Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 195
Filtrar
1.
Cell Metab ; 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38971153

RESUMO

The intestine constantly encounters and adapts to the external environment shaped by diverse dietary nutrients. However, whether and how gut adaptability to dietary challenges is compromised in ulcerative colitis is incompletely understood. Here, we show that a transient high-fat diet exacerbates colitis owing to inflammation-compromised bile acid tolerance. Mechanistically, excessive tumor necrosis factor (TNF) produced at the onset of colitis interferes with bile-acid detoxification through the receptor-interacting serine/threonine-protein kinase 1/extracellular signal-regulated kinase pathway in intestinal epithelial cells, leading to bile acid overload in the endoplasmic reticulum and consequent apoptosis. In line with the synergy of bile acids and TNF in promoting gut epithelial damage, high intestinal bile acids correlate with poor infliximab response, and bile acid clearance improves infliximab efficacy in experimental colitis. This study identifies bile acids as an "opportunistic pathogenic factor" in the gut that would represent a promising target and stratification criterion for ulcerative colitis prevention/therapy.

2.
BMC Endocr Disord ; 24(1): 108, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38982394

RESUMO

OBJECTIVE: We aimed to analyze the relationship between non-alcoholic fatty liver and progressive fibrosis and serum 25-hydroxy vitamin D (25(OH)D) in patients with type 2 diabetes mellitus. METHODS: A total of 184 patients with T2DM who were hospitalized in the Department of Endocrinology of the ShiDong Clinical Hospital between January 2023 and June 2023 were selected. We compared review of anthropometric, biochemical, and inflammatory parameters and non-invasive scores between groups defined by ultrasound NAFLD severity grades.We determine the correlation between 25(OH)D and FLI and FIB-4 scores, respectively. RESULTS: Statistically significant differences were seen between BMI, WC, C-peptide levels, FPG, ALT, serum 25(OH)D, TC, HDL, lumbar spine bone density, FLI, and FIB-4 in different degrees of NAFLD. Multivariate logistic regression analysis showed that 25(OH)D (OR = 1.26, p = 0.001), age (OR = 0.93, P < 0.001) and BMI (OR = 1.04, p = 0.007) were independent predictors of NAFLD in patients with T2DM. CONCLUSIONS: This study revealed the correlation between serum 25(OH)D levels and NAFLD in patients with T2DM. We also demonstrated that serum 25(OH)D levels were negatively correlated with FLI/FIB-4 levels in patients with T2DM with NAFLD, suggesting that vitamin D deficiency may promote hepatic fibrosis progression in T2DM with NAFLD.


Assuntos
Diabetes Mellitus Tipo 2 , Cirrose Hepática , Hepatopatia Gordurosa não Alcoólica , Vitamina D , Humanos , Hepatopatia Gordurosa não Alcoólica/sangue , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/patologia , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/complicações , Feminino , Masculino , Vitamina D/sangue , Vitamina D/análogos & derivados , Pessoa de Meia-Idade , Cirrose Hepática/sangue , Cirrose Hepática/patologia , Idoso , Progressão da Doença , Biomarcadores/sangue , Deficiência de Vitamina D/sangue , Deficiência de Vitamina D/complicações , Deficiência de Vitamina D/epidemiologia , Prognóstico , Adulto , Seguimentos
3.
J Am Heart Assoc ; 13(14): e032904, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38979831

RESUMO

BACKGROUND: Cardiac aging represents an independent risk factor for aging-associated cardiovascular diseases. Although evidence suggests an association between NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3) inflammasome formation and numerous cardiovascular diseases, its role in cardiac aging remains largely unclear. METHODS AND RESULTS: The longevity of mice with wild-type and NLRP3 knockout (NLRP3-/-) genotypes was assessed, with or without d-galactose treatment. Cardiac function was evaluated using echocardiography, and cardiac histopathology was examined through hematoxylin and eosin and Masson's trichrome staining. Senescence-associated ß-galactosidase (SA-ß-gal) staining was employed to detect cardiac aging. Western blotting was used to assess aging-related proteins (p53, p21) and pyroptosis-related proteins. Additionally, dihydroethidium staining, lactate dehydrogenase release, and interleukin-1ß ELISA assays were performed, along with measurements of total superoxide dismutase and malondialdehyde levels. In vitro, H9c2 cells were exposed to d-galactose for 24 hours in the absence or presence of N-acetyl-l-cysteine (reactive oxygen species inhibitor), BAY-117082 (nuclear factor κ-light-chain enhancer of activated B cells inhibitor), MCC950 (NLRP3 inhibitor), and VX-765 (Caspase-1 inhibitor). Immunofluorescence staining was employed to detect p53, gasdermin D, and apoptosis-associated speck-like protein proteins. Intracellular reactive oxygen species levels were assessed using fluorescence microscopy and flow cytometry. Senescence-associated ß-galactosidase staining and Western blotting were also employed in vitro for the same purpose. The results showed that NLRP3 upregulation was implicated in aging and cardiovascular diseases. Inhibition of NLRP3 extended life span, mitigated the aging phenotype, improved cardiac function and blood pressure, ameliorated lipid metabolism abnormalities, inhibited pyroptosis in cardiomyocytes, and ultimately alleviated cardiac aging. In vitro, the inhibition of reactive oxygen species, nuclear factor κ-light-chain enhancer of activated B cells, NLRP3, or caspase-1 attenuated NLRP3 inflammasome-mediated pyroptosis. CONCLUSIONS: The reactive oxygen species/nuclear factor κ-light-chain enhancer of activated B cells/NLRP3 signaling pathway loop contributes to d-galactose-treated cardiomyocyte senescence and cardiac aging.


Assuntos
Galactose , Inflamassomos , Camundongos Knockout , Miócitos Cardíacos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Piroptose , Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Galactose/toxicidade , Galactose/metabolismo , Piroptose/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Inflamassomos/metabolismo , Camundongos , Envelhecimento/metabolismo , Camundongos Endogâmicos C57BL , Transdução de Sinais , Senescência Celular/efeitos dos fármacos , Masculino , Espécies Reativas de Oxigênio/metabolismo , NF-kappa B/metabolismo , Linhagem Celular , Modelos Animais de Doenças , Ratos
4.
Talanta ; 278: 126550, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39013338

RESUMO

In this study, a low field nuclear magnetic resonance (LF-NMR) homogeneous sensor was constructed for detection of Escherichia coli (E. coli) based on the copper metabolism of E. coli triggered click reaction. When live E. coli was present, a large amount of Cu2+ ions were transformed into Cu+ via copper metabolism, which then catalyzed a Cu+-catalyzed azide-alkyne cycloaddition (CuAAC) reaction between two materials, azide group modified gadolinium oxide nanorods (Gd2O3-Az) and PA-GO@Fe3O4 i.e., graphene oxide (GO) loaded with large amounts of alkynyl (PA) groups and Fe3O4 nanoparticles simultaneously. After magnetic separation, unbound Gd2O3-Az was dissolved by added hydrochloric acid (HCl) to generate homogeneous Gd3+ solution, enabling homogeneous detection of E. coli. Triple signal amplification was achieved through the CuAAC reaction induced by E. coli copper metabolism, functional nanomaterials, and HCl assisted homogeneous detection. Under the optimal experimental conditions, the linear range and limit of detection (LOD) for E. coli were 10-1.0 × 107 CFU/mL and 3.5 CFU/mL, respectively, and the relative standard deviations (RSDs) were all less than 2.8 %. In addition, the sensor has satisfactory selectivity, stability and practical sample application capability, providing a new approach for the LF-NMR detection of food-borne pathogenic bacteria.

5.
Spectrochim Acta A Mol Biomol Spectrosc ; 321: 124703, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38936206

RESUMO

Unsafe food additives pose a significant threat to global health, especially in developing countries. Many existing methods rely on clean laboratories, complicated optics equipment, trained personnel and lengthy detection time, which are not suitable for onsite food safety inspections in emergency situations, peculiarly in impoverished areas. In this paper, a fast and visual onsite method is designed for the detection and quantification of additives in food safety by engineering a nanohybrid (MoS2/SDBS/Cu-CuFe2O4)-based catalysis. Interestingly, the nanohybrid presents peroxidase-like mimetic activity toward the substrate containing 3,3',5,5'-tetramethylbenzidine (TMB) and hydrogen peroxide (H2O2), which are then integrated simply into a detection kit. The blue oxidated TMB in this kit can be converted completely to colorless by some bio-molecule additives in commercial food, such as glutathione (GSH), cysteine (Cys), and ascorbic acid (AA). Remarkably, this process takes just less than 2 min and the detection limits are 2.8 nM, 5.5 nM and 47 nM, respectively. These results show excellent repeatability with a statistical analysis with (*P < 0.05) over 30 tests. Next, the images of the color changes can be captured clearly using a smartphone by red-green-blue (RGB) channels, which provides an opportunity for the development of field-operation device. Additionally, our approach is applied to some targets-indicative foods, showing a recovery range between 95.8 % and 104.2 %, offering an attractive and promising pathway for future practical food safety inspection applications. More importantly, this method can easily be extended to the detection of reducing substances in other analytical fields.

6.
BMC Plant Biol ; 24(1): 380, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38720246

RESUMO

BACKGROUND: Soybean (Glycine max), a vital grain and oilseed crop, serves as a primary source of plant protein and oil. Soil salinization poses a significant threat to soybean planting, highlighting the urgency to improve soybean resilience and adaptability to saline stress. Melatonin, recently identified as a key plant growth regulator, plays crucial roles in plant growth, development, and responses to environmental stress. However, the potential of melatonin to mitigate alkali stress in soybeans and the underlying mechanisms remain unclear. RESULTS: This study investigated the effects of exogenous melatonin on the soybean cultivar Zhonghuang 13 under alkaline stress. We employed physiological, biochemical, transcriptomic, and metabolomic analyses throughout both vegetative and pod-filling growth stages. Our findings demonstrate that melatonin significantly counteracts the detrimental effects of alkaline stress on soybean plants, promoting plant growth, photosynthesis, and antioxidant capacity. Transcriptomic analysis during both growth stages under alkaline stress, with and without melatonin treatment, identified 2,834 and 549 differentially expressed genes, respectively. These genes may play a vital role in regulating plant adaptation to abiotic stress. Notably, analysis of phytohormone biosynthesis pathways revealed altered expression of key genes, particularly in the ARF (auxin response factor), AUX/IAA (auxin/indole-3-acetic acid), and GH3 (Gretchen Hagen 3) families, during the early stress response. Metabolomic analysis during the pod-filling stage identified highly expressed metabolites responding to melatonin application, such as uteolin-7-O-(2''-O-rhamnosyl)rutinoside and Hederagenin-3-O-glucuronide-28-O-glucosyl(1,2)glucoside, which helped alleviate the damage caused by alkali stress. Furthermore, we identified 183 differentially expressed transcription factors, potentially playing a critical role in regulating plant adaptation to abiotic stress. Among these, the gene SoyZH13_04G073701 is particularly noteworthy as it regulates the key differentially expressed metabolite, the terpene metabolite Hederagenin-3-O-glucuronide-28-O-glucosyl(1,2)glucoside. WGCNA analysis identified this gene (SoyZH13_04G073701) as a hub gene, positively regulating the crucial differentially expressed metabolite of terpenoids, Hederagenin-3-O-glucuronide-28-O-glucosyl(1,2)glucoside. Our findings provide novel insights into how exogenous melatonin alleviates alkali stress in soybeans at different reproductive stages. CONCLUSIONS: Integrating transcriptomic and metabolomic approaches, our study elucidates the mechanisms by which exogenous melatonin ameliorates the inhibitory effects of alkaline stress on soybean growth and development. This occurs through modulation of biosynthesis pathways for key compounds, including terpenes, flavonoids, and phenolics. Our findings provide initial mechanistic insights into how melatonin mitigates alkaline stress in soybeans, offering a foundation for molecular breeding strategies to enhance salt-alkali tolerance in this crop.


Assuntos
Glycine max , Melatonina , Estresse Fisiológico , Transcriptoma , Melatonina/farmacologia , Glycine max/genética , Glycine max/efeitos dos fármacos , Glycine max/crescimento & desenvolvimento , Glycine max/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/genética , Transcriptoma/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Metabolômica , Perfilação da Expressão Gênica , Álcalis , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Metaboloma/efeitos dos fármacos
7.
Small ; : e2401346, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38700047

RESUMO

Transparent flexible energy storage devices are limited by the trade-off among flexibility, transparency, and charge storage capability of their electrode materials. Conductive polymers are intrinsically flexible, but limited by small capacitance. Pseudocapacitive MXene provides high capacitance, yet their opaque and brittle nature hinders their flexibility and transparency. Herein, the development of synergistically interacting conductive polymer Ti3C2Tx MXene/PEDOT:PSS composites is reported for transparent flexible all-solid-state supercapacitors, with an outstanding areal capacitance of 3.1 mF cm-2, a high optical transparency of 61.6%, and excellent flexibility and durability. The high capacitance and high transparency of the devices stem from the uniform and thorough blending of PEDOT:PSS and Ti3C2Tx, which is associated with the formation of O─H…O H-bonds in the composites. The conductive MXene/polymer composite electrodes demonstrate a rational means to achieve high-capacity, transparent and flexible supercapacitors in an easy and scalable manner.

8.
Nanomaterials (Basel) ; 14(10)2024 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-38786841

RESUMO

Two-dimensional transition metal dichalcogenides (2D-TMDs) possess appropriate bandgaps and interact via van der Waals (vdW) forces between layers, effectively overcoming lattice compatibility challenges inherent in traditional heterojunctions. This property facilitates the creation of heterojunctions with customizable bandgap alignments. However, the prevailing method for creating heterojunctions with 2D-TMDs relies on the low-efficiency technique of mechanical exfoliation. Sb2Te3, recognized as a notable p-type semiconductor, emerges as a versatile component for constructing diverse vertical p-n heterostructures with 2D-TMDs. This study presents the successful large-scale deposition of 2D Sb2Te3 onto inert mica substrates, providing valuable insights into the integration of Sb2Te3 with 2D-TMDs to form heterostructures. Building upon this initial advancement, a precise epitaxial growth method for Sb2Te3 on pre-existing WS2 surfaces on SiO2/Si substrates is achieved through a two-step chemical vapor deposition process, resulting in the formation of Sb2Te3/WS2 heterojunctions. Finally, the development of 2D Sb2Te3/WS2 optoelectronic devices is accomplished, showing rapid response times, with a rise/decay time of 305 µs/503 µs, respectively.

9.
J Cosmet Dermatol ; 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38738464

RESUMO

BACKGROUND: Male androgenetic alopecia (MAA) is a multifactorial disease, with patients presenting at a younger age, which is a risk factor for many metabolic diseases. AIMS: To explore the risk factors associated with early-onset of MAA and its metabolic characteristics. METHODS: Forty patients with MAA and 45 healthy controls were collected. The serum levels of fasting blood glucose (FBG), total cholesterol (TC), triglyceride (TG), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), total testosterone (TT), uric acid (UA), and 25-hydroxyvitamin D (25(OH)D) were measured. Meanwhile, lipid metabolites were detected by ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). RESULTS: 37.50% MAA patients had metabolic syndrome, compared to 17.78% in control group (p < 0.05). The levels of HDL-C, UA, and 25(OH)D were decreased in patients with MAA compared to healthy controls (p < 0.05). However, there was no significant difference in the level of TT between the two groups. Additionally, there were no significant differences in the levels of HDL-C, UA, 25(OH)D, and TT among different grades of hair loss (p > 0.05). The lipid profile of early-onset MAA differed significantly from healthy controls. In early-onset MAA, the levels of ceramide (Cer) and sphingomyelin (SM) were significantly lower. Cer(d38:5) and TG(15:0/18:1/18:1) may be the biomarkers. CONCLUSION: Low HDL-C, UA, and 25(OH)D may be the independent risk factors for early-onset MAA. Abnormal lipid metabolism was observed in early-onset MAA, wherein Cer and SM may serve as protective factors.

10.
Nature ; 629(8012): 586-591, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38720080

RESUMO

Light-emitting diodes (LEDs) based on perovskite quantum dots (QDs) have produced external quantum efficiencies (EQEs) of more than 25% with narrowband emission1,2, but these LEDs have limited operating lifetimes. We posit that poor long-range ordering in perovskite QD films-variations in dot size, surface ligand density and dot-to-dot stacking-inhibits carrier injection, resulting in inferior operating stability because of the large bias required to produce emission in these LEDs. Here we report a chemical treatment to improve the long-range order of perovskite QD films: the diffraction intensity from the repeating QD units increases three-fold compared with that of controls. We achieve this using a synergistic dual-ligand approach: an iodide-rich agent (aniline hydroiodide) for anion exchange and a chemically reactive agent (bromotrimethylsilane) that produces a strong acid that in situ dissolves smaller QDs to regulate size and more effectively removes less conductive ligands to enable compact, uniform and defect-free films. These films exhibit high conductivity (4 × 10-4 S m-1), which is 2.5-fold higher than that of the control, and represents the highest conductivity recorded so far among perovskite QDs. The high conductivity ensures efficient charge transportation, enabling red perovskite QD-LEDs that generate a luminance of 1,000 cd m-2 at a record-low voltage of 2.8 V. The EQE at this luminance is more than 20%. Furthermore, the stability of the operating device is 100 times better than previous red perovskite LEDs at EQEs of more than 20%.

11.
PLoS Genet ; 20(5): e1011273, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38728357

RESUMO

Existing imaging genetics studies have been mostly limited in scope by using imaging-derived phenotypes defined by human experts. Here, leveraging new breakthroughs in self-supervised deep representation learning, we propose a new approach, image-based genome-wide association study (iGWAS), for identifying genetic factors associated with phenotypes discovered from medical images using contrastive learning. Using retinal fundus photos, our model extracts a 128-dimensional vector representing features of the retina as phenotypes. After training the model on 40,000 images from the EyePACS dataset, we generated phenotypes from 130,329 images of 65,629 British White participants in the UK Biobank. We conducted GWAS on these phenotypes and identified 14 loci with genome-wide significance (p<5×10-8 and intersection of hits from left and right eyes). We also did GWAS on the retina color, the average color of the center region of the retinal fundus photos. The GWAS of retina colors identified 34 loci, 7 are overlapping with GWAS of raw image phenotype. Our results establish the feasibility of this new framework of genomic study based on self-supervised phenotyping of medical images.


Assuntos
Fundo de Olho , Estudo de Associação Genômica Ampla , Fenótipo , Retina , Humanos , Estudo de Associação Genômica Ampla/métodos , Retina/diagnóstico por imagem , Masculino , Polimorfismo de Nucleotídeo Único , Feminino , Processamento de Imagem Assistida por Computador/métodos
12.
Int J Mol Sci ; 25(7)2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38612925

RESUMO

Ethylene (ET) is an important phytohormone that regulates plant growth, development and stress responses. The ethylene-insensitive3/ethylene-insensitive3-like (EIN3/EIL) transcription factor family, as a key regulator of the ET signal transduction pathway, plays an important role in regulating the expression of ET-responsive genes. Although studies of EIN3/EIL family members have been completed in many species, their role in doubled haploid (DH) poplar derived from another culture of diploid Populus simonii × P. nigra (donor tree, DT) remains ambiguous. In this study, a total of seven EIN3/EIL gene family members in the DH poplar genome were identified. Basic physical and chemical property analyses of these genes were performed, and these proteins were predicted to be localized to the nucleus. According to the phylogenetic relationship, EIN3/EIL genes were divided into two groups, and the genes in the same group had a similar gene structure and conserved motifs. The expression patterns of EIN3/EIL genes in the apical buds of different DH poplar plants were analyzed based on transcriptome data. At the same time, the expression patterns of PsnEIL1, PsnEIN3, PsnEIL4 and PsnEIL5 genes in different tissues of different DH plants were detected via RT-qPCR, including the apical buds, young leaves, functional leaves, xylem, cambium and roots. The findings presented above indicate notable variations in the expression levels of PsnEIL genes across various tissues of distinct DH plants. Finally, the PsnEIL1 gene was overexpressed in DT, and the transgenic plants showed a dwarf phenotype, indicating that the PsnEIL1 gene was involved in regulating the growth and development of poplar. In this study, the EIN3/EIL gene family of DH poplar was analyzed and functionally characterized, which provides a theoretical basis for the future exploration of the EIN3/EIL gene function.


Assuntos
Populus , Haploidia , Filogenia , Populus/genética , Etilenos
13.
Mol Vis ; 30: 167-174, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38601015

RESUMO

Purpose: To examine whether increased ephrin type-B receptor 1 (EphB1) leads to inflammatory mediators in retinal Müller cells. Methods: Diabetic human and mouse retinal samples were examined for EphB1 protein levels. Rat Müller cells (rMC-1) were grown in culture and treated with EphB1 siRNA or ephrin B1-Fc to explore inflammatory mediators in cells grown in high glucose. An EphB1 overexpression adeno-associated virus (AAV) was used to increase EphB1 in Müller cells in vivo. Ischemia/reperfusion (I/R) was performed on mice treated with the EphB1 overexpression AAV to explore the actions of EphB1 on retinal neuronal changes in vivo. Results: EphB1 protein levels were increased in diabetic human and mouse retinal samples. Knockdown of EphB1 reduced inflammatory mediator levels in Müller cells grown in high glucose. Ephrin B1-Fc increased inflammatory proteins in rMC-1 cells grown in normal and high glucose. Treatment of mice with I/R caused retinal thinning and loss of cell numbers in the ganglion cell layer. This was increased in mice exposed to I/R and treated with the EphB1 overexpressing AAVs. Conclusions: EphB1 is increased in the retinas of diabetic humans and mice and in high glucose-treated Müller cells. This increase leads to inflammatory proteins. EphB1 also enhanced retinal damage in response to I/R. Taken together, inhibition of EphB1 may offer a new therapeutic option for diabetic retinopathy.


Assuntos
Retinopatia Diabética , Efrina-B1 , Doenças Retinianas , Animais , Humanos , Camundongos , Ratos , Retinopatia Diabética/genética , Retinopatia Diabética/metabolismo , Células Ependimogliais/metabolismo , Efrina-B1/genética , Efrina-B1/metabolismo , Glucose/metabolismo , Mediadores da Inflamação/metabolismo , Retina/metabolismo , Doenças Retinianas/metabolismo
14.
Gut Pathog ; 16(1): 25, 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38678229

RESUMO

BACKGROUND: Peutz-Jeghers syndrome (PJS) is a rare genetic disorder characterized by the development of pigmented spots, gastrointestinal polyps and increased susceptibility to cancers. Currently, most studies have investigated intestinal microbiota through fecal microbiota, and there are few reports about mucosa-associated microbiota. It remains valuable to search for the key intestinal microbiota or abnormal metabolic pathways linked to PJS. AIM: This study aimed to assess the structure and composition of mucosa-associated microbiota in patients with PJS and to explore the potential influence of intestinal microbiota disorders and metabolite changes on PJS. METHODS: The bacterial composition was analyzed in 13 PJS patients and 12 controls using 16S rRNA gene sequencing (Illumina MiSeq) for bacteria. Differential analyses of the intestinal microbiota were performed from the phylum to species level. Liquid chromatography-tandem mass spectrometry (LC‒MS) was used to detect the differentially abundant metabolites of PJS patients and controls to identify different metabolites and metabolic biomarkers of small intestinal mucosa samples. RESULTS: High-throughput sequencing confirmed the special characteristics and biodiversity of the mucosa microflora in patients with PJS. They had lower bacterial biodiversity than controls. The abundance of intestinal mucosal microflora was significantly lower than that of fecal microflora. In addition, lipid metabolism, amino acid metabolism, carbohydrate metabolism, nucleotide metabolism and other pathways were significantly different from those of controls, which were associated with the development of the enteric nervous system, intestinal inflammation and development of tumors. CONCLUSION: This is the first report on the mucosa-associated microbiota and metabolite profile of subjects with PJS, which may be meaningful to provide a structural basis for further research on intestinal microecology in PJS.

15.
Anal Chem ; 96(14): 5546-5553, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38551480

RESUMO

The detection of lysine acetyltransferases is crucial for diagnosing and treating lung cancer, highlighting the necessity for highly efficient detection methods. We developed a portable, highly accurate, and sensitive technique using fast-scan cyclic voltammetry (FSCV) to determine the activity of the lysine acetyltransferase TIP60, employing a novel miniature electrochemical sensor. This approach involves a compact electrochemical cell, merely 3 mm in diameter, that holds solutions up to 50 µL, equipped with a conductive indium tin oxide working electrode. Uniquely, this system operates on a two-electrode model compatible with the FSCV, obviating the traditional requirement for a reference electrode. The system detects TIP60 activity through the continuous generation of CoA molecules that engage in reactions with Cu(II), thereby significantly improving the accuracy of the acetylation analysis. Remarkably, the detection limit achieved for TIP60 is notably low at 3.3 pg/mL (S/N = 3). The results show that the reversible dynamic acetylation can be effectively regulated by inhibitor incubation and glucose stimulation. This cutting-edge strategy enhances the analysis of a broad spectrum of biomarkers by modifying the responsive unit, and its miniaturization and portability significantly amplify its applicability in biomedical research, promising it to be a versatile tool for early diagnostic and therapeutic interventions in lung cancer.


Assuntos
Neoplasias Pulmonares , Lisina Acetiltransferases , Humanos , Neoplasias Pulmonares/diagnóstico , Técnicas Eletroquímicas
16.
J Inflamm Res ; 17: 933-945, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38370464

RESUMO

The redox balance in the intestine plays an important role in maintaining intestinal homeostasis, and it is closely related to the intestinal mucosal barrier, intestinal inflammation, and the gut microbiota. Current research on the treatment of ulcerative colitis has focused on immune disorders, excessive inflammation, and oxidative stress. However, an imbalance in intestinal redox reaction plays a particularly critical role. Hydrogen is produced by some anaerobic bacteria via hydrogenases in the intestine. Increasing evidence suggests that hydrogen, as an inert gas, is crucial for immunity, inflammation, and oxidative stress and plays a protective role in ulcerative colitis. Hydrogen maintains the redox state balance in the intestine in ulcerative colitis and reduces damage to intestinal epithelial cells by exerting its selective antioxidant ability. Hydrogen also regulates the intestinal flora, reduces the harmful effects of bacteria on the intestinal epithelial barrier, promotes the restoration of normal anaerobic bacteria in the intestines, and ultimately improves the integrity of the intestinal epithelial barrier. The present review focuses on the therapeutic mechanisms of hydrogen-targeting ulcerative colitis.

17.
Nat Commun ; 15(1): 1819, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38418467

RESUMO

Dendritic mechanisms driving input-output transformation in starburst amacrine cells (SACs) are not fully understood. Here, we combine two-photon subcellular voltage and calcium imaging and electrophysiological recording to determine the computational architecture of mouse SAC dendrites. We found that the perisomatic region integrates motion signals over the entire dendritic field, providing a low-pass-filtered global depolarization to dendrites. Dendrites integrate local synaptic inputs with this global signal in a direction-selective manner. Coincidental local synaptic inputs and the global motion signal in the outward motion direction generate local suprathreshold calcium transients. Moreover, metabotropic glutamate receptor 2 (mGluR2) signaling in SACs modulates the initiation of calcium transients in dendrites but not at the soma. In contrast, voltage-gated potassium channel 3 (Kv3) dampens fast voltage transients at the soma. Together, complementary mGluR2 and Kv3 signaling in different subcellular regions leads to dendritic compartmentalization and direction selectivity, highlighting the importance of these mechanisms in dendritic computation.


Assuntos
Células Amácrinas , Receptores de Glutamato Metabotrópico , Animais , Camundongos , Células Amácrinas/fisiologia , Cálcio , Transdução de Sinais , Dendritos/fisiologia
18.
J Plast Reconstr Aesthet Surg ; 94: 238-246, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38341353

RESUMO

BACKGROUND: Previous reports on the treatment of sacral and ischial pressure injuries have not provided clear algorithms for surgical therapies. The objective of this study was to establish a reconstruction algorithm to guide the selection of an ideal free-style perforator flap that can be tailored to the defect in question. METHODS: We used 23 perforator flaps to reconstruct 14 sacral and 8 ischial defects in 22 patients over 5 years. A reconstruction algorithm system was developed based on the anatomical features of the perforator vessels (diameter, D; pulsatility [++∼+++], P) and their position in the skin island (DPD) (ie, D+P+DPD). A perforator-based propeller flap was applied as the first-line choice; if this plan was not feasible, we applied an altered V-Y advancement model or another second-choice technique. RESULTS: All flaps survived, and only 1 patient experienced partial wound dehiscence, which healed by secondary intention. After an average follow-up period of 11.2 months, no patient experienced recurrence or infection. CONCLUSIONS: Free-style perforator flap selection is determined by pressure injury and the desired advantage of a specific approach. The use of free-style perforator-based propeller flaps allows a surgeon to transfer healthy tissue into the defect, shifts the suture line away from the bony prominence, and preserves additional future donor sites. In cases where unexpected variations are encountered, the V-Y advancement model or another technique can be used. The simplified surgical algorithm (D+P+DPD) can provide versatility and reliability, achieve a durable, natural esthetic outcome, and minimize injuries to future donor sites.


Assuntos
Algoritmos , Ísquio , Retalho Perfurante , Úlcera por Pressão , Humanos , Retalho Perfurante/irrigação sanguínea , Úlcera por Pressão/cirurgia , Masculino , Pessoa de Meia-Idade , Feminino , Adulto , Idoso , Procedimentos de Cirurgia Plástica/métodos , Sacro/cirurgia , Sacro/lesões
19.
Cell ; 187(4): 914-930.e20, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38280375

RESUMO

The gut and liver are recognized to mutually communicate through the biliary tract, portal vein, and systemic circulation. However, it remains unclear how this gut-liver axis regulates intestinal physiology. Through hepatectomy and transcriptomic and proteomic profiling, we identified pigment epithelium-derived factor (PEDF), a liver-derived soluble Wnt inhibitor, which restrains intestinal stem cell (ISC) hyperproliferation to maintain gut homeostasis by suppressing the Wnt/ß-catenin signaling pathway. Furthermore, we found that microbial danger signals resulting from intestinal inflammation can be sensed by the liver, leading to the repression of PEDF production through peroxisome proliferator-activated receptor-α (PPARα). This repression liberates ISC proliferation to accelerate tissue repair in the gut. Additionally, treating mice with fenofibrate, a clinical PPARα agonist used for hypolipidemia, enhances colitis susceptibility due to PEDF activity. Therefore, we have identified a distinct role for PEDF in calibrating ISC expansion for intestinal homeostasis through reciprocal interactions between the gut and liver.


Assuntos
Intestinos , Fígado , Animais , Camundongos , Proliferação de Células , Fígado/metabolismo , PPAR alfa/metabolismo , Proteômica , Células-Tronco/metabolismo , Via de Sinalização Wnt , Intestinos/citologia , Intestinos/metabolismo
20.
Front Plant Sci ; 14: 1269884, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37954991

RESUMO

Soybean is an important food and oil crop widely cultivated globally. However, water deficit can seriously affect the yield and quality of soybeans. In order to ensure the stability and increase of soybean yield and improve agricultural water use efficiency (WUE), research on improving drought tolerance and the efficiency of water utilization of soybeans under drought stress has become particularly important. This study utilized the drought-tolerant variety Heinong 44 (HN44) and the drought-sensitive variety Suinong 14 (SN14) to analyze physiological responses and transcriptome changes during the gradual water deficit at the early seed-filling stage. The results indicated that under drought conditions, HN44 had smaller stomata, higher stomatal density, and lower stomatal conductance (Gs) and transpiration rate as compared to SN14. Additionally, HN44 had a higher abscisic acid (ABA) content and faster changes in stomatal morphology and Gs to maintain a dynamic balance between net photosynthetic rate (Pn) and Gs. Additionally, drought-tolerant variety HN44 had high instantaneous WUE under water deficit. Further, HN44 retained a high level of superoxide dismutase (SOD) activity and proline content, mitigating malondialdehyde (MDA) accumulation and drought-induced damage. Comprehensive analysis of transcriptome data revealed that HN44 had fewer differentially expressed genes (DEGs) under light drought stress, reacting insensitivity to water deficit. At the initial stage of drought stress, both varieties had a large number of upregulated DEGs to cope with the drought stress. Under severe drought stress, HN44 had fewer downregulated genes enriched in the photosynthesis pathway than SN14, while it had more upregulated genes enriched in the ABA-mediated signaling and glutathione metabolism pathways than SN14. During gradual water deficit, HN44 demonstrated better drought-tolerant physiological characteristics and water use efficiency than SN14 through key DEGs such as GmbZIP4, LOC100810474, and LOC100819313 in the major pathways. Key transcription factors were screened and identified, providing further clarity on the molecular regulatory pathways responsible for the physiological differences in drought tolerance among these varieties. This study deepened the understanding of the drought resistance mechanisms in soybeans, providing valuable references for drought-resistant soybean breeding.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA