RESUMO
BACKGROUND: During the COVID-19 pandemic, masks proved to be an effective measure in preventing virus transmission. However, many people have reported discomfort and negative perceptions toward wearing masks, especially during physical activity. This study aims to evaluate the discomfort and adverse perceptions related to various mask types among young, healthy adults during light exercise, including sitting, stationary stepping, and stair climbing. The study also examines the extent to which masks influence physiological indicators of physical well-being. METHODS: The study was conducted in two stages at the campus hospital of Shantou University. In Stage 1, 20 healthy college students (10 males, 10 females) were recruited to identify the mask with the most substantial physiological and psychological impact among four types: KN95 respirators, surgical masks, cloth masks, and 3D medical masks. These specific types were chosen due to their widespread use and varying levels of filtration and breathability. In Stage 2, 14 healthy college students (7 males, 7 females) were included to examine the effects of the identified mask across various levels of physical exertion. Subjective perceptions were measured using the Mask-Related Discomfort and Perception Score (MRDPS), and physiological parameters such as body temperature, blood pressure, pulse rate, and vital capacity were recorded. RESULTS: The KN95 respirator and cloth mask were associated with the highest MRDPS, indicating significant discomfort among wearers (p < 0.05). The use of KN95 respirators had the largest impact on MRDPS during stair stepping (ß = 10.357, 95% CI [5.755, 14.959]). Physiological parameters showed minor variations across different masks, with KN95 respirators significantly associated with reduced diastolic blood pressure (ß=-7.806, 95% CI [-12.294, -3.318]) and pulse rate (ß=-10.661, 95% CI [-18.896, -2.425]) in Stage 1. However, after controlling for exercise pace in Stage 2, wearing a KN95 respirator did not significantly affect these parameters. CONCLUSIONS: KN95 respirators and cloth masks were found to cause the most discomfort during light physical activity, with males reporting higher discomfort levels than females. While these masks are associated with varying levels of perceived discomfort, their impact on physiological indicators is relatively modest. Future research should include larger and more diverse samples , continuous monitoring of physiological parameters during exercise, and exploration of the underlying mechanisms of gender differences in mask discomfort.
Assuntos
COVID-19 , Máscaras , Estudantes , Humanos , Masculino , Feminino , Adulto Jovem , Estudantes/psicologia , Estudantes/estatística & dados numéricos , China , COVID-19/prevenção & controle , Universidades , Exercício Físico/psicologia , Adulto , PercepçãoRESUMO
Introduction: Selenium is an essential micronutrient the human body requires, which is closely linked to health. Rice, a primary staple food globally, is a major source of human selenium intake. To develop selenium-enriched rice varieties, it is imperative to understand the mechanisms behind selenium's absorption and transport within rice, alongside identifying the key genes involved in selenium uptake, transport, and transformation within the plant. Methods: This study conducted transcriptome sequencing on four types of rice materials (two with low-selenium and two with high-selenium contents) across roots, stems, leaves, and panicles to analyze the gene expression differences. Results and discussion: Differential gene expression was observed in the various tissues, identifying 5,815, 6,169, 7,609, and 10,223 distinct genes in roots, stems, leaves, and panicles, respectively. To delve into these differentially expressed genes and identify the hub genes linked to selenium contents, weighted gene co-expression network analysis (WGCNA) was performed. Ultimately, 10, 8, 7, and 6 hub genes in the roots, stems, leaves, and panicles, respectively, were identified. The identification of these hub genes substantially aids in advancing our understanding of the molecular mechanisms involved in selenium absorption and transport during the growth of rice.
RESUMO
Glycoabyssomicin A (1), a new type of abyssomicin containing a sugar unit, was isolated from the deep-sea derived Streptomyces koyangensis SCSIO 5802 guided by LC-MS. The structure of 1 was elucidated by HR-ESI-MS, 1D-NMR (1H,13C NMR), 2D-NMR (HSQC, COSY, HMBC, NOESY), and TFA hydrolysis and acetylation reactions. In the antibacterial activities evaluation against a series of gram-positive and gram-negative bacteria, it showed inactive at the concentration of 10 µg per filter paper disc. This finding would broaden the way for discovery of more lead compounds of abyssomicins.
RESUMO
The significance of protein S-palmitoylation in angiogenesis has been largely overlooked, leaving various aspects unexplored. Recent identification of Gpx1 as a palmitoylated protein has generated interest in exploring its potential involvement in novel pathological mechanisms related to angiogenesis. In this study, we demonstrate that Gpx1 undergoes palmitoylation at cysteine-76 and -113, with PPT1 playing a crucial role in modulating the depalmitoylation of Gpx1. Furthermore, we find that PPT1-regulated depalmitoylation negatively impacts Gpx1 protein stability. Interestingly, inhibiting Gpx1 palmitoylation, either through expression of a non-palmitoylated Gpx1 mutant or by expressing PPT1, significantly enhances neovascular angiogenesis. Conversely, in PPT1-deficient mice, angiogenesis is notably attenuated compared to wild-type mice in an Oxygen-Induced Retinopathy (OIR) model, which mimics pathological angiogenesis. Physiologically, under hypoxic conditions, Gpx1 palmitoylation levels are drastically reduced, suggesting that increasing Gpx1 palmitoylation may have beneficial effects. Indeed, enhancing Gpx1 palmitoylation by inhibiting PPT1 with DC661 effectively suppresses retinal angiogenesis in the OIR disease model. Overall, our findings highlight the pivotal role of protein palmitoylation in angiogenesis and propose a novel mechanism whereby the PPT1-Gpx1 axis modulates angiogenesis, thereby providing a potential therapeutic strategy for targeting PPT1 to combat angiogenesis.
Assuntos
Glutationa Peroxidase GPX1 , Glutationa Peroxidase , Lipoilação , Tioléster Hidrolases , Animais , Camundongos , Tioléster Hidrolases/metabolismo , Tioléster Hidrolases/genética , Glutationa Peroxidase/metabolismo , Glutationa Peroxidase/genética , Humanos , Modelos Animais de Doenças , Neovascularização Patológica/metabolismo , Neovascularização Patológica/genética , Camundongos Knockout , AngiogêneseRESUMO
Diabetic retinopathy (DR) is a common complication of diabetes, with its prevalence increasing globally. While previous research has linked obesity indices such as body mass index (BMI) to DR, the association with weight-adjusted-waist index (WWI) remains unclear. Additionally, the relationship between WWI and DR has not been fully elucidated. This cross-sectional study analyzed data from the National Health and Nutrition Examination Survey (2005-2008) to investigate these associations in Americans aged 40 and above. The study included 5436 participants (2705 men and 2731 women). Weighted logistic regression analysis revealed a significant increase in DR prevalence with higher WWI and BMI values. Smooth curve analysis demonstrated a linear correlation between WWI and DR. The findings suggest that both WWI and BMI are independently associated with DR risk among older US adults, highlighting the importance of considering central obesity measures in assessing diabetic complications.
Assuntos
Índice de Massa Corporal , Retinopatia Diabética , Humanos , Retinopatia Diabética/epidemiologia , Retinopatia Diabética/etiologia , Masculino , Feminino , Pessoa de Meia-Idade , Estados Unidos/epidemiologia , Estudos Transversais , Adulto , Idoso , Prevalência , Inquéritos Nutricionais , Fatores de Risco , Peso Corporal , Obesidade/epidemiologia , Obesidade/complicações , Circunferência da CinturaRESUMO
To elucidate the mechanism of biochar addition on carbon and nitrogen retention during distilled grain (DGW) composting, this study investigated the losses of carbon and nitrogen and functional genes related to carbon and nitrogen metabolisms between biochar-treated and control composts. The addition of biochar significantly increased carbon and nitrogen retention by 13.5% and 33.8%, respectively. The difference in core carbon metabolism genes indicated that biochar addition inhibited CO2 release and promoted carbon fixation during the later composting phase, leading to improved carbon retention. Nitrogen metabolism analysis indicated that biochar addition suppressed early-phase ammoniation and late-phase denitrification and promoted nitrification and ammonia assimilation during the later stages of composting, thereby preserving nitrogen. During the later composting phase, biochar addition enhanced carbon-nitrogen coupling metabolism activity, leading to the synchronous retention of carbon and nitrogen. These findings elucidate the mechanism of biochar addition on carbon and nitrogen retention during DGW composting.
Assuntos
Carbono , Carvão Vegetal , Compostagem , Nitrogênio , Carbono/farmacologia , Carvão Vegetal/química , Carvão Vegetal/farmacologia , Compostagem/métodos , Metagenômica/métodos , Grão Comestível/metabolismo , Microbiologia do Solo , Solo/químicaRESUMO
Rice wine, well known for its unique flavor, rich nutritional value, and health benefits, has potential for extensive market development. Rhizopus and Aspergillus are among several microorganisms used in rice wine brewing and are crucial for determining rice wine quality. The strains were isolated via Rose Bengal and starch as a combined separation medium, followed by oenological property and sensory evaluation screening. The strain exhibiting the best performance can be screened using the traditional rice wine Qu. The strains YM-8, YM-10, and YM-16, which exhibited strong saccharification and fermentation performance along with good flavor and taste, were obtained from traditional rice wine Qu. Based on ITS genetic sequence analysis, the YM-8, YM-10, and YM-16 strains were identified as Rhizopus microsporus, Rhizopus arrhizus, and Aspergillus oryzae. The optimum growth temperature of each of the three strains was 30°C, 32°C, and 30°C, and the optimum initial pH was 6.0, 6.5, and 6.5, respectively. The activities of α-amylase, glucoamylase, and protease of YM-16 were highest at 220.23±1.88, 1,269.04±30.32, and 175.16±1.81 U/g, respectively. The amino acid content of rice wine fermented in a 20-L bioreactor with the three mold strains was higher than that of the control group, except for arginine, which was significantly lower than that of the control group. The total amino acid content and the total content of each type of amino acid were ranked as YM-16 > YM-8 > YM-10 > control group, and the amino acid content varied greatly among the strains. The control group had a higher content, whereas YM-8 and YM-16 had lower contents of volatile aroma components than the control group and had the basic flavor substances needed for rice wine, which is conducive to the formation of rice wine aroma. This selected strain, YM-16, has strong saccharification and fermentation ability, is a rich enzyme system, and improves the flavor of rice wine, thereby demonstrating its suitability as a production strain for brewing.
Assuntos
Reatores Biológicos , Fermentação , Oryza , Vinho , Vinho/análise , Vinho/microbiologia , Oryza/microbiologia , Oryza/metabolismo , Reatores Biológicos/microbiologia , Rhizopus/metabolismo , Paladar , Aspergillus oryzae/metabolismo , Aspergillus oryzae/genética , Concentração de Íons de HidrogênioRESUMO
Background: Fibroblast growth factor 21 (FGF21) is a key hormone factor that regulates glucose and lipid homeostasis. Exercise may regulate its effects and affect disease states. Therefore, we sought to determine how exercise affects FGF21 concentrations in adults. Methods: The review was registered in the International Prospective Systematic Review (PROSPERO, CRD42023471163). The Cochrane Library, PubMed, and Web of Science databases were searched for studies through July 2023. Studies that assessed the effects of exercise training on FGF21 concentration in adults were included. The random effect model, data with standardized mean difference (SMD), and 95% confidence intervals (CI) were used to evaluate the pooled effect size of exercise training on FGF21. The risk of heterogeneity and bias were evaluated. A total of 12 studies involving 401 participants were included. Results: The total effect size was 0.3 (95% CI [-0.3-0.89], p = 0.33) when comparing participants who exercised to those who were sedentary. However, subgroup analysis indicated that concurrent exercise and a duration ≥10 weeks significantly decreased FGF21 concentrations with an effect size of -0.38 (95% CI [-0.74--0.01], p < 0.05) and -0.38 (95% CI [-0.63--0.13], p < 0.01), respectively. Conclusion: Concurrent exercise and longer duration may be more efficient way to decrease FGF21 concentrations in adults with metabolic disorder.
Assuntos
Exercício Físico , Fatores de Crescimento de Fibroblastos , Fatores de Crescimento de Fibroblastos/sangue , Humanos , Exercício Físico/fisiologia , AdultoRESUMO
The flexible robot is widely used in a variety of fields such as medical treatment, rescue and disaster relief, industry, and agriculture. Using elastic materials to prepare flexible robot body structures is the core of the study of flexible robots. Due to the small selection of materials, single preparation method, and long fabrication time, in this study, a new method of gas-assisted extrusion (GAE) of elastic material round-tube for flexible robot body was proposed, and the numerical simulation of GAE was carried out with nonsilicone elastic material round-tube under different viscosities. The results showed that with the change of viscosity, the velocity, pressure drop, and shear rate of melt in all directions change accordingly. When the viscosity is too small or too large, it is easy to bring negative effects on the GAE process of elastic materials. TPE and TPU were completely plasticized in the GAE, and the surface of the extruded elastic products was smooth and straight, with full gloss. Therefore, in the preparation of the flexible robot body, nonsilicone elastic materials and GAE forming methods can be considered.
RESUMO
Quadrane sesquiterpenes featuring a distinctive tricyclic skeleton exhibit potent antimicrobial and anticancer activities. Although extensive studies have attempted to reveal the multistep carbocation rearrangement involved in the formation of the tricyclic quadrane scaffold, the exact biosynthetic pathway and chemical logic to generate the quadrane structure remains mysterious. Here we identified a novel sesquiterpene synthase that is capable of generating ß-terrecyclene possessing the quadrane scaffold and characterized the biosynthetic pathway of a representative fungal quadrane terrecyclic acid. Further mutagenesis coupled with isotopically sensitive branching studies of this ß-terrecyclene synthase provided insight into the mechanism involved in the formation of the quadrane scaffold.
RESUMO
Qu-aroma is of great significance for evaluation the quality of Daqu starter. This study aimed to decode the Qu-aroma of medium-temperature Daqu (MT-Daqu) via "top-down" and "bottom-up" approaches. Firstly, 52 aroma descriptors were defined to describe the MT-Daqu aroma by quantitative descriptive analysis. Secondly, 193 volatile organic compounds (VOCs) were identified from 42 MT-Daqu samples by HS-SPME-GC-MS, and 43 dominant VOCs were screened out by frequence of occurrence or abundance. By Thin Film (TF)-SPME-GC-O-MS, 27 odors and 90 VOCs were detected in MT-Daqu mixture, and 14 odor-active VOCs were screened out by odor intensity. Thirdly, a five-level MT-Daqu aroma wheel was constructed by matching 52 aroma descriptors and 37 aroma-active VOCs. Finally, Qu-aroma of MT-Daqu was reconstructed with 37 aroma-active VOCs and evaluated by omission experiments. Hereinto, 26 key aroma-active VOCs were determined by OAV value ≥1, including isovaleric acid, 1-hexanol, isovaleraldehyde, 2-octanone, trimethylpyrazine, γ-nonalactone, 4-vinylguaiacol, etc.
Assuntos
Cromatografia Gasosa-Espectrometria de Massas , Odorantes , Compostos Orgânicos Voláteis , Compostos Orgânicos Voláteis/química , Odorantes/análise , Humanos , Adulto , Masculino , Feminino , Microextração em Fase Sólida , Temperatura , Paladar , Aromatizantes/química , Adulto Jovem , OlfatoRESUMO
BACKGROUND: Infection with pathogenic bacteria during nonantibiotic breeding is one of the main causes of animal intestinal diseases. Oleanolic acid (OA) is a pentacyclic triterpene that is ubiquitous in plants. Our previous work demonstrated the protective effect of OA on intestinal health, but the underlying molecular mechanisms remain unclear. This study investigated whether dietary supplementation with OA can prevent diarrhea and intestinal immune dysregulation caused by enterotoxigenic Escherichia coli (ETEC) in piglets. The key molecular role of bile acid receptor signaling in this process has also been explored. RESULTS: Our results demonstrated that OA supplementation alleviated the disturbance of bile acid metabolism in ETEC-infected piglets (P < 0.05). OA supplementation stabilized the composition of the bile acid pool in piglets by regulating the enterohepatic circulation of bile acids and significantly increased the contents of UDCA and CDCA in the ileum and cecum (P < 0.05). This may also explain why OA can maintain the stability of the intestinal microbiota structure in ETEC-challenged piglets. In addition, as a natural ligand of bile acid receptors, OA can reduce the severity of intestinal inflammation and enhance the strength of intestinal epithelial cell antimicrobial programs through the bile acid receptors TGR5 and FXR (P < 0.05). Specifically, OA inhibited NF-κB-mediated intestinal inflammation by directly activating TGR5 and its downstream cAMP-PKA-CREB signaling pathway (P < 0.05). Furthermore, OA enhanced CDCA-mediated MEK-ERK signaling in intestinal epithelial cells by upregulating the expression of FXR (P < 0.05), thereby upregulating the expression of endogenous defense molecules in intestinal epithelial cells. CONCLUSIONS: In conclusion, our findings suggest that OA-mediated regulation of bile acid metabolism plays an important role in the innate immune response, which provides a new diet-based intervention for intestinal diseases caused by pathogenic bacterial infections in piglets.
RESUMO
Biological pretreatment is a viable method for enhancing biogas production from straw crops, with the improvement in lignocellulose degradation efficiency being a crucial factor in this process. Herein, a metagenomic approach was used to screen core microorganisms (Bacillus subtilis, Acinetobacter johnsonii, Trichoderma viride, and Aspergillus niger) possessing lignocellulose-degrading abilities among samples from three environments: pile retting wheat straw (WS), WS returned to soil, and forest soil. Subsequently, synthetic microbial communities were constructed for fermentation-enzyme production. The crude enzyme solution obtained was used to pretreat WS and was compared with two commercial enzymes. The synthetic microbial community enzyme-producing pretreatment (SMCEP) yielded the highest enzymatic digestion efficacy for WS, yielding cellulose, hemicellulose, and lignin degradation rates of 39.85, 36.99, and 19.21%, respectively. Furthermore, pretreatment of WS with an enzyme solution, followed by anaerobic digestion achieved satisfactory results. SMCEP displayed the highest cumulative biogas production at 801.16 mL/g TS, which was 38.79% higher than that observed for WS, 22.15% higher than that of solid-state commercial enzyme pretreatment and 25.41% higher than that of liquid commercial enzyme pretreatment. These results indicate that enzyme-pretreated WS can significantly enhance biogas production. This study represents a solution to the environmental burden and energy use of crop residues.
Assuntos
Biocombustíveis , Triticum , Triticum/metabolismo , Anaerobiose , Fermentação , Lignina/metabolismoRESUMO
Baijiu authenticity has been a frequent problem driven by economic interests in recent years, so it is important to discriminate against baijiu with different origins. Herein, we proposed a simple and efficient esters-targeted colorimetric sensor array mediated by hydroxylamine hydrochloride. Esters undergo a nucleophilic addition reaction with hydroxylamine hydrochloride to form hydroxamic acid, which rapidly forms a purplish red ferric hydroxamate under FeCl3·6H2O. Bromophenol blue and rhodamine B enrich the color effects. The array detected 12 esters with a detection limit on the order of 10-5 of most esters and 16 mixed esters with R2 > 0.999 and recoveries close to 100%. Otherwise, for discriminating 34 strong-aroma baijius (SABs), the array has an accuracy of 98% according to the origin, and 95% according to the grades, with a response time of 1 min. This study provides a new strategy for authenticity determination and quality control of baijiu.
Assuntos
Colorimetria , Ésteres , Colorimetria/instrumentação , Colorimetria/métodos , Ésteres/química , Ésteres/análise , Bebidas Alcoólicas/análise , Odorantes/análiseRESUMO
Daqu is the saccharifying, fermenting, and aroma-producing agent used in Baijiu brewing, and its maturation is crucial for obtaining high-quality Daqu. Previous studies have explored the microbial community composition and diversity before and after maturation. However, little is known about the changes in the functions of microbial community. In this study, based on the analyses of enzyme activities and volatile compounds of medium-temperature Daqu before and after maturation, metagenomics was used to analyze the differences in the composition of microbial community and the potential functions, with the aim to explore the microorganisms involved in changes in enzyme activities and important volatiles. The results showed that the moisture (P≤0.05), starch content, liquefying activity, saccharifying activity (P≤0.05), and fermentative activity decreased, while the acidity and esterifying activity (P≤0.05) increased after Daqu maturation. In the meantime, the composition of volatile compounds changed significantly (P=0.001), with significant decreases in the contents of aromatic alcohols and esters as well as significant increases in the contents of pyrazines, ketones, and higher fatty alcohols. The relative abundances of Mucorales (34.8%-23.0%) and Eurotiales (34.3%-20.1%) decreased in matured Daqu, and functional predictions showed these changes decreased the gene abundances of α-amylase, α-glucosidase, alcohol dehydrogenase, and alcohol dehydrogenase (NADP+) (P > 0.05), resulting in lower levels of liquefying activity (P > 0.05), saccharifying activity (P≤0.05), fermentative activity (P > 0.05), as well as aromatic alcohols such as phenylethyl alcohol (P≤0.05). In addition, higher relative abundances of Saccharomycetales (2.9%-16.6%), Lactobacillales (14.9%-23.6%), and Bacillales (0.8%-3.8%) were observed after maturation, and they were conducive to improving the gene abundances of alcohol O-acetyltransferase, carboxylesterase, acetolactate decarboxylase, (R)-acetoin dehydrogenase, and (S)-acetoin dehydrogenase (P≤0.05), resulting in significantly higher levels of esterifying activity and pyrazines (P≤0.05). The microorganisms involved in the changes in enzyme activities and important volatiles before and after Daqu maturation were studied at the gene level in this work, which may facilitate further rational regulation for Daqu production.
Assuntos
Bactérias , Microbiota , Bactérias/genética , Temperatura , Acetoína Desidrogenase , Álcool Desidrogenase , Microbiota/fisiologia , Fermentação , PirazinasRESUMO
Given the severe problem of Baijiu authenticity, it is essential to discriminate Baijiu from different origins quickly and effectively. As organic acids (OAs) are the most dominant taste-imparting substances in Baijiu, we proposed a simple, fast, and effective OAs-targeted colorimetric sensor array based on the colorimetric reaction of 4-aminophenol (AP)/4-amino-3-chlorophenol (ACP) under oxidation of Cu(NO3)2 for the rapid discrimination of origins of Baijiu with three main aroma types. Hydrogen ions ionized from OAs induced the protonation of the amino group, which blocked the colorimetric reaction, and the different levels of OAs in Baijiu enabled the array to discriminate different origins of Baijiu. The array was implemented to analyze 10 simple OAs and 16 mixed OAs and further for the discrimination of 42 Baijius with an accuracy of 98%. This method provided an efficient research strategy for a basis for rapid quality analysis of Baijiu.
Assuntos
Clorofenóis , Odorantes , Compostos Orgânicos Voláteis , Odorantes/análise , Colorimetria , Cromatografia Gasosa-Espectrometria de Massas/métodos , Compostos Orgânicos Voláteis/análise , Ácidos/análiseRESUMO
Background: Although aerobic exercise is the primary modality recommended for the treatment of hypertension, it remains unclear whether high-intensity all-out sprint interval training (SIT) can result in greater reductions of blood pressure (BP) and cardiorespiratory health. This systematic review aims to compare the impact of SIT versus Moderate-intensity continuous training (MICT) on improvements in resting systolic blood pressure (SBP), diastolic blood pressure (DBP) and maximal oxygen uptake (VO2 max) among adults. Methods: We conducted a systematic search of three online databases (PubMed, Embase, and Web of Science) from January 2000 to July 2023 to identify randomized controlled trials that compared the chronic effects of SIT versus MICT on BP in participants with high or normal blood pressure. We extracted information on participant characteristics, exercise protocols, BP outcomes, and intervention settings. Furthermore, the changes in VO2 max between the two groups were analyzed using a meta-analysis. The pooled results were presented as weighted means with 95% confidence intervals (CI). Results: Out of the 1,874 studies initially were found, eight were included in this review, totaling 169 participants. A significant decrease in SBP (MD = -2.82 mmHg, 95% CI [-4.53 to -1.10], p = 0.08, I2 =45%) was observed in the SIT group compared to before the training, but no significant decrease in DBP (MD = -0.75 mmHg, 95% CI [-1.92 to 0.42], p = 0.16, I2 = 33%) was observed. In contrast, both SBP (MD = -3.00 mmHg, 95% CI [-5.31 to -0.69], p = 0.68, I2 = 0%) and DBP (MD = -2.11 mmHg, 95% CI [-3.63 to -0.60], p = 0.72, I2 = 0%) significantly decreased in the MICT group with low heterogeneity. No significant difference was found in resting SBP and DBP between SIT and MICT after the intervention. Both SIT and MICT significantly increased VO2 peak, with SIT resulting in a mean difference (MD) of 1.75 mL/kg/min (95% CI [0.39-3.10], p = 0.02, I2 = 61%), and MICT resulting in a mean difference of 3.10 mL/kg/min (95% CI [1.03-5.18], p = 0.007, I2 = 69%). MICT was more effective in improving VO2 peak (MD = -1.36 mL/kg/min, 95% CI [-2.31 to 0.40], p = 0.56, I2 = 0%). Subgroup analysis of duration and single sprint time showed that SIT was more effective in reducing SBP when the duration was ≥8 weeks or when the sprint time was <30 s. Conclusion: Our meta-analysis showed that SIT is an effective intervention in reducing BP and improving cardiorespiratory fitness among adults. Consequently, SIT can be used in combination with traditional MICT to increase the variety, utility, and time efficiency of exercise prescriptions for different populations.
Assuntos
Treinamento Intervalado de Alta Intensidade , Hipertensão , Hipotensão , Adulto , Humanos , Pressão Sanguínea/fisiologia , Treinamento Intervalado de Alta Intensidade/métodos , Hipertensão/terapia , Terapia por Exercício/métodos , Exercício Físico/fisiologiaRESUMO
Imatinib (IMB) is a type of tyrosine kinase inhibitor with great application potential for inhibiting corneal neovascularization (CNV), but its poor water solubility limits its application in eye disease treatment. In this study, novel IMB@glycymicelles entrapped in hydrogel (called IMB@glycymicelle-hydrogel) were prepared, characterized, and evaluated for their therapeutic effects on corneal alkali burn in mice. Imatinib could be successfully loaded in glycymicelles using glycyrrhizin as a nanocarrier with an optimized weight ratio of IMB:nanocarrier. The apparent solubility of IMB was significantly improved from 61.69 ± 5.55 µg/mL to bare IMB to 359,967.62 ± 20,059.42 µg/mL to IMB@glycymicelles. Then, the IMB@glycymicelles were entrapped in hydrogel fabricated with hydroxypropyl methylcellulose and sodium hyaluronate (HA) to prolong retention time on the ocular surface. Rabbit eye tolerance tests showed that IMB@glycymicelle-hydrogel possessed good ocular safety profiles. In a mouse model of corneal alkali burns, the topical administration of IMB@glycymicelle-hydrogel showed strong efficacy by prompting corneal wound healing, recovering corneal sensitivity, relieving corneal opacities, and inhibiting CNV, and these efficacy evaluation parameters were better than those of the positive drug HA. Overall, these results demonstrated that IMB@glycymicelle-hydrogel may be a promising candidate for the effective treatment of alkali ocular damage.
RESUMO
Non-alcoholic fatty liver disease (NAFLD) is considered as one of the most common diseases of lipid metabolism disorders, which is closely related to bile acids disorders and gut microbiota disorders. Bile acids are synthesized from cholesterol in the liver, and processed by gut microbiota in intestinal tract, and participate in metabolic regulation through the enterohepatic circulation. Bile acids not only promote the consumption and absorption of intestinal fat but also play an important role in biological metabolic signaling network, affecting fat metabolism and glucose metabolism. Studies have demonstrated that exercise plays an important role in regulating the composition and function of bile acid pool in enterohepatic axis, which maintains the homeostasis of the enterohepatic circulation and the health of the host gut microbiota. Exercise has been recommended by several health guidelines as the first-line intervention for patients with NAFLD. Can exercise alter bile acids through the microbiota in the enterohepatic axis? If so, regulating bile acids through exercise may be a promising treatment strategy for NAFLD. However, the specific mechanisms underlying this potential connection are largely unknown. Therefore, in this review, we tried to review the relationship among NAFLD, physical exercise, bile acids, and gut microbiota through the existing data and literature, highlighting the role of physical exercise in rebalancing bile acid and microbial dysbiosis.
Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/terapia , Ácidos e Sais Biliares/metabolismo , Fígado/metabolismo , Intestinos , Exercício FísicoRESUMO
A Gram-stain-positive, rod-shaped, endospore-forming, aerobic bacterial strain, designated ZS111008T, was isolated from high-temperature Daqu, a starter for production of Chinese Jiang-flavour Baijiu, and was characterized by polyphasic taxonomy. This novel isolate grew in the presence of 0-5â% (w/v) NaCl, at pH 6.0-9.0 and 25-45â°C; optimum growth was observed with 1â% (w/v) NaCl, at pH 8.0 and 30â°C. A comparative analysis of the 16S rRNA gene sequence (1461 bp) of strain ZS111008T showed highest similarity to Solibacillus silvestris DSM12223T (96.7%), followed by Solibacillus cecembensis PN5T (96.6%) and Solibacillus isronensis AMCK01000046 (96.5%). The DNA G+C content of strain ZS111008T was 37.21 mol%. The respiratory quinone was identified as menaquinone-7 and the major polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylserine and one unknown phospholipid. Lys was detected as the diagnostic diamino acid in the cell wall. Based on morphological characteristics, chemotaxonomic characteristics and physiological properties, strain ZS111008T represents a novel species of the genus Solibacillus, for which the name Solibacillus daqui sp. nov. is proposed. The type strain for this proposed species is ZS111008T (=CGMCC 1.19455T=JCM 35214T).