Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.820
Filtrar
1.
Int J Nanomedicine ; 19: 4121-4136, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38736655

RESUMO

Purpose: This study aims to broaden the application of nano-contrast agents (NCAs) within the realm of the musculoskeletal system. It aims to introduce novel methods, strategies, and insights for the clinical management of ischemic muscle disorders, encompassing diagnosis, monitoring, evaluation, and therapeutic intervention. Methods: We developed a composite encapsulation technique employing O-carboxymethyl chitosan (OCMC) and liposome to encapsulate NCA-containing gold nanorods (GNRs) and perfluoropentane (PFP). This nanoscale contrast agent was thoroughly characterized for its basic physicochemical properties and performance. Its capabilities for in vivo and in vitro ultrasound imaging and photothermal imaging were authenticated, alongside a comprehensive biocompatibility assessment to ascertain its effects on microcirculatory perfusion in skeletal muscle using a murine model of hindlimb ischemia, and its potential to augment blood flow and facilitate recovery. Results: The engineered GNR@OCMC-liposome/PFP nanostructure exhibited an average size of 203.18±1.49 nm, characterized by size uniformity, regular morphology, and a good biocompatibility profile. In vitro assessments revealed NCA's potent photothermal response and its transformation into microbubbles (MBs) under near-infrared (NIR) irradiation, thereby enhancing ultrasonographic visibility. Animal studies demonstrated the nanostructure's efficacy in photothermal imaging at ischemic loci in mouse hindlimbs, where NIR irradiation induced rapid temperature increases and significantly increased blood circulation. Conclusion: The dual-modal ultrasound/photothermal NCA, encapsulating GNR and PFP within a composite shell-core architecture, was synthesized successfully. It demonstrated exceptional stability, biocompatibility, and phase transition efficiency. Importantly, it facilitates the encapsulation of PFP, enabling both enhanced ultrasound imaging and photothermal imaging following NIR light exposure. This advancement provides a critical step towards the integrated diagnosis and treatment of ischemic muscle diseases, signifying a pivotal development in nanomedicine for musculoskeletal therapeutics.


Assuntos
Meios de Contraste , Ouro , Isquemia , Músculo Esquelético , Nanotubos , Ultrassonografia , Animais , Ouro/química , Nanotubos/química , Meios de Contraste/química , Meios de Contraste/farmacologia , Camundongos , Isquemia/diagnóstico por imagem , Isquemia/terapia , Músculo Esquelético/diagnóstico por imagem , Ultrassonografia/métodos , Membro Posterior/irrigação sanguínea , Fluorocarbonos/química , Fluorocarbonos/farmacologia , Lipossomos/química , Quitosana/química , Quitosana/farmacologia , Doenças Musculares/diagnóstico por imagem , Doenças Musculares/terapia , Terapia Fototérmica/métodos , Modelos Animais de Doenças , Humanos , Pentanos
2.
J Phys Chem B ; 128(19): 4621-4630, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38697651

RESUMO

Thymine DNA glycosylase (TDG)-mediated excision of 5-formylcytosine and 5-carboxylcytosine (5-caC) is a critical step in active DNA demethylation. Herein, we employed a combined quantum mechanics/molecular mechanics approach to investigate the reaction mechanism of TDG-catalyzed N-glycosidic bond cleavage of 5-caC. The calculated results show that TDG-catalyzed 5-caC excision follows a concerted (SN2) mechanism in which glycosidic bond dissociation is coupled with nucleophile attack. Protonation of the 5-caC anion contributes to the cleavage of the N-glycoside bond, in which the N3-protonated zwitterion and imino tautomers are more favorable than carboxyl-protonated amino tautomers. This is consistent with the experimental data. Furthermore, our results reveal that the configuration rearrangement process of the protonated 5-caC would lower the stability of the N-glycoside bond and substantially reduce the barrier height for the subsequent C1'-N1 bond cleavage. This should be attributed to the smaller electrostatic repulsion between the leaving base and the negative phosphate group as a result of the structural rearrangement.


Assuntos
Citosina , Glicosídeos , Teoria Quântica , Timina DNA Glicosilase , Timina DNA Glicosilase/metabolismo , Timina DNA Glicosilase/química , Citosina/química , Citosina/metabolismo , Citosina/análogos & derivados , Glicosídeos/química , Glicosídeos/metabolismo , Simulação de Dinâmica Molecular
3.
Angew Chem Int Ed Engl ; : e202407037, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38767062

RESUMO

The stimulator of interferon genes (STING) pathway is a potent therapeutic target for innate immunity. Despite the efforts to develop pocket-dependent small-molecule STING agonists that mimic the endogenous STING ligand, cyclic guanosine monophosphate-adenosine monophosphate (cGAMP), most of these agonists showed disappointing results in clinical trials owing to the limitations of the STING pocket. In this study, we developed novel pocket-independent STING-activating agonists (piSTINGs), which act through multivalency-driven oligomerization to activate STING. Additionally, a piSTING-adjuvanted vaccine elicited a significant antibody response and inhibited tumour growth in therapeutic models. Moreover, a piSTING-based vaccine combination with aPD-1 showed remarkable potential to enhance the effectiveness of immune checkpoint blockade (ICB) immunotherapy. In particular, piSTING can strengthen the impact of STING pathway in immunotherapy and accelerate the clinical translation of STING agonists.

4.
J Adv Res ; 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38705256

RESUMO

INTRODUCTION: Per- and polyfluoroalkyl substances (PFAS) have infiltrated countless everyday products, raising concerns about potential effects on human health, specifically on the cardiovascular system and the development of abdominal aortic calcification (AAC). However, our understanding of this relationship is still limited. OBJECTIVES: This study aims to investigate the effects of PFAS on AAC using machine learning algorithms. METHODS: Leveraging the power of machine learning technique, extreme gradient boosting (XGBoost), we assessed the relationship between PFAS exposure and AAC risk. We focused on three PFAS compounds, perfluorodecanoic acid (PFDeA), perfluorohexane sulfonic acid (PFHxS), and perfluorononanoic acid (PFNA) through multiple logistic regression, restricted cubic spline (RCS), and quantile g-computation (QGC) models. To get more insight into the underlying mechanisms, mediation analyses are used to investigate the potential mediating role of fatty acids and blood cell fractions in AAC. RESULTS: Our findings indicate that elevated serum levels of PFHxS and PFDeA are associated with the increased risk of AAC. The QGC analyses underscore the overall positive association between the PFAS mixture and AAC risk, with PFHxS carrying the greatest weight, followed by PFDeA. The RCS analyses reveal a dose-dependent increase between serum PFHxS concentration and AAC risk in an inverted V-shape way. Moreover, age and PFHxS exposure are identified as the primary factors contributing to abdominal aortic calcification risk in SHapley Additive exPlanation (SHAP) summary plot combined with XGBoost technique. Although PFAS significantly change the profile of fatty acids, we do not find any mediating roles of them in AAC. Despite strong associations between PFAS exposure and hematological indicators, our analysis does not find evidence that these indicators mediate the development of AAC. CONCLUSIONS: In summary, our study highlights the detrimental impact of PFAS on abdominal aortic health and emphasizes the need for further research to understand the underlying mechanisms involved.

5.
J Affect Disord ; 358: 270-282, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38723681

RESUMO

OBJECTIVE: Ganoderic Acid A (GAA), a primary bioactive component in Ganoderma, has demonstrated ameliorative effects on depressive-like behaviors in a Chronic Social Defeat Stress (CSDS) mouse model. This study aims to elucidate the underlying molecular mechanisms through proteomic analysis. METHODS: C57BL/6 J mice were allocated into control (CON), chronic social defeat stress (CSDS), GAA, and imipramine (IMI) groups. Post-depression induction via CSDS, the GAA and IMI groups received respective treatments of GAA (2.5 mg/kg) and imipramine (10 mg/kg) for five days. Behavioral assessments utilized standardized tests. Proteins from the prefrontal cortex were analyzed using LC-MS, with further examination via bioinformatics and PRM for differential expression. Western blot analysis confirmed protein expression levels. RESULTS: Chronic social defeat stress (CSDS) induced depressive-like behaviors in mice, which were significantly alleviated by GAA treatment, comparably to imipramine (IMI). Proteomic analysis identified distinct proteins in control (305), GAA-treated (949), and IMI-treated (289) groups. Enrichment in mitochondrial and synaptic proteins was evident from GO and PPI analyses. PRM analysis revealed significant expression changes in proteins crucial for mitochondrial and synaptic functions (namely, Naa30, Bnip1, Tubgcp4, Atxn3, Carmil1, Nup37, Apoh, Mrpl42, Tprkb, Acbd5, Dcx, Erbb4, Ppp1r2, Fam3c, Rnf112, and Cep41). Western blot validation in the prefrontal cortex showed increased levels of Mrpl42, Dcx, Fam3c, Ppp1r2, Rnf112, and Naa30 following GAA treatment. CONCLUSION: GAA exhibits potential antidepressant properties, with its action potentially tied to the modulation of synaptic functions and mitochondrial activities.

6.
Front Immunol ; 15: 1384516, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38765009

RESUMO

Viral variant is one known risk factor associated with post-acute sequelae of COVID-19 (PASC), yet the pathogenesis is largely unknown. Here, we studied SARS-CoV-2 Delta variant-induced PASC in K18-hACE2 mice. The virus replicated productively, induced robust inflammatory responses in lung and brain tissues, and caused weight loss and mortality during the acute infection. Longitudinal behavior studies in surviving mice up to 4 months post-acute infection revealed persistent abnormalities in neuropsychiatric state and motor behaviors, while reflex and sensory functions recovered over time. In the brain, no detectable viral RNA and minimal residential immune cell activation was observed in the surviving mice post-acute infection. Transcriptome analysis revealed persistent activation of immune pathways, including humoral responses, complement, and phagocytosis, and gene expression levels associated with ataxia telangiectasia, impaired cognitive function and memory recall, and neuronal dysfunction and degeneration. Furthermore, surviving mice maintained potent systemic T helper 1 prone cellular immune responses and strong sera neutralizing antibodies against Delta and Omicron variants months post-acute infection. Overall, our findings suggest that infection in K18-hACE2 mice recapitulates the persistent clinical symptoms reported in long-COVID patients and provides new insights into the role of systemic and brain residential immune factors in PASC pathogenesis.


Assuntos
COVID-19 , Modelos Animais de Doenças , Síndrome de COVID-19 Pós-Aguda , SARS-CoV-2 , Animais , COVID-19/imunologia , SARS-CoV-2/imunologia , Camundongos , Humanos , Encéfalo/virologia , Encéfalo/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Feminino
8.
Nature ; 629(8010): 98-104, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38693411

RESUMO

Photobiocatalysis-where light is used to expand the reactivity of an enzyme-has recently emerged as a powerful strategy to develop chemistries that are new to nature. These systems have shown potential in asymmetric radical reactions that have long eluded small-molecule catalysts1. So far, unnatural photobiocatalytic reactions are limited to overall reductive and redox-neutral processes2-9. Here we report photobiocatalytic asymmetric sp3-sp3 oxidative cross-coupling between organoboron reagents and amino acids. This reaction requires the cooperative use of engineered pyridoxal biocatalysts, photoredox catalysts and an oxidizing agent. We repurpose a family of pyridoxal-5'-phosphate-dependent enzymes, threonine aldolases10-12, for the α-C-H functionalization of glycine and α-branched amino acid substrates by a radical mechanism, giving rise to a range of α-tri- and tetrasubstituted non-canonical amino acids 13-15 possessing up to two contiguous stereocentres. Directed evolution of pyridoxal radical enzymes allowed primary and secondary radical precursors, including benzyl, allyl and alkylboron reagents, to be coupled in an enantio- and diastereocontrolled fashion. Cooperative photoredox-pyridoxal biocatalysis provides a platform for sp3-sp3 oxidative coupling16, permitting the stereoselective, intermolecular free-radical transformations that are unknown to chemistry or biology.


Assuntos
Aminoácidos , Biocatálise , Acoplamento Oxidativo , Processos Fotoquímicos , Aminoácidos/biossíntese , Aminoácidos/química , Aminoácidos/metabolismo , Biocatálise/efeitos da radiação , Evolução Molecular Direcionada , Radicais Livres/química , Radicais Livres/metabolismo , Glicina/química , Glicina/metabolismo , Glicina Hidroximetiltransferase/metabolismo , Glicina Hidroximetiltransferase/química , Indicadores e Reagentes , Luz , Acoplamento Oxidativo/efeitos da radiação , Fosfato de Piridoxal/metabolismo , Estereoisomerismo , Aminoácidos de Cadeia Ramificada/química , Aminoácidos de Cadeia Ramificada/metabolismo
9.
Sci Total Environ ; 932: 173085, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38729377

RESUMO

The presence of perfluoroalkyl and polyfluoroalkyl substances (PFAS) in various everyday products has raised concerns about their potential impact on prostate health. This study aimed to investigate the effects of different types of PFAS on prostate health, including PFDeA, PFOA, PFOS, PFHxS, and PFNA. To assess the relationship between PFAS exposure and prostate injury, machine learning algorithms were employed to analyze prostate-specific antigen (PSA) metrics. The analysis revealed a linear and positive dose-dependent association between PFOS and the ratio of free PSA to total PSA (f/tPSA). Non-linear dose-response relationships were observed between the other four types of PFAS and the f/tPSA ratio. Additionally, the analysis showed a positive association between the mixture of PFAS and prostate hyperplasia, with PFNA having the highest impact followed by PFOS. These findings suggest that elevated serum levels of PFDeA, PFOA, PFOS, and PFNA are linked to prostate hyperplasia. Therefore, this study utilized advanced machine learning techniques to uncover potential hazardous effects of PFAS exposure on prostate health, specifically the positive association between PFAS and prostate hyperplasia.


Assuntos
Fluorocarbonos , Hiperplasia Prostática , Masculino , Fluorocarbonos/sangue , Humanos , Exposição Ambiental/estatística & dados numéricos , Poluentes Ambientais/sangue , Aprendizado de Máquina , Ácidos Alcanossulfônicos/sangue , Antígeno Prostático Específico/sangue
10.
Int J Biol Macromol ; 270(Pt 2): 132227, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38734339

RESUMO

Fusarium crown rot, caused by Fusarium pseudograminearum, is a devastating disease affecting the yield and quality of cereal crops. Peroxisomes are single-membrane organelles that play a critical role in various biological processes in eukaryotic cells. To functionally characterise peroxisome biosynthetic receptor proteins FpPEX5 and FpPEX7 in F. pseudograminearum, we constructed deletion mutants, ΔFpPEX5 and ΔFpPEX7, and complementary strains, ΔFpPEX5-C and ΔFpPEX7-C, and analysed the functions of FpPEX5 and FpPEX7 proteins using various phenotypic observations. The deletion of FpPEX5 and FpPEX7 resulted in a significant deficiency in mycelial growth and conidiation and blocked the peroxisomal targeting signal 1 and peroxisomal targeting signal 2 pathways, which are involved in peroxisomal matrix protein transport, increasing the accumulation of lipid droplets and reactive oxygen species. The deletion of FpPEX5 and FpPEX7 may reduce the formation of toxigenic bodies and decrease the pathogenicity of F. pseudograminearum. These results indicate that FpPEX5 and FpPEX7 play vital roles in the growth, asexual reproduction, virulence, and fatty acid utilisation of F. pseudograminearum. This study provides a theoretical basis for controlling stem rot in wheat.

11.
Plant Sci ; 344: 112109, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38704094

RESUMO

Advances in next-generation sequencing (NGS) have significantly reduced the cost and improved the efficiency of obtaining single nucleotide polymorphism (SNP) markers, particularly through restriction site-associated DNA sequencing (RAD-seq). Meanwhile, the progression in whole genome sequencing has led to the utilization of an increasing number of reference genomes in SNP calling processes. This study utilized RAD-seq data from 242 individuals of Engelhardia roxburghiana, a tropical tree of the walnut family (Juglandaceae), with SNP calling conducted using the STACKS pipeline. We aimed to compare both reference-based approaches, namely, employing a closely related species as the reference genome versus the species itself as the reference genome, to evaluate their respective merits and limitations. Our findings indicate a substantial discrepancy in the number of obtained SNPs between using a closely related species as opposed to the species itself as reference genomes, the former yielded approximately an order of magnitude fewer SNPs compared to the latter. While the missing rate of individuals and sites of the final SNPs obtained in the two scenarios showed no significant difference. The results showed that using the reference genome of the species itself tends to be prioritized in RAD-seq studies. However, if this is unavailable, considering closely related genomes is feasible due to their wide applicability and low missing rate as alternatives. This study contributes to enrich the understanding of the impact of SNP acquisition when utilizing different reference genomes.


Assuntos
Genoma de Planta , Sequenciamento de Nucleotídeos em Larga Escala , Polimorfismo de Nucleotídeo Único , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de DNA/métodos
12.
Eur J Nutr ; 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38700577

RESUMO

PURPOSE: The aim of this study was to examine the associations between body composition and temporal eating patterns, including time of first eating occasion, time of last eating occasion, eating window, and eating jet lag (the variability in meal timing between weekdays and weekends). METHODS: A total of 131 participants were included in the study. Temporal eating pattern information was collected through consecutive 7-day eat timing questionnaires and photographic food records. Body composition was assessed by bioelectrical impedance analysis. Multiple linear regression models were used to evaluate the relationships of temporal eating patterns with body composition, and age was adjusted. Eating midpoint was additionally adjusted in the analysis of eating window. RESULTS: On weekdays, both later first eating occasion and last eating occasion were associated with lower lean mass, and longer eating window was associated with lower body fat percentage. On weekends, both later first eating occasion and last eating occasion were associated with lower lean mass, and longer eating window was associated with higher FFMI. Longer first eating occasion jet lag was associated with lower lean mass. CONCLUSION: Our study suggested that earlier and more regular eating patterns may have a benefit on body composition.

13.
Cogn Neurodyn ; 18(2): 741-756, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38699623

RESUMO

Surround suppression was initially identified as a phenomenon at the neural level in which stimuli outside the neuron's receptive field alone cannot activate responses but can modulate neural responses to stimuli covered inside the receptive field. Subsequent studies showed that surround suppression is not only a critical property of neurons across species and brain areas but also has been found in visual perceptions. More importantly, surround suppression varies across individuals and shows significant differences between normal controls and patients with certain mental disorders. Here, we combined results from related literature and summarized the findings derived from physiological and psychophysical evidence. We first outline the basic properties of surround suppression in the visual system and perceptions. Then, we mainly summarize the differences in perceptual surround suppression among different human subjects. Our review suggests that there is no consensus regarding whether the strength of perceptual surround suppression could be used as an effective index to distinguish particular populations. Then, we summarized the similar mechanisms for surround suppression and cognitive impairments to further explore the potential clinical applications of surround suppression. A clearer understanding of the mechanisms of surround suppression in neural responses and perceptions is necessary for facilitating its clinical applications.

14.
Mil Med Res ; 11(1): 28, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38711073

RESUMO

BACKGROUND: Intervertebral disc degeneration (IVDD) is a multifaceted condition characterized by heterogeneity, wherein the balance between catabolism and anabolism in the extracellular matrix of nucleus pulposus (NP) cells plays a central role. Presently, the available treatments primarily focus on relieving symptoms associated with IVDD without offering an effective cure targeting its underlying pathophysiological processes. D-mannose (referred to as mannose) has demonstrated anti-catabolic properties in various diseases. Nevertheless, its therapeutic potential in IVDD has yet to be explored. METHODS: The study began with optimizing the mannose concentration for restoring NP cells. Transcriptomic analyses were employed to identify the mediators influenced by mannose, with the thioredoxin-interacting protein (Txnip) gene showing the most significant differences. Subsequently, small interfering RNA (siRNA) technology was used to demonstrate that Txnip is the key gene through which mannose exerts its effects. Techniques such as colocalization analysis, molecular docking, and overexpression assays further confirmed the direct regulatory relationship between mannose and TXNIP. To elucidate the mechanism of action of mannose, metabolomics techniques were employed to pinpoint glutamine as a core metabolite affected by mannose. Next, various methods, including integrated omics data and the Gene Expression Omnibus (GEO) database, were used to validate the one-way pathway through which TXNIP regulates glutamine. Finally, the therapeutic effect of mannose on IVDD was validated, elucidating the mechanistic role of TXNIP in glutamine metabolism in both intradiscal and orally treated rats. RESULTS: In both in vivo and in vitro experiments, it was discovered that mannose has potent efficacy in alleviating IVDD by inhibiting catabolism. From a mechanistic standpoint, it was shown that mannose exerts its anti-catabolic effects by directly targeting the transcription factor max-like protein X-interacting protein (MondoA), resulting in the upregulation of TXNIP. This upregulation, in turn, inhibits glutamine metabolism, ultimately accomplishing its anti-catabolic effects by suppressing the mitogen-activated protein kinase (MAPK) pathway. More importantly, in vivo experiments have further demonstrated that compared with intradiscal injections, oral administration of mannose at safe concentrations can achieve effective therapeutic outcomes. CONCLUSIONS: In summary, through integrated multiomics analysis, including both in vivo and in vitro experiments, this study demonstrated that mannose primarily exerts its anti-catabolic effects on IVDD through the TXNIP-glutamine axis. These findings provide strong evidence supporting the potential of the use of mannose in clinical applications for alleviating IVDD. Compared to existing clinically invasive or pain-relieving therapies for IVDD, the oral administration of mannose has characteristics that are more advantageous for clinical IVDD treatment.


Assuntos
Proteínas de Ciclo Celular , Glutamina , Degeneração do Disco Intervertebral , Manose , Degeneração do Disco Intervertebral/tratamento farmacológico , Manose/farmacologia , Manose/uso terapêutico , Animais , Ratos , Glutamina/farmacologia , Glutamina/metabolismo , Masculino , Ratos Sprague-Dawley , Humanos , Núcleo Pulposo/efeitos dos fármacos , Núcleo Pulposo/metabolismo
15.
BMC Biol ; 22(1): 104, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702712

RESUMO

BACKGROUND: Gonadotropin precisely controls mammalian reproductive activities. Systematic analysis of the mechanisms by which epigenetic modifications regulate the synthesis and secretion of gonadotropin can be useful for more precise regulation of the animal reproductive process. Previous studies have identified many differential m6A modifications in the GnRH-treated adenohypophysis. However, the molecular mechanism by which m6A modification regulates gonadotropin synthesis and secretion remains unclear. RESULTS: Herein, it was found that GnRH can promote gonadotropin synthesis and secretion by promoting the expression of FTO. Highly expressed FTO binds to Foxp2 mRNA in the nucleus, exerting a demethylation function and reducing m6A modification. After Foxp2 mRNA exits the nucleus, the lack of m6A modification prevents YTHDF3 from binding to it, resulting in increased stability and upregulation of Foxp2 mRNA expression, which activates the cAMP/PKA signaling pathway to promote gonadotropin synthesis and secretion. CONCLUSIONS: Overall, the study reveals the molecular mechanism of GnRH regulating the gonadotropin synthesis and secretion through FTO-mediated m6A modification. The results of this study allow systematic interpretation of the regulatory mechanism of gonadotropin synthesis and secretion in the pituitary at the epigenetic level and provide a theoretical basis for the application of reproductive hormones in the regulation of animal artificial reproduction.


Assuntos
Dioxigenase FTO Dependente de alfa-Cetoglutarato , Hormônio Liberador de Gonadotropina , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Hormônio Liberador de Gonadotropina/metabolismo , Hormônio Liberador de Gonadotropina/genética , Animais , Gonadotropinas/metabolismo , Camundongos , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Metilação de RNA
16.
J Environ Manage ; 360: 121024, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38759551

RESUMO

Urban waterlogging is a significant global issue. To achieve precisely control urban waterlogging and enhance our understanding of its causes, a novel study method was introduced. This method is based on a dynamic bidirectional coupling model that combines 1D-2D hydrodynamic and water quality simulations. The waterlogging phenomenon in densely populated metropolitan areas of Changzhi city, China, was studied. This study focused on investigating the process involved in waterlogging formation, particularly overflow at nodes induced by the design of the topological structure of the pipe network, constraints on the capacity of the underground drainage system, and the surface runoff accumulation. The complex interplay among these elements and their possible influences on waterlogging formation were clarified. The results indicated notable spatial and temporal variation in the waterlogging formation process in densely populated urban areas. Node overflow in the drainage system emerged as the key influencing factor in the waterlogging formation process, accounting for up to 71% of the total water accumulation at the peak time. The peak lag time of waterlogging during events with short return periods was primarily determined by the rainfall peak moment. In contrast, the peak time of waterlogging during events with long return periods was influenced by the rainfall peak moment, drainage capacity and topological structure of the pipe network. Notably, the access of inflow from both upstream and downstream segments of the pipe network drainage system significantly impacted the peak time of waterlogging, with upstream water potentially delaying the peak time substantially. This study not only provides new insights into urban waterlogging mechanisms but also provides practical guidance for optimizing urban drainage systems, urban planning, and disaster risk management.

17.
Eur J Pharmacol ; : 176648, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38759706

RESUMO

Opioids are used for pain relief in patients suffering from acute myocardial ischemia or infarction. Clinical and laboratory studies demonstrate that morphine treated patients or the experimental animal model suffering acute myocardial ischemia and reperfusion, may worsen myocardial viability. As transient receptor potential vanilloid 1 (TRPV1) plays important roles in pain sensation and cardio-protection, we query whether opioids may exacerbate myocardial viability via interaction with TRPV1 activity in the pain relief. We found the co-expressions of TRPV1 and opioid µ, δ and κ receptors in adult rat cardiomyocytes. Intravenous injection of morphine (0.3mg/Kg) at 20 min after induction of myocardial ischemia, in the rat model of acute myocardial ischemia and reperfusion, induced significant reduction of phosphorylated TRPV1 (p-TRPV1) in the ventricular myocardium and increase in serum cardiac troponin I (cTnI), compared with the ischemia/reperfusion controls (all P< 0.05). The effects of morphine were completely reversed by selective opioid µ, δ and κ receptor antagonists. While significant upregulation of p-TRPV1 (P<0.05) and improvement of ±dP/dt max (all P<0.05) were detected in the animals giving the same dose of morphine before induction of myocardial ischemia. The changes in p-TRPV1 correlate with the alterations of cTnI (r= -0.5840, P= 0.0283) and ±dP/dt max (r= 0.8084, P=0.0005 and r= -0.8133, P= 0.0004, respectively). The findings of this study may indicate that potentiation and attenuation of TRPV1 sensitivity correlate with the improvement of the cardiac performance and the aggravation of myocardial viability, respectively, by giving morphine before and during myocardial ischemia and reperfusion.

18.
Infect Genet Evol ; : 105605, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38759940

RESUMO

Plasmodium vivax Merozoite Surface Protein 8 (PvMSP8) is a promising candidate target for the development of multi-component vaccines. Therefore, determining the genetic variation pattern of msp8 is essential in providing a reference for the rational design of the P. vivax malaria vaccines. This study delves into the genetic characteristics of the Pvmsp8 gene, specifically focusing on samples from the China-Myanmar border (CMB) region, and contrasts these findings with broader global patterns. The study uncovers that Pvmsp8 exhibits a notable level of conservation across different populations, with limited polymorphisms and relatively low nucleotide diversity (0.00023-0.0012). This conservation contrasts starkly with the high polymorphisms found in other P. vivax antigens such as msp1. A total of 25 haplotypes and 14 amino acid mutation sites were identified in the global samples, and all mutation sites were confined to non-functional regions. The study also notes that most CMB Pvmsp8 haplotypes are shared among Burmese, Cambodian, Thai, and Vietnamese populations, indicating less geographical variance, but differ notably from those found in Pacific island regions or the Panama. The findings underscore the importance of considering regional genetic diversity in P. vivax when developing targeted malaria vaccines. Non departure from neutral evolution were found by Tajima test, however, statistically significant differences were observed between the kn and ks rates. The study's findings are crucial in understanding the evolution and population structure of the Pvmsp8 gene, particularly during regional malaria elimination efforts. The highly conserved nature of Pvmsp8, combined with the lack of mutations in its functional domain, presents it as a promising candidate for developing a broad and effective P. vivax vaccine. This research thus lays a foundation for the rational development of multivalent malaria vaccines targeting this genetically stable antigen.

19.
Artigo em Inglês | MEDLINE | ID: mdl-38761998

RESUMO

BACKGROUND: Previous study implied that local M2 polarization of macrophage promoted mucosal edema and exacerbates Th2 type inflammation in chronic rhinosinusitis with nasal polyps (CRSwNP). However, the specific pathogenic role of M2 macrophages and the intrinsic regulators in the development of CRS remains elusive. OBJECTIVE: We thought to investigate the regulatory role of SIRT5 in the polarization of M2 macrophages and its potential contribution to the development of CRSwNP. METHODS: RT-qPCR and Western blot analyses were performed to examine the expression levels of SIRT5 and markers of M2 macrophages in sinonasal mucosa samples obtained from both CRS and control groups. Wild-type and Sirt5 knockout mice were used to establish nasal polyp model with Th2 inflammation and investigate the effects of SIRT5 in macrophages on disease development. Furthermore, in vitro experiments were conducted to elucidate the regulatory role of SIRT5 in polarization of M2 macrophages. RESULTS: Clinical investigations showed that SIRT5 was highly expressed and positively correlated with M2 macrophages markers in eosinophilic polyps. The expression of SIRT5 in M2 macrophages was found to contribute to the development of the disease, which was impaired in Sirt5 deficiency mice. Mechanistically, SIRT5 was shown to enhance the alternative polarization of macrophages through promoting glutaminolysis. CONCLUSIONS: SIRT5 plays a crucial role in promoting the development of CRSwNP by supporting the alternative polarization of macrophage and thus provides a potential target for CRSwNP interventions.

20.
Nanomedicine ; : 102755, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38762132

RESUMO

Parkinson's disease (PD) is a neurodegenerative disorder and identifying disease-causing pathways and drugs that target them has remained challenging. Herein, selenium nanoparticles decorated with polysaccharides from Sargassum fusiforme (SFPS-SeNPs) were investigated on 6-OHDA-induced neurotoxicity in PC12 cells and rats. 6-OHDA can significantly increase neurotoxicity, oxidative stress and decrease the activity of superoxide dismutase (SOD) and glutathione peroxidase (GPx) both in vitro and vivo. In vitro, treatment with SFPS-SeNPs can significantly decrease 6-OHDA cytotoxicity, reactive oxygen species (ROS) production or malondialdehyde (MDA) levels, and cell apoptosis, significantly increased the activity of SOD and GPx. In vivo, 6-OHDA exposure could also decrease the expression of Nrf2 and OH-1, while treatment with SFPS-SeNPs (1 mg Se/kg) increased. SFPS-SeNPs can protect neurons from 6-OHDA-induced neurotoxicity by regulating apoptosis and Nrf2/ARE pathway. The present study demonstrated that SFPS-SeNPs is a good candidate for developing a new drug against neurodegenerative diseases such as PD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA