Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Front Psychol ; 15: 1321342, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38352027

RESUMO

Aim: This study evaluated the sex-and age-specific usefulness of the Little Developmental Coordination Disorder Questionnaire-Chinese (LDCDQ-CH) in Chinese preschoolers. Method: A population-based sample of 51,110 children aged 3-5 years was recruited. Internal reliability, construct validity, concurrent validity with the Ages and Stages Questionnaire-third edition (ASQ-3), and discriminant validity with the Movement Assessment Battery for Children-second edition (MABC-2) were assessed. Age and sex effects on LDCDQ-CH scores were analyzed using ANOVA and t-tests. Results: The LDCDQ-CH exhibited excellent internal consistency and reliability across ages and genders. Confirmatory factor analysis supported the 15-item model's satisfactory fit. Positive and significant correlations were observed between LDCDQ-CH and ASQ-3 scores, indicating robust concurrent validity. Significant associations were found between LDCDQ-CH and MABC-2 scores. Higher scores were observed in older children and girls, indicating age- and sex-related differences in motor functional performance. Conclusion: The LDCDQ-CH is a reliable and valid tool to support early identification of motor coordination difficulty in Chinese preschoolers, and guiding interventions. Findings support its use across ages and genders, highlighting its potential in the Chinese context. Age- and sex-specific norms are needed for enhanced clinical applicability.

2.
Plant Cell Rep ; 43(1): 9, 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38133824

RESUMO

KEY MESSAGE: A novel function of plasma membrane-localized H+-ATPase, OsAHA3, was identified in rice, which is involved in saline-alkaline tolerance and specifically responds to high pH during saline-alkaline stress. Saline-alkaline stress causes serious damage to crop production on irrigated land. Plants suffer more severe damage under saline-alkaline stress than under salinity stress alone. Plasma membrane-localized proton (H+) pump (H+-ATPase) is an important enzyme that controls plant growth and development by catalyzing H+ efflux and enabling effective charge balance. Many studies about the role of plasma membrane H+-ATPases in saline-alkaline stress tolerance have been reported in Arabidopsis, especially on the AtAHA2 (Arabidopsis thaliana H+-ATPase 2) gene; however, whether and how plasma membrane H+-ATPases play a role in saline-alkaline stress tolerance in rice remain unknown. Here, using the activation-tagged rice mutant pool, we found that the plasma membrane-localized H+-ATPase OsAHA3 (Oryza sativa autoinhibited H+-ATPase 3) is involved in saline-alkaline stress tolerance. Activation-tagged line 29 (AC29) was identified as a loss-of-function mutant of OsAHA3 and showed more severe growth retardation under saline-alkaline stress with high pH than under salinity stress. Moreover, osaha3 loss-of-function mutants generated by CRISPR/Cas9 system exhibited saline-alkaline stress sensitive phenotypes; staining of leaves with nitrotetrazolium blue chloride (NBT) and diaminobenzidine (DAB) revealed more reactive oxygen species (ROS) accumulation in osaha3 mutants. OsAHA3-overexpressing plants showed increased saline-alkaline stress tolerance than wild-type plants. Tissue-specific expression analysis revealed high expression level of OsAHA3 in leaf, sheath, glume, and panicle. Overall, our results revealed a novel function of plasma membrane-localized H+-ATPase, OsAHA3, which is involved in saline-alkaline stress tolerance and specifically responds to high pH.


Assuntos
Arabidopsis , Oryza , Oryza/metabolismo , Estresse Fisiológico , ATPases Translocadoras de Prótons/genética , ATPases Translocadoras de Prótons/metabolismo , Membrana Celular/metabolismo , Tolerância ao Sal/genética , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas
4.
Pestic Biochem Physiol ; 193: 105431, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37248009

RESUMO

The entomopathogenic fungus is recognized as an ideal alternative to chemical pesticides, nonetheless, its efficacy is often limited by insect's innate immune system. The suppression of the host immunity may overcome the obstacle and promote the toxicity of the fungi. Here, by using an entomopathogenic fungus Beauveria bassiana and immune genes dsRNA-expressing bacteria, we explored the potentially synergistic toxicity of the two agents on a leaf beetle Plagiodera versicolora (Coleoptera: Chrysomelidae). We first determined the susceptibilities of P. versicolora to a B. bassiana 476 strain (hereafter referred to Bb476). And the immune genes were identified based on the transcriptome of Bb476 challenged beetles. Subsequently, five immune genes (PGRP1, Toll1, Domeless,SPN1,and Lysozyme) were targeted by feeding dsRNA-expressing bacteria, which produced a 71.4, 39.0, 72.0, 49.0, and 68.7% gene silencing effect, respectively. Furthermore, we found a significantly increased mortality of P. versicolora when combined the Bb476 and the immune suppressive dsRNAs. Taking together, this study highlights the importance of insect immunity in the defense of entomopathogens and also paves the way toward the development of a more efficient pest management strategy that integrates both entomopathogens and immune suppressive dsRNAs.


Assuntos
Beauveria , Besouros , Controle Biológico de Vetores , Animais , Bactérias , Beauveria/genética , Besouros/microbiologia , Inseticidas
5.
Biotechnol Bioeng ; 120(4): 1015-1025, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36522163

RESUMO

Microbial oils produced by Yarrowia lipolytica offer an environmentally friendly and sustainable alternative to petroleum as well as traditional lipids from animals and plants. The accurate measurement of fermentation parameters, including the substrate concentration, dry cell weight, and lipid accumulation, is the foundation of process control, which is indispensable for industrial lipid production. However, it remains a great challenge to measure the complex parameters online during the lipid fermentation process, which is nonlinear, multivariate, and characterized by strong coupling. As a type of AI technology, the artificial neural network model is a powerful tool for handling extremely complex problems, and it can be employed to develop a soft sensor to monitor the microbial lipid fermentation process of Y. lipolytica. In this study, we first analyzed and emphasized the volume of sodium hydroxide and dissolved oxygen concentration as central parameters of the fermentation process. Then, a soft sensor based on a four-input artificial neural network model was developed, in which the input variables were fermentation time, dissolved oxygen concentration, initial glucose concentration, and additional volume of sodium hydroxide. This provides the possibility of online monitoring of dry cell weight, glucose concentration, and lipid production with high accuracy, which can be extended to similar fermentation processes characterized by the addition of bases or acids, as well as changes of the dissolved oxygen concentration.


Assuntos
Yarrowia , Animais , Fermentação , Yarrowia/metabolismo , Hidróxido de Sódio/metabolismo , Óleos/metabolismo , Glucose/metabolismo , Oxigênio/metabolismo
6.
Afr Health Sci ; 22(3): 369-374, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36910409

RESUMO

Background: Cerebral ischemia reperfusion injury (CIRI) is the pathophysiological basis of various cerebrovascular diseases. The aim of this study was to explore the role of HIF-1α/BNIP3 in the alleviating effect of IL-4 on CIRI in mice. Methodology: Mice were randomly divided into sham operation (Sham), ischemia reperfusion (IR), IL-4, HIF-1α inhibitor 2ME2 and IL-4+2ME2 groups. Middle cerebral artery occlusion model was established. After 24-h reperfusion, neurologic deficit score (NDS) was given. Cerebral infarction volume and brain water content were measured by 2,3,5-triphenyltetrazolium chloride staining and dry-wet weights, respectively. Apoptosis was detected by TUNEL staining. SOD, MDA and ROS levels, and HIF-1α, BNIP3, LC3II and Beclin-1 expressions were detected through colorimetry and Western blotting, respectively. Results: Compared with IR group, NDS, cerebral infarction volume, brain water content, apoptosis rate, and MDA and ROS levels decreased, while SOD, HIF-1α, BNIP3, LC3-II and Beclin-1 levels increased in IL-4 group (P<0.05). 2ME2 and IL-4+2ME2 groups had decreased NDS, cerebral infarction volume, brain water content, apoptosis rate and MDA, ROS, HIF-1α, BNIP3, LC3-II and Beclin-1 levels, but increased SOD level compared with those of IL-4 group (P<0.05). Conclusion: IL-4 reduces apoptosis and oxidative stress through activating the HIF-1α/BNIP3 pathway, thereby alleviating mouse CIRI.


Assuntos
Isquemia Encefálica , Traumatismo por Reperfusão , Camundongos , Animais , Interleucina-4 , Adenoviridae/metabolismo , Proteína Beclina-1/metabolismo , Espécies Reativas de Oxigênio , Infarto Cerebral , Hipóxia , Superóxido Dismutase
7.
J Am Assoc Nurse Pract ; 33(12): 1230-1239, 2021 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-33859075

RESUMO

BACKGROUND: Boxing programs designed specifically for people with Parkinson's disease (PD) can be beneficial in improving the physical, mental, and functional health of persons with PD. PURPOSE: This study examined the effect of a boxing program, Rock Steady Boxing (RSB), on the health of people with PD from both the boxers' and their caregivers' perspectives as well as evaluated balance, quality of life (QoL), and depressive symptoms after 12 weeks of RSB. METHODS: A mixed methods, one-group experimental design with focus groups were embedded within an intervention study. Six boxers completed baseline and 12-week postassessments. RESULTS: The majority of boxers maintained or improved scores for balance, QoL, and reduced depressive symptoms. Findings indicate physical and mental benefits of RSB among persons with PD and this was further validated by qualitative data from boxers and caregivers, along with quantitative data of boxers. Caregivers and boxers reported that boxers' ability to perform activities of daily living (ADLs) improved and is supported by quantitative improvements in the Parkinson's disease Questionnaire-39 ADL subscale. All boxers reported reduced stigma, and caregivers and boxers valued the opportunity to work out in an environment free of stigma, a finding not previously reported. CONCLUSIONS: It is important for nurse practitioners to recognize exercise benefits for people with PD and recommend the program to patients and include caregivers in their overall assessment of health and wellness. IMPLICATIONS FOR PRACTICE: Nurse practitioners and other health practitioners may consider recommending a boxing program, such as RSB, for their PD patients as a sole or supplemental exercise program.


Assuntos
Boxe , Doença de Parkinson , Atividades Cotidianas , Cuidadores , Humanos , Doença de Parkinson/terapia , Qualidade de Vida
8.
New Phytol ; 230(2): 567-584, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33423315

RESUMO

Abscisic acid (ABA) plays a crucial role in the adaptation of young seedlings to environmental stresses. However, the role of epigenetic components and core transcriptional machineries in the effect of ABA on seed germination and seedling growth remain unclear. Here, we show that a histone 3 lysine 4 (H3K4) demethylase, JMJ17, regulates the expression of ABA-responsive genes during seed germination and seedling growth. Using comparative interactomics, WRKY40, a central transcriptional repressor in ABA signaling, was shown to interact with JMJ17. WRKY40 facilitates the recruitment of JMJ17 to the ABI5 chromatin, which removes gene activation marks (H3K4me3) from the ABI5 chromatin, thereby repressing its expression. Additionally, WRKY40 represses the transcriptional activation activity of HY5, which can activate ABI5 expression by directly binding to its promoter. An increase in ABA concentrations decreases the affinity of WRKY40 for the ABI5 promoter. Thus, WRKY40 and JMJ17 are released from the ABI5 chromatin, activating HY5. The accumulated ABI5 protein further shows heteromeric interaction with HY5, and thus synergistically activates its own expression. Our findings reveal a novel transcriptional switch, composed of JMJ17-WRKY40 and HY5-ABI5 modules, which regulates the ABA response during seed germination and seedling development in Arabidopsis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Ácido Abscísico/farmacologia , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Regulação da Expressão Gênica de Plantas , Germinação , Sementes/metabolismo , Transdução de Sinais , Fatores de Transcrição/genética
9.
J Dermatol ; 48(3): 385-388, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33264455

RESUMO

Chronic actinic dermatitis (CAD) is a common debilitating photodermatosis. Patients often have to completely avoid outdoor activities, which severely impacts their quality of life. Phototherapy is effective for CAD and seems to increase patients' tolerance towards sunlight and consequently decrease the extent of disease. Unfortunately, the slower onset and time-consuming nature of phototherapy limits the clinical application. Considering the effectiveness and time-saving nature of ultraviolet (UV)-A rush hardening in solar urticaria, we performed a pilot study to determine whether UV-A rush hardening is effective in CAD. Six patients with CAD were exposed to multiple sessions of UV-A for 4-5 days at 1-h intervals/day. Subsequently, maintenance UV-A exposure was performed at 1-2-week intervals. Phototesting at baseline showed that three patients were sensitive to both UV-A and -B, and the other three patients only showed UV-A sensitivity. All of the patients responded well to UV-A rush hardening and four (67%) maintained a good remission status after 1 year. The results of this pilot study suggest that UV-A rush hardening phototherapy is effective and well tolerated in the treatment of CAD, while future larger prospective studies using objective scores of disease activity and quality of life are needed.


Assuntos
Transtornos de Fotossensibilidade , Qualidade de Vida , Humanos , Transtornos de Fotossensibilidade/etiologia , Projetos Piloto , Estudos Prospectivos , Resultado do Tratamento , Raios Ultravioleta/efeitos adversos
10.
Plant Cell ; 32(11): 3535-3558, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32938753

RESUMO

Irrigated lands are increasingly salinized, which adversely affects agricultural productivity. To respond to high sodium (Na+) concentrations, plants harbor multiple Na+ transport systems. Rice (Oryza sativa) HIGH-AFFINITY POTASSIUM (K+) TRANSPORTER1;5 (OsHKT1;5), a Na+-selective transporter, maintains K+/Na+ homeostasis under salt stress. However, the mechanism regulating OsHKT1;5 expression remains unknown. Here, we present evidence that a protein complex consisting of rice BCL-2-ASSOCIATED ATHANOGENE4 (OsBAG4), OsMYB106, and OsSUVH7 regulates OsHKT1;5 expression in response to salt stress. We isolated a salt stress-sensitive mutant, osbag4-1, that showed significantly reduced OsHKT1;5 expression and reduced K+ and elevated Na+ levels in shoots. Using comparative interactomics, we isolated two OsBAG4-interacting proteins, OsMYB106 (a MYB transcription factor) and OsSUVH7 (a DNA methylation reader), that were crucial for OsHKT1;5 expression. OsMYB106 and OsSUVH7 bound to the MYB binding cis-element (MYBE) and the miniature inverted-repeat transposable element (MITE) upstream of the MYBE, respectively, in the OsHKT1;5 promoter. OsBAG4 functioned as a bridge between OsSUVH7 and OsMYB106 to facilitate OsMYB106 binding to the consensus MYBE in the OsHKT1;5 promoter, thereby activating the OsHKT1;5 expression. Elimination of the MITE or knockout of OsMYB106 or OsSUVH7 decreased OsHKT1;5 expression and increased salt sensitivity. Our findings reveal a transcriptional complex, consisting of a DNA methylation reader, a chaperone regulator, and a transcription factor, that collaboratively regulate OsHKT1;5 expression during salinity stress.


Assuntos
Metilação de DNA , Oryza/fisiologia , Proteínas de Plantas/genética , Estresse Salino/genética , Sistemas CRISPR-Cas , Elementos de DNA Transponíveis , DNA de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Oryza/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
11.
Anticancer Agents Med Chem ; 20(6): 709-714, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31894000

RESUMO

BACKGROUND: Sonchus oleraceus is a large and widespread plant in the world. It is edible to humans as a leaf vegetable and is also used as a folklore medicinal herb in the treatment of infections and inflammatory disease, but limited research on its chemical constituents has been done. OBJECTIVE: To isolate and identify the bioactive ingredients from S. oleraceus. METHODS: 20kg of S. oleraceus was extracted twice with 75% alcohol. The concentrated extract was suspended in H2O and partitioned with petroleum ether, dichloromethane, ethyl acetate and n-butanol, respectively. The ethyl acetate phase was subjected to repeated normal chromatography on a silica gel column chromatography and eluted with a gradient of CH2Cl2-MeOH to give 12 crude fractions. Fraction 6 was subjected to ODS silica gel column chromatography, Sephadex LH-20 and HPLC to yield 1 and 2. Cell viability of 1 and 2 on A549, H292 and Caco2 cell lines were assayed by MTT method. Apoptosis analysis and apoptosis related proteins were detected subsequently. RESULTS: Two new sesquiterpenes were isolated from S. oleraceus and identified by NMR spectra and HR-ESIMS. 1 selectively suppressed the viability of A549 and H292 cells with IC50 values of 14.2, and 19.5µM respectively, while possessing no cytotoxicity against Caco2 cells (IC50 > 100µM). 2 did not exhibit cytotoxicity against A549, H292 and Caco2 cells (IC50 > 100µM). 1 significantly decreased the density of live cells and could cause cell apoptosis at 10 and 20µM in a dose-dependent manner. After treatment of 1 for 24h, the level of cleaved caspase-3 was increased accompanied by the reduction in procaspase-3 expression, and the downregulation of Bcl-2 was associated with the enhancement of Bax expression. 1 could lead to the up-regulation of cytochrome c and activation of caspase-9. CONCLUSION: 1 and 2 are new sesquiterpenes from S. oleraceus. 1 could induce apoptosis in A549 and H292 cells through Bax/caspase-9 pathway.


Assuntos
Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Sesquiterpenos/química , Sesquiterpenos/farmacologia , Sonchus/química , Antineoplásicos Fitogênicos/isolamento & purificação , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Neoplasias/tratamento farmacológico , Folhas de Planta/química , Sesquiterpenos/isolamento & purificação
12.
Dermatol Ther ; 33(2): e13080, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31465616

RESUMO

We reported a patient with refractory bullous pemphigoid (BP), who had a higher level of eosinophils and serum IgE. The case showed less response to various therapies. Edematous erythema and new blisters appeared constantly. Considering IFN-α-2b treatment could significantly decrease blood eosinophils, we therefore expected that IFN-α-2b could be effective in the treatment of BP. After treated with IFN-α-2b, the patient's good response to the treatment suggested our hypothesis.


Assuntos
Penfigoide Bolhoso , Eosinófilos , Eritema , Humanos , Contagem de Leucócitos , Penfigoide Bolhoso/diagnóstico , Penfigoide Bolhoso/tratamento farmacológico
13.
Sensors (Basel) ; 19(11)2019 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-31159284

RESUMO

Target localization is one of the essential tasks in almost applications of wireless sensor networks. Some traditional compressed sensing (CS)-based target localization methods may achieve low-precision target localization because of using locally optimal sparse solutions. Solving global optimization for the sparse recovery problem remains a challenge in CS-based target localization. In this paper, we propose a novel energy-level jumping algorithm to address this problem, which achieves high-precision target localization by solving the globally optimal sparse solution of l p -norm ( 0 < p < 1 ) minimization. By repeating the process of energy-level jumping, our proposed algorithm establishes a global convergence path from an initial point to the global minimizer. Compared with existing CS-based target localization methods, the simulation results show that our localization algorithm obtain more accurate locations of targets with the significantly reduced number of measurements.

14.
New Phytol ; 223(3): 1372-1387, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31038749

RESUMO

Under dehydration in plants, antagonistic activities of histone 3 lysine 4 (H3K4) methyltransferase and histone demethylase maintain a dynamic and homeostatic state of gene expression by orientating transcriptional reprogramming toward growth or stress tolerance. However, the histone demethylase that specifically controls histone methylation homeostasis under dehydration stress remains unknown. Here, we document that a histone demethylase, JMJ17, belonging to the KDM5/JARID1 family, plays crucial roles in response to dehydration stress and abscisic acid (ABA) in Arabidopsis thaliana. jmj17 loss-of-function mutants displayed dehydration stress tolerance and ABA hypersensitivity in terms of stomatal closure. JMJ17 specifically demethylated H3K4me1/2/3 via conserved iron-binding amino acids in vitro and in vivo. Moreover, H3K4 demethylase activity of JMJ17 was required for dehydration stress response. Systematic combination of genome-wide chromatin immunoprecipitation coupled with massively parallel DNA sequencing (ChIP-seq) and RNA-sequencing (RNA-seq) analyses revealed that a loss-of-function mutation in JMJ17 caused an ectopic increase in genome-wide H3K4me3 levels and activated a plethora of dehydration stress-responsive genes. Importantly, JMJ17 bound directly to the chromatin of OPEN STOMATA 1 (OST1) and demethylated H3K4me3 for the regulation of OST1 mRNA abundance, thereby modulating the dehydration stress response. Our results demonstrate a new function of a histone demethylase under dehydration stress in plants.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Arabidopsis/fisiologia , Estresse Fisiológico , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Cromatina/metabolismo , Desidratação , Regulação da Expressão Gênica de Plantas , Mutação com Perda de Função/genética , Metilação , Especificidade de Órgãos/genética , Fenótipo , Frações Subcelulares/metabolismo
15.
Plant Physiol ; 179(4): 1844-1860, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30723180

RESUMO

Arabidopsis (Arabidopsis thaliana) GARP (Golden2, ARR-B, Psr1) family transcription factors, GOLDEN2-LIKE1 and -2 (GLK1/2), function in different biological processes; however, whether and how these transcription factors modulate the response to abscisic acid (ABA) remain unknown. In this study, we used a glk1 glk2 double mutant to examine the role of GLK1/2 in the ABA response. The glk1 glk2 double mutant displayed ABA-hypersensitive phenotypes during seed germination and seedling development and an osmotic stress-resistant phenotype during seedling development. Genome-wide RNA sequencing analysis of the glk1 glk2 double mutant revealed that GLK1/2 regulate several ABA-responsive genes, including WRKY40, in the presence of ABA. Chromatin immunoprecipitation and gel retardation assays showed that GLK1/2 directly associate with the WRKY40 promoter via the recognition of a consensus sequence. Additionally, RNA sequencing analysis of the glk1 glk2 double mutant and wrky40 single mutant revealed that GLK1/2 and WRKY40 control a common set of downstream target genes in response to ABA. Furthermore, results of a genetic interaction test showed that the glk1 glk2 wrky40 triple mutant displayed similar ABA hypersensitivity to the wrky40 single mutant and the glk1 glk2 double mutant, while the glk1 glk2 wrky40 abi5-c (ABI5 CRISPR/Cas9 mutant) quadruple mutant displayed similar ABA hyposensitivity to the abi5-7 single mutant. Based on these results, we propose that the GLK1/2-WRKY40 transcription module plays a negative regulatory role in the ABA response.


Assuntos
Ácido Abscísico/farmacologia , Proteínas de Arabidopsis/fisiologia , Arabidopsis/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Fatores de Transcrição/fisiologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Pressão Osmótica , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Transdução de Sinais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
16.
Entropy (Basel) ; 21(4)2019 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-33267059

RESUMO

Compressed sensing based in-network compression methods which minimize data redundancy are critical to cognitive video sensor networks. However, most existing methods require a large number of sensors for each measurement, resulting in significant performance degradation in energy efficiency and quality-of-service satisfaction. In this paper, a cluster-based distributed compressed sensing scheme working together with a quality-of-service aware routing framework is proposed to deliver visual information in cognitive video sensor networks efficiently. First, the correlation among adjacent video sensors determines the member nodes that participate in a cluster. On this basis, a sequential compressed sensing approach is applied to determine whether enough measurements are obtained to limit the reconstruction error between decoded signals and original signals under a specified reconstruction threshold. The goal is to maximize the removal of unnecessary traffic without sacrificing video quality. Lastly, the compressed data is transmitted via a distributed spectrum-aware quality-of-service routing scheme, with an objective of minimizing energy consumption subject to delay and reliability constraints. Simulation results demonstrate that the proposed approach can achieve energy-efficient data delivery and reconstruction accuracy of visual information compared with existing quality-of-service routing schemes.

17.
Plant Cell Rep ; 38(2): 131-145, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30443733

RESUMO

KEY MESSAGE: Maize SWI3-type chromatin remodeler impacts alternative splicing contexts in response to osmotic stress by altering nucleosome density and affecting transcriptional elongation rate. Alternative splicing (AS) is commonly found in higher eukaryotes and is an important posttranscriptional regulatory mechanism to generate transcript diversity. AS has been widely accepted as playing essential roles in different biological processes including growth, development, signal transduction and responses to biotic and abiotic stresses in plants. However, whether and how chromatin remodeling complex functions in AS in plant under osmotic stress remains unknown. Here, we show that a maize SWI3D protein, ZmCHB101, impacts AS contexts in response to osmotic stress. Genome-wide analysis of mRNA contexts in response to osmotic stress using ZmCHB101-RNAi lines reveals that ZmCHB101 impacts alternative splicing contexts of a subset of osmotic stress-responsive genes. Intriguingly, ZmCHB101-mediated regulation of gene expression and AS is largely uncoupled, pointing to diverse molecular functions of ZmCHB101 in transcriptional and posttranscriptional regulation. We further found ZmCHB101 impacts the alternative splicing contexts by influencing alteration of chromatin and histone modification status as well as transcriptional elongation rates mediated by RNA polymerase II. Taken together, our findings suggest a novel insight of how plant chromatin remodeling complex impacts AS under osmotic stress .


Assuntos
Processamento Alternativo/genética , Pressão Osmótica , Proteínas de Plantas/metabolismo , Estresse Fisiológico , Zea mays/genética , Zea mays/fisiologia , Adaptação Fisiológica , Arabidopsis/genética , Arabidopsis/fisiologia , Montagem e Desmontagem da Cromatina , Éxons/genética , Regulação da Expressão Gênica de Plantas , Histonas/metabolismo , Lisina/metabolismo , Metilação , Nucleossomos/metabolismo , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , RNA Polimerase II/metabolismo , Estresse Fisiológico/genética , Transcrição Gênica
18.
Plant Mol Biol ; 98(6): 495-506, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30406469

RESUMO

KEY MESSAGE: Trithorax-group Protein ARABIDOPSIS TRITHORAX5 modulates the glucose response. Glucose is an evolutionarily conserved modulator from unicellular microorganisms to multicellular animals and plants. Extensive studies have shown that the Trithorax-group proteins (TrxGs) play essential roles in different biological processes by affecting histone modifications and chromatin structures. However, whether TrxGs function in the glucose response and how they achieve the control of target genes in response to glucose signaling in plants remain unknown. Here, we show that the Trithorax-group Protein ARABIDOPSIS TRITHORAX5 (ATX5) affects the glucose response and signaling. atx5 loss-of-function mutants display glucose-oversensitive phenotypes compared to the wild-type (WT). Genome-wide RNA-sequencing analyses have revealed that ATX5 impacts the expression of a subset of glucose signaling responsive genes. Intriguingly, we have established that ATX5 directly controls the expression of HY1 by trimethylating H3 lysine 4 of the Arabidopsis Heme Oxygenase1 (HY1) locus. Glucose signaling causes the suppression of ATX5 activity and subsequently reduces the H3K4me3 levels at the HY1 locus, thereby leading to the increased expression of ABSCISIC ACID-INSENSITIVE4 (ABI4). This result suggests that an important ATX5-HY1-ABI4 regulatory module governs the glucose response. This idea is further supported by genetic evidence showing that an atx5 hy1-100 abi4 triple mutant showed a similar glucose-insensitive phenotype as compared to that of the abi4 single mutant. Our findings show that a novel ATX5-HY1-ABI4 module controls the glucose response in Arabidopsis thaliana.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Glucose/metabolismo , Heme Oxigenase (Desciclizante)/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Ácido Abscísico/metabolismo , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Heme Oxigenase (Desciclizante)/genética , Histona-Lisina N-Metiltransferase/genética , Mutação , Fenótipo , Reguladores de Crescimento de Plantas/metabolismo , Fatores de Transcrição/genética
19.
Mol Ecol ; 27(23): 4875-4887, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30357974

RESUMO

An increasing number of species are thought to have originated by homoploid hybrid speciation (HHS), but in only a handful of cases are details of the process known. A previous study indicated that Picea purpurea, a conifer in the Qinghai-Tibet Plateau (QTP), originated through HHS from P. likiangensis and P. wilsonii. To investigate this origin in more detail, we analysed transcriptome data for 114 individuals collected from 34 populations of the three Picea species from their core distributions in the QTP. Phylogenetic, principal component and admixture analyses of nuclear SNPs showed the species to be delimited genetically and that P. purpurea was admixed with approximately 60% of its ancestry derived from P. wilsonii and 40% from P. likiangensis. Coalescent simulations revealed the best-fitting model of origin involved formation of an intermediate hybrid lineage between P. likiangensis and P. wilsonii approximately 6 million years ago (mya), which backcrossed to P. wilsonii to form P. purpurea approximately one mya. The intermediate hybrid lineage no longer exists and is referred to as a "ghost" lineage. Our study emphasizes the power of population genomic analysis combined with coalescent analysis for reconstructing the stages involved in the origin of a homoploid hybrid species over an extended period. In contrast to other studies, we show that these stages can in some instances span a relatively long period of evolutionary time.


Assuntos
Genética Populacional , Hibridização Genética , Filogenia , Picea/classificação , DNA de Plantas/genética , Especiação Genética , Metagenômica , Modelos Genéticos , Picea/genética , Polimorfismo de Nucleotídeo Único , Tibet , Transcriptoma
20.
Plant Mol Biol ; 97(4-5): 451-465, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29956114

RESUMO

KEY MESSAGE: The maize chromatin remodeler ZmCHB101 plays an essential role in the osmotic stress response. ZmCHB101 controls nucleosome densities around transcription start sites of essential stress-responsive genes. Drought and osmotic stresses are recurring conditions that severely constrain crop production. Evidence accumulated in the model plant Arabidopsis thaliana suggests that core components of SWI/SNF chromatin remodeling complexes play essential roles in abiotic stress responses. However, how maize SWI/SNF chromatin remodeling complexes function in osmotic and drought stress responses remains unknown. Here we show that ZmCHB101, a homolog of A. thaliana SWI3D in maize, plays essential roles in osmotic and dehydration stress responses. ZmCHB101-RNA interference (RNAi) transgenic plants displayed osmotic, salt and drought stress-sensitive phenotypes. Genome-wide RNA-sequencing analysis revealed that ZmCHB101 impacts the transcriptional expression landscape of osmotic stress-responsive genes. Intriguingly, ZmCHB101 controls nucleosome densities around transcription start sites of essential stress-responsive genes. Furthermore, we identified that ZmCHB101 associates with RNA polymerase II (RNAPII) in vivo and is a prerequisite for the proper occupancy of RNAPII on the proximal regions of transcription start sites of stress-response genes. Taken together, our findings suggest that ZmCHB101 affects gene expression by remodeling chromatin states and controls RNAPII occupancies in maize under osmotic stress.


Assuntos
Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Zea mays/genética , Montagem e Desmontagem da Cromatina , Secas , Nucleossomos/metabolismo , Pressão Osmótica , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Interferência de RNA , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Estresse Fisiológico , Zea mays/crescimento & desenvolvimento , Zea mays/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA