when coupled to the spectrometer probe tip, yields a SERS signal enhancement of 1.2 × 106 for test molecules and detection of amino acids at 10-6 M levels consistent with reported levels of natural occurrence. Each nanobean unit is for single-use sensing since invasion of the sample fluid into the Ag/Cu foam matrix is not reversible. We describe techniques for bean rotation/replacement at depth to allow for multiple analyses at several locations during each ROV dive.

8.
Proc Natl Acad Sci U S A ; 121(22): e2322935121, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38771877

RESUMO

Current treatment options for diabetic wounds face challenges due to low efficacy, as well as potential side effects and the necessity for repetitive treatments. To address these issues, we report a formulation utilizing trisulfide-derived lipid nanoparticle (TS LNP)-mRNA therapy to accelerate diabetic wound healing by repairing and reprogramming the microenvironment of the wounds. A library of reactive oxygen species (ROS)-responsive TS LNPs was designed and developed to encapsulate interleukin-4 (IL4) mRNA. TS2-IL4 LNP-mRNA effectively scavenges excess ROS at the wound site and induces the expression of IL4 in macrophages, promoting the polarization from the proinflammatory M1 to the anti-inflammatory M2 phenotype at the wound site. In a diabetic wound model of db/db mice, treatment with this formulation significantly accelerates wound healing by enhancing the formation of an intact epidermis, angiogenesis, and myofibroblasts. Overall, this TS LNP-mRNA platform not only provides a safe, effective, and convenient therapeutic strategy for diabetic wound healing but also holds great potential for clinical translation in both acute and chronic wound care.


Assuntos
Nanopartículas , RNA Mensageiro , Espécies Reativas de Oxigênio , Cicatrização , Cicatrização/efeitos dos fármacos , Animais , Nanopartículas/química , Camundongos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Interleucina-4/metabolismo , Diabetes Mellitus Experimental , Humanos , Lipídeos/química , Modelos Animais de Doenças , Masculino , Lipossomos
9.
Front Immunol ; 15: 1383503, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38756780

RESUMO

With the development of global social economy and the deepening of the aging population, diseases related to aging have received increasing attention. The pathogenesis of many respiratory diseases remains unclear, and lung aging is an independent risk factor for respiratory diseases. The aging mechanism of the lung may be involved in the occurrence and development of respiratory diseases. Aging-induced immune, oxidative stress, inflammation, and telomere changes can directly induce and promote the occurrence and development of lung aging. Meanwhile, the occurrence of lung aging also further aggravates the immune stress and inflammatory response of respiratory diseases; the two mutually affect each other and promote the development of respiratory diseases. Explaining the mechanism and treatment direction of these respiratory diseases from the perspective of lung aging will be a new idea and research field. This review summarizes the changes in pulmonary microenvironment, metabolic mechanisms, and the progression of respiratory diseases associated with aging.


Assuntos
Envelhecimento , Microambiente Celular , Pulmão , Estresse Oxidativo , Humanos , Envelhecimento/imunologia , Pulmão/imunologia , Animais , Pneumopatias/imunologia , Pneumopatias/etiologia , Inflamação/imunologia
10.
Sci Total Environ ; 931: 172908, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38697552

RESUMO

Shallow lakes, recognized as hotspots for nitrogen cycling, contribute to the emission of the potent greenhouse gas nitrous oxide (N2O), but the current emission estimates for this gas have a high degree of uncertainty. However, the role of N2O-reducing bacteria (N2ORB) as N2O sinks and their contribution to N2O reduction in aquatic ecosystems in response to N2O dynamics have not been determined. Here, we investigated the N2O dynamics and microbial processes in the nitrogen cycle, which included both N2O production and consumption, in five shallow lakes spanning approximately 500 km. The investigated sites exhibited N2O oversaturation, with excess dissolved N2O concentrations (ΔN2O) ranging from 0.55 ± 0.61 to 53.17 ± 15.75 nM. Sediment-bound N2O (sN2O) was significantly positively correlated with the nitrate concentration in the overlying water (p < 0.05), suggesting that nitrate accumulation contributes to benthic N2O generation. High N2O consumption activity (RN2O) corresponded to low ΔN2O. In addition, a significant negative correlation was found between RN2O and nir/nosZ, showing that bacteria encoding nosZ contributed to N2O consumption in the benthic sediments. Redundancy analysis indicated that benthic functional genes effectively reflected the variations in RN2O and ∆N2O. qPCR analysis revealed that the clade II nosZ gene was more sensitive to ΔN2O than the clade I nosZ gene. Furthermore, four novel genera of potential nondenitrifying N2ORB were identified based on metagenome-assembled genome analysis. These genera, which are affiliated with clade II, lack genes responsible for N2O production. Collectively, benthic N2ORB, especially for clade II-type N2ORB, harnesses N2O consumption activity leading to low N2O emissions from shallow lakes. This study advances our knowledge of the role of benthic clade II-type N2ORB in regulating N2O emissions in shallow lakes.


Assuntos
Bactérias , Lagos , Óxido Nitroso , Óxido Nitroso/análise , Lagos/química , Bactérias/classificação , Monitoramento Ambiental , Ciclo do Nitrogênio , Poluentes Atmosféricos/análise , Sedimentos Geológicos/química
11.
Reprod Sci ; 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637474

RESUMO

In women of childbearing age, extensive decidualization, shedding and remodeling of the endometrium during the menstrual cycle are fundamental for successful pregnancy. The role of prostaglandins (PGs) in menstruation has long been proposed in humans, and the rate-limiting enzyme cyclooxygenase was shown to play a key role in endometrial breakdown and shedding in a mouse menstrual-like model in our previous study. However, the specific types of PGs involved and their respective roles remain unclear. Therefore, our objective was to investigate the mechanism through which PGs regulate endometrial disintegration. In this study, the microscopy was observed by HE; the protein levels of prostaglandins E1 (PGE1), prostaglandins E2 (PGE2), prostaglandin F2α (PGF2α) and Prostaglandin I2 (PGI2) were detected by ELISA; the mRNA level of Pfgfr2, Vascular Endothelial Growth Factor(Vegf), Angiostatin and Hypoxia inducible factor-1α (Hif1α) were examined by real-time PCR; PTGFR Receptor (PTGFR), VEGF, Angiostatin and HIF-1α protein levels were investigated by western blotting; the locations of protein were observed by Immunohistochemistry; HIF-1α binding PTGFR promoter was detected by Chromatin Immunoprecipitation (ChIP) and real-time PCR. We found that the concentrations of PGE1, PGE2, and PGF2α all increased significantly during this process. Furthermore, Ptgfr mRNA increased soon after Progesterone (P4) withdrawal, and PTGFR protein levels increased significantly during abundant endometrial breakdown and shedding processes. PTGFR inhibitors AL8810 significantly suppressed endometrial breakdown and shedding, promoted Angiostatin expression, and reduced VEGF-A expressions and vascular permeability. And HIF-1α and PTGFR were mainly located in the luminal/gland epithelium, vascular endothelium, and pre-decidual zone. Interestingly, HIF-1α directly bound to Ptgfr promoter. Moreover, a HIF-1α inhibitor 2-methoxyestradiol (2ME) significantly reduced PTGFR expression and suppressed endometrial breakdown which was in accord with PTGFR inhibitor's effect. Similar changes occurred in human stromal cells relevant to menstruation in vitro. Our study provides evidence that PGF2α/PTGFR plays a vital role in endometrial breakdown via vascular changes that are regulated by HIF-1α during menstruation.

12.
Front Immunol ; 15: 1384270, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38576620

RESUMO

With the proposal of the "biological-psychological-social" model, clinical decision-makers and researchers have paid more attention to the bidirectional interactive effects between psychological factors and diseases. The brain-gut-microbiota axis, as an important pathway for communication between the brain and the gut, plays an important role in the occurrence and development of inflammatory bowel disease. This article reviews the mechanism by which psychological disorders mediate inflammatory bowel disease by affecting the brain-gut-microbiota axis. Research progress on inflammatory bowel disease causing "comorbidities of mind and body" through the microbiota-gut-brain axis is also described. In addition, to meet the needs of individualized treatment, this article describes some nontraditional and easily overlooked treatment strategies that have led to new ideas for "psychosomatic treatment".


Assuntos
Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Transtornos Mentais , Microbiota , Humanos , Encéfalo/metabolismo , Doenças Inflamatórias Intestinais/etiologia , Doenças Inflamatórias Intestinais/terapia , Doenças Inflamatórias Intestinais/metabolismo , Transtornos Mentais/metabolismo
13.
Adv Healthc Mater ; : e2304657, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38607802

RESUMO

The pervasive employment of antibiotics has engendered the advent of drug-resistant bacteria, imperiling the well-being and health of both humans and animals. Infections precipitated by such multi-resistant bacteria, especially those induced by methicillin-resistant Staphylococcus aureus (MRSA), pervade hospital settings, constituting a grave menace to patient vitality. Antimicrobial peptides (AMPs) have garnered considerable attention as a potent countermeasure against multidrug resistant bacteria. In preceding research endeavors, an insect-derived antimicrobial peptide is identified that, while possessing antimicrobial attributes, manifested suboptimal efficacy against drug-resistant Gram-positive bacteria. To ameliorate this issue, this work enhances the antimicrobial capabilities of the initial ß-hairpin AMPs by substituting the structural sequence of the original AMPs with variant lengths of hydrophobic amino acid-hydrophilic amino acid repeat units. Throughout this endeavor, this work has identified a number of peptides that possess highly effective antibacterial characteristics against a wide range of bacteria. Additionally, some of these peptides have the ability to self-assemble into nanofibers, which then build networks in a distinctive manner to capture bacteria. Consequently, they represent prospective antibiotic alternatives for addressing wound infections engendered by drug-resistant bacteria.

14.
Regen Ther ; 27: 244-250, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38586873

RESUMO

Platelet-rich plasma (PRP) has the capability of assisting in the recovery of damaged tissues by releasing a variety of biologically active factors to initiate a hemostatic cascade reaction and promote the synthesis of new connective tissue and revascularization. It is now widely used for tissue engineering repair. In addition, PRP has demonstrated nerve repair and pain relief, and has been studied and applied to the facial nerve, median nerve, sciatic nerve, and central nerve. These suggest that PRP injection therapy has a positive effect on nerve repair. This indicates that PRP has high clinical value and potential application in nerve repair. It is worthwhile for scientists and medical workers to further explore and study PRP to expand its application in nerve repair, and to provide a more reliable scientific basis for the opening of a new approach to nerve repair.

15.
Heliyon ; 10(7): e28405, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38560178

RESUMO

Inactivated coronavirus disease 2019 (COVID-19) vaccines showed impaired immunogenicity in some autoimmune diseases, but it remains unclear in primary biliary cholangitis (PBC). This study aimed to explore the antibody response to the inactivated COVID-19 vaccine in individuals with PBC, as well as to evaluate coverage, safety, and attitudes toward the COVID-19 vaccine among them. Two cohorts of patients with PBC were enrolled in this study. One cohort was arranged to evaluate the immunogenicity of the inactivated COVID-19 vaccine, another cohort participated in an online survey. The titers of the anti-receptor-binding domain (RBD)-specific immunoglobulin G (IgG), neutralizing antibody (NAb) toward severe acute respiratory syndrome coronavirus 2 wild-type, and NAb toward Omicron BA.4/5 subvariants were detected to assess antibody response from the vaccine. After booster vaccination for more than six months, patients with PBC had significantly lowered levels of anti-RBD-specific IgG compared to HCs, and the inhibition rates of NAb toward wild-type also declined in individuals with PBC. The detected levels of NAb toward Omicron BA.4/5 were below the positive threshold in patients with PBC and HCs. Laboratory parameters did not significantly correlate with any of the three antibodies. The online survey revealed that 24% of patients with PBC received three COVID-19 vaccines, while 63% were unimmunized. Adverse effect rates after the first, second, and third vaccine doses were 6.1%, 10.3%, and 9.5%, respectively. Unvaccinated patients with PBC were more worried about the safety of the vaccine than those who were vaccinated (P = 0.004). As a result, this study fills the immunological assessment gap in patients with PBC who received inactivated COVID-19 vaccines.

16.
Hua Xi Kou Qiang Yi Xue Za Zhi ; 42(2): 227-233, 2024 Apr 01.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38597082

RESUMO

OBJECTIVES: This clinical study aimed to assess the trueness of three intraoral scanners for the recor-ding of the maximal intercuspal position (MIP) to provide a reference for clinical practice. METHODS: Ten participants with good occlusal relationship and healthy temporomandibular joint were recruited. For the control group, facebow transferring procedures were performed, and bite registrations at the MIP were used to transfer maxillary and mandibular casts to a mechanical articulator, which were then scanned with a laboratory scanner to obtain digital cast data. For the experimental groups, three intraoral scanners (Trios 3, Carestream 3600, and Aoralscan 3) were used to obtain digital casts of the participants at the MIP following the scanning workflows endorsed by the corresponding manufacturers. Subsequently, measurement points were marked on the control group's digital casts at the central incisors, canines, and first molars, and corresponding distances between these points on the maxillary and mandibular casts were measured to calculate the sum of measured distances (DA). Distances between measurement points in the incisor (DI), canine (DC), and first molar (DM) regions were also calculated. The control group's maxillary and mandibular digital casts with the added measurement points were aligned with the experimental group's casts, and DA, DI, DC, and DM values of the aligned control casts were determined. Statistical analysis was performed on DA, DI, DC, and DM obtained from both the control and experimental groups to evaluate the trueness of the three intraoral scanners for the recording of MIP. RESULTS: In the control group, DA, DI, DC, and DM values were (39.58±6.40), (13.64±3.58), (14.91±2.85), and (11.03±1.56) mm. The Trios 3 group had values of (38.99±6.60), (13.42±3.66), (14.55±2.87), and (11.03±1.69) mm. The Carestream 3600 group showed values of (38.57±6.36), (13.56±3.68), (14.45±2.85), and (10.55±1.41) mm, while the Aoralscan 3 group had values of (38.16±5.69), (13.03±3.54), (14.23±2.59), and (10.90±1.54) mm. Analysis of variance revealed no statistically significant differences between the experimental and control groups for overall deviation DA (P=0.96), as well as local deviations DI (P=0.98), DC (P=0.96), and DM (P=0.89). CONCLUSIONS: With standardized scanning protocols, the three intraoral scanners demonstrated comparable trueness to traditional methods in recording MIP, fulfilling clinical requirements.


Assuntos
Incisivo , Dente Molar , Humanos , Mandíbula , Maxila , Desenho Assistido por Computador , Imageamento Tridimensional , Técnica de Moldagem Odontológica
17.
Nat Commun ; 15(1): 3561, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38670996

RESUMO

Lysine lactylation (Kla) links metabolism and gene regulation and plays a key role in multiple biological processes. However, the regulatory mechanism and functional consequence of Kla remain to be explored. Here, we report that HBO1 functions as a lysine lactyltransferase to regulate transcription. We show that HBO1 catalyzes the addition of Kla in vitro and intracellularly, and E508 is a key site for the lactyltransferase activity of HBO1. Quantitative proteomic analysis further reveals 95 endogenous Kla sites targeted by HBO1, with the majority located on histones. Using site-specific antibodies, we find that HBO1 may preferentially catalyze histone H3K9la and scaffold proteins including JADE1 and BRPF2 can promote the enzymatic activity for histone Kla. Notably, CUT&Tag assays demonstrate that HBO1 is required for histone H3K9la on transcription start sites (TSSs). Besides, the regulated Kla can promote key signaling pathways and tumorigenesis, which is further supported by evaluating the malignant behaviors of HBO1- knockout (KO) tumor cells, as well as the level of histone H3K9la in clinical tissues. Our study reveals HBO1 serves as a lactyltransferase to mediate a histone Kla-dependent gene transcription.


Assuntos
Histonas , Fator C1 de Célula Hospedeira , Lisina , Transcrição Gênica , Histonas/metabolismo , Humanos , Lisina/metabolismo , Células HEK293 , Animais , Linhagem Celular Tumoral , Sítio de Iniciação de Transcrição , Regulação da Expressão Gênica , Camundongos , Processamento de Proteína Pós-Traducional
18.
Mar Drugs ; 22(4)2024 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-38667761

RESUMO

In order to explore the extraction and activity of macroalge glycolipids, six macroalgae (Bangia fusco-purpurea, Gelidium amansii, Gloiopeltis furcata, Gracilariopsis lemaneiformis, Gracilaria sp. and Pyropia yezoensis) glycolipids were extracted with five different solvents firstly. Considering the yield and glycolipids concentration of extracts, Bangia fusco-purpurea, Gracilaria sp. and Pyropia yezoensis were selected from six species of marine macroalgae as the raw materials for the extraction of glycolipids. The effects of the volume score of methanol, solid-liquid ratio, extraction temperature, extraction time and ultrasonic power on the yield and glycolipids concentration of extracts of the above three macroalgae were analyzed through a series of single-factor experiments. By analyzing the antioxidant activity in vitro, moisture absorption and moisturizing activity, the extraction process of Bangia fusco-purpurea glycolipids was further optimized by response surface method to obtain suitable conditions for glycolipid extraction (solid-liquid ratio of 1:27 g/mL, extraction temperature of 48 °C, extraction time of 98 min and ultrasonic power of 450 W). Bangia fusco-purpurea extracts exhibited a certain scavenging effect on DPPH free radicals, as well as good moisture-absorption and moisture retaining activities. Two glycolipids were isolated from Bangia fusco-purpurea by liquid-liquid extraction, silica gel column chromatography and thin-layer chromatography, and they showed good scavenging activities against DPPH free radicals and total antioxidant capacity. Their scavenging activities against DPPH free radicals were about 60% at 1600 µg/mL, and total antioxidant capacity was better than that of Trolox. Among them, the moisturizing activity of a glycolipid was close to that of sorbierite and sodium alginate. These two glycolipids exhibited big application potential as food humectants and antioxidants.


Assuntos
Antioxidantes , Glicolipídeos , Alga Marinha , Glicolipídeos/química , Glicolipídeos/isolamento & purificação , Glicolipídeos/farmacologia , Antioxidantes/farmacologia , Antioxidantes/química , Antioxidantes/isolamento & purificação , Alga Marinha/química , Rodófitas/química , Solventes/química , Picratos/química
19.
Food Chem ; 449: 139262, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38608613

RESUMO

Despite its nutritional components and potential health benefits, the bitterness of quinoa seed limits its utilization in the food industry. Saponins are believed to be the main cause of the bitterness, but it is still uncertain which specific compound is responsible. This study aimed to isolate the main components contributing to the bitterness in quinoa seed by solvent extraction and various column chromatography techniques guided by sensory evaluation. Five compounds were identified by mass spectrometry and nuclear magnetic resonance analyses, with the dose-over-threshold factors from 29.03 to 198.89. The results confirmed that triterpenoids are responsible for the bitter taste in quinoa seed, with phytolaccagenic acid derivatives being the primary contributor. Additionally, kaempferol 3-O-(2″, 6″-di-O-α-rhamnopyranosyl)-ß-galactopyranoside (namely mauritianin), was demonstrated for the first time to be associated with the bitterness of quinoa. This study could provide new insight into the bitter compound identification in quinoa.


Assuntos
Chenopodium quinoa , Compostos Fitoquímicos , Sementes , Paladar , Chenopodium quinoa/química , Humanos , Sementes/química , Compostos Fitoquímicos/química , Extratos Vegetais/química , Estrutura Molecular
20.
Food Chem ; 451: 139442, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38688099

RESUMO

Enshi Yulu green tea (ESYL) is the most representative traditional steamed green tea in Enshi, Hubei. Different ESYL grades exhibit distinct flavors, tastes, and prices. In this study, a visual sensor based on 4-MPBA Au@AgNPs was developed for the rapid and accurate identification of ESYL grades. The recognition mechanism involved the binding of 4-MPBA Au@AgNPs with polyphenolic compounds in ESYL to form borate esters and the conversion of Ag+ to Ag0, with the generated Ag0 depositing on the surface of 4-MPBA Au@AgNPs. The results showed that the sensor can amplify the color differences of different grades of ESYL. The visual results were also validated by the partial least squares discriminant analysis model, demonstrating an enhancement in recognition accuracy from 68.2 % to 95.5 % compared to the original extraction solution. The colorimetric sensor developed in this study is expected to provide a new approach for traceability research of other foods.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA