Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Pharmacol Res ; 207: 107313, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39025169

RESUMO

Acute ischemic stroke (AIS) is the most prevalent type of stroke, and due to its high incidence, disability rate, and mortality rate, it imposes a significant burden on the health care system. Amino acids constitute one of the most crucial metabolic products within the human body, and alterations in their metabolic pathways have been identified in the microenvironment of AIS, thereby influencing the pathogenesis, severity, and prognosis of AIS. The amino acid metabolism characteristics in AIS are complex. On one hand, the dynamic progression of AIS continuously reshapes the amino acid metabolism pattern. Conversely, changes in the amino acid metabolism pattern also exert a double-edged effect on AIS. This interaction is bidirectional, dynamic, heterogeneous, and dose-specific. Therefore, the distinctive metabolic reprogramming features surrounding amino acids during the AIS process are systematically summarized in this paper, aiming to provide potential investigative strategies for the early diagnosis, treatment approaches, and prognostic enhancement of AIS.


Assuntos
Aminoácidos , AVC Isquêmico , Humanos , Aminoácidos/metabolismo , AVC Isquêmico/metabolismo , Animais
2.
Ecol Evol ; 14(3): e11123, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38444723

RESUMO

Heterospecific pollen (HP) deposition varies widely among species in communities, which has been explicated by two adaptation strategies: HP avoidance and HP tolerance. Studies of the plant-pollinator network have uncovered that oceanic island communities are highly generalized and strongly connected. It remains unclear, however, which strategy prevails in such communities. We examined stigma pollen deposition on 29 plant species, and assessed patterns of HP load size and diversity in the Yongxing Island community. We assessed the effects of phenotypic specialization and species-level network structural properties of plant species on pollen deposition among species. The hypothesis of three accrual patterns of HP within species was tested by illustrating the relationship between conspecific pollen (CP) and HP receipt. Extensive variation occurred among species in HP receipt, while 75.9% of species received less than 10% HP and one species received more than 40% HP throughout the community. Flower size strongly drives the variation of HP receipt, while network structural properties had no effect on the pollen receipt. Nineteen species showed no relationship between the number of HP and CP loads, and they received smaller HP load sizes and lower HP proportions. Most plant species evolved HP avoidance strategy, and HP receipt was an occasional event for most plant species in the generalized community. HP and CP receipts are independent of each other in plant species with the HP avoidance mechanism. Our results highlight that plants in the generalized pollination system may preferentially select to minimize the HP load on stigmas.

3.
J Phys Chem Lett ; 15(13): 3619-3626, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38530255

RESUMO

The light-harvesting (LH) and reaction center (RC) core complex of purple bacterium Roseiflexus castenholzii, B880-B800-RC, are different from those of the typical photosynthetic unit, (B850-B800)x-B880-RC. To investigate the excitation flowing dynamics in this unique complex, two-dimensional electronic spectroscopy is employed. The obtained time constants for the exciton relaxation in B880, exciton relaxation in B800, B800 → B880 energy transfer (EET), and B880 → closed RC EET are 43 fs, 177 fs, 1.9 ps, and 205 ps, respectively. These time constants result in an overall EET efficiency similar to that of the typical photosynthetic unit. Analysis of the oscillatory signals reveals that while several vibronic coherences are involved in the exciton relaxation process, only one prominent vibronic coherence, with a frequency of 27 cm-1 and coupled to the B880 electronic transition, may contribute to the B800 → B880 EET process.

4.
J Integr Plant Biol ; 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38411333

RESUMO

Halorhodospira (Hlr.) halochloris is a triply extremophilic phototrophic purple sulfur bacterium, as it is thermophilic, alkaliphilic, and extremely halophilic. The light-harvesting-reaction center (LH1-RC) core complex of this bacterium displays an LH1-Qy transition at 1,016 nm, which is the lowest-energy wavelength absorption among all known phototrophs. Here we report the cryo-EM structure of the LH1-RC at 2.42 Å resolution. The LH1 complex forms a tricyclic ring structure composed of 16 αßγ-polypeptides and one αß-heterodimer around the RC. From the cryo-EM density map, two previously unrecognized integral membrane proteins, referred to as protein G and protein Q, were identified. Both of these proteins are single transmembrane-spanning helices located between the LH1 ring and the RC L-subunit and are absent from the LH1-RC complexes of all other purple bacteria of which the structures have been determined so far. Besides bacteriochlorophyll b molecules (B1020) located on the periplasmic side of the Hlr. halochloris membrane, there are also two arrays of bacteriochlorophyll b molecules (B800 and B820) located on the cytoplasmic side. Only a single copy of a carotenoid (lycopene) was resolved in the Hlr. halochloris LH1-α3ß3 and this was positioned within the complex. The potential quinone channel should be the space between the LH1-α3ß3 that accommodates the single lycopene but does not contain a γ-polypeptide, B800 and B820. Our results provide a structural explanation for the unusual Qy red shift and carotenoid absorption in the Hlr. halochloris spectrum and reveal new insights into photosynthetic mechanisms employed by a species that thrives under the harshest conditions of any phototrophic microorganism known.

5.
J Dig Dis ; 24(2): 133-141, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37032122

RESUMO

OBJECTIVES: Prolonged preparation-to-colonoscopy (PC) interval and insufficient purgative intake (PI) are two important indicators for quality of bowel preparation for colonoscopy. We aimed to investigate patient-related factors associated with increased PC interval or insufficient PI. METHODS: The post-hoc regression analyses were performed using the data from two prospective studies (NCT04434625 and NCT04101097). Patients receiving reinforced instructions for bowel preparation were recruited. The co-primary outcomes included prolonged PC interval or insufficient PI. RESULTS: Altogether 1806 patients from five endoscopic centers underwent bowel preparation from September 2019 to March 2021. The cut-off values were 6 h for PC interval and 80% for PI. In all, 116 (6.4%) and 73 (4.0%) presented an extended PC interval and insufficient PI, respectively. Multivariate logistic regression analysis showed that a low education level was significantly associated with PC interval ≥6 h. Female sex, body mass index (BMI), and coronary artery disease (CAD) were found to be significantly correlated with insufficient PI in univariate analysis, while multivariate analysis demonstrated BMI <20 kg/m2 (odds ratio [OR] 4.14, 95% confidence interval [CI] 1.92-8.94, P < 0.001) and 20-25 kg/m2 (OR 2.23, 95% CI 1.33-3.73, P = 0.002) and CAD (OR 3.23, 95% CI 1.22-8.53, P = 0.018) were identified as independent risk factors for PI <80%. CONCLUSIONS: In spite of reinforced education, a number of patients did not follow the instructions for bowel preparation. The factors for a prolonged PC interval did not overlap with those for insufficient PI. Individualized interference may be considered in different subpopulations.


Assuntos
Catárticos , Polietilenoglicóis , Humanos , Feminino , Estudos Prospectivos , Colonoscopia , Fatores de Risco
6.
Plant Cell Physiol ; 64(1): 43-54, 2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36201365

RESUMO

Non-photochemical quenching (NPQ) has been regarded as a safety valve to dissipate excess absorbed light energy not used for photochemistry. However, there exists no general consensus on the photoprotective role of NPQ. In the present study, we quantified the Photosystem II (PSII) photo-susceptibilities (mpi) in the presence of lincomycin, under red light given to five shade-acclimated tree species grown in the field. Photosynthetic energy partitioning theory was applied to investigate the relationships between mpi and each of the regulatory light-induced NPQ [Y(NPQ)], the quantum yield of the constitutive nonregulatory NPQ [Y(NO)] and the PSII photochemical yield in the light-adapted state [Y(PSII)] under different red irradiances. It was found that in the low to moderate irradiance range (50-800 µmol m-2 s-1) when the fraction of open reaction centers (qP) exceeded 0.4, mpi exhibited no association with Y(NPQ), Y(NO) and Y(PSII) across species. However, when qP < 0.4 (1,500 µmol m-2 s-1), there existed positive relationships between mpi and Y(NPQ) or Y(NO) but a negative relationship between mpi and Y(PSII). It is postulated that both Y(NPQ) and Y(NO) contain protective and damage components and that using only Y(NPQ) or Y(NO) metrics to identify the photo-susceptibility of a species is a risk. It seems that qP regulates the balance of the two components for each of Y(NPQ) and Y(NO). Under strong irradiance, when both protective Y(NPQ) and Y(NO) are saturated/depressed, the forward electron flow [i.e. Y(PSII)] acts as the last defense to resist photoinhibition.


Assuntos
Processos Fotoquímicos , Complexo de Proteína do Fotossistema II , Aclimatação , Luz , Fotossíntese/fisiologia , Complexo de Proteína do Fotossistema II/química , Complexo de Proteína do Fotossistema II/metabolismo
7.
Ying Yong Sheng Tai Xue Bao ; 33(8): 2205-2212, 2022 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-36043828

RESUMO

Understanding the nitrification capacity of coastal saline farmland soils and its main drivers is of great significance to regulate soil nitrification and improve the utilization efficiency of nitrogen fertilization in farmland. Using a combination of field investigations and laboratory analyses, we examined farmland soil nitrification potential and soil physical, chemical, and biological properties in the coastal muddy tidal flat saline soil area (Dongying and Dongtai). We established the correlation between soil properties and soil nitrification potential with multiple stepwise regression analyses and structural equation modeling (SEM). The results showed that soil pH value was relatively stable and other soil properties and soil nitrification potential varied in coastal saline farmland. The soil nitrification potential ranged from 0.04 to 10.42 mg·kg-1·d-1 and decreased with the increases of soil salinization level. Soil nitrification potential had the strongest correlation with soil organic matter, cation exchange capacity, and Cl-, with the correlation coefficient being 0.409, 0.397 and -0.337, respectively. The results of multiple stepwise regression analysis showed that Na+, silt, cation exchange capacity, and CO32-+HCO3- were the main influencing factors of soil nitrification potential. The results from the SEM analysis suggested that Na+, silt, cation exchange capacity, and CO32-+HCO3- directly affected soil nitrification potential, and soil organic matter, clay, Cl- and SO42- had indirect effects. In all, soil Na+ and cation exchange capacity were the two main factors affecting nitrification. Adjusting soil NaCl content and cation exchange capacity was an effective means of regulating soil nitrification.


Assuntos
Nitrificação , Solo , Fazendas , Nitrogênio/análise , Solo/química , Microbiologia do Solo
8.
Microorganisms ; 10(2)2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35208890

RESUMO

Biochar has been widely recognized as an effective and eco-friendly ameliorant for saline soils, but information about the mechanism of how biochar influences nitrification in salt-affected agroecosystem remains fragmented. An incubation experiment was performed on the salt-affected soil collected from a three-consecutive-year experiment at biochar application gradients of 7.5 t⋅ha-1, 15 t⋅ha-1 and 30⋅t ha-1 and under nitrogen (N) fertilization. Responses of the nitrification rate (NR), numbers of ammonia monooxygenase (amoA) gene copies, and community structures of ammonia-oxidizing bacteria (AOB) and archaea (AOA) to biochar application were investigated. The results indicated that, under N fertilization, the NR and numbers of amoA-AOB and amoA-AOA gene copies negatively responded to biochar addition. Biochar application increased the community diversity of AOB but decreased that of AOA. Biochar addition and N fertilization shifted the AOB community from Nitrosospira-dominated to Nitrosospira and Nitrosomonas-dominated, and altered the AOA community from Nitrososphaera-dominated to Nitrososphaera and Nitrosopumilus-dominated. The relative abundance of Nitrosospira, Nitrosomonas and Nitrosopumilus decreased, and that of Nitrosovibrio and Nitrososphaera increased with biochar application rate. Soil SOC, pH and NO3--N explained 87.1% of the variation in the AOB community, and 78.1% of the variation in the AOA community was explanatory by soil pH and SOC. The SOC and NO3--N influenced NR through Nitrosovibrio, Nitrosomonas, Norank_c_environmental_samples_p_Crenarchaeota and amoA-AOB and amoA-AOA gene abundance. Therefore, biochar addition inhibited nitrification in salt-affected irrigation-silting soil by shifting the community structures of AOB and AOA and reducing the relative abundance of dominant functional ammonia-oxidizers, such as Nitrosospira, Nitrosomonas and Nitrosopumilus.

9.
Insects ; 12(7)2021 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-34357289

RESUMO

Henosepilachna vigintioctopunctata (F.) is a serious pest of numerous solanaceous crops in many Asian countries. The purpose of this study was to clarify the effects of delayed mating on mating success, fecundity, fertility, pre-oviposition period, oviposition period, adult longevity, and population life table parameters (including net reproductive rate, intrinsic and finite rates of increase, doubling time, and mean generation time) of H. vigintioctopunctata. Beginning three days after emergence for both sexes, mating was delayed an additional 0, 2, 4, 6, or 8 days. We compared the data when mating was delayed for males only with the data when mating was similarly delayed for females only. Reproductive and life table parameters were calculated from the two data sets and compared. The results showed that the preoviposition and oviposition period of adults was significantly reduced by delayed mating, while the preoviposition period was not significantly different in adults mated at older ages. The mating success rate, fecundity, and proportion of hatching eggs decreased with increasing mating age. Longevity was not affected by the age at mating. Mating delay also affected the life table parameters of H. vigintioctopunctata, with a similar trend observed in the net reproductive rate and intrinsic and finite rates of increase, all of which decreased gradually as the number of delay days increased. The population doubling time increased with increases in mating age. The results also showed that delayed mating was an effective measure to consider in controlling H. vigintioctopunctata. It is hoped that our data will provide a scientific basis and contribute technical guidance for forecasting and integrated management of this pest.

10.
Biochim Biophys Acta Bioenerg ; 1862(11): 148473, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34310933

RESUMO

Halorhodospira (Hlr.) halochloris is a unique phototrophic purple bacterium because it is a triple extremophile-the organism is thermophilic, alkalophilic, and halophilic. The most striking photosynthetic feature of Hlr. halochloris is that the bacteriochlorophyll (BChl) b-containing core light-harvesting (LH1) complex surrounding its reaction center (RC) exhibits its LH1 Qy absorption maximum at 1016 nm, which is the lowest transition energy among phototrophic organisms. Here we report that this extraordinarily red-shifted LH1 Qy band of Hlr. halochloris exhibits interconvertible spectral shifts depending on the electrostatic charge distribution around the BChl b molecules. The 1016 nm band of the Hlr. halochloris LH1-RC complex was blue-shifted to 958 nm upon desalting or pH decrease but returned to its original position when supplemented with salts or pH increase. Resonance Raman analysis demonstrated that these interconvertible spectral shifts are not associated with the strength of hydrogen-bonding interactions between BChl b and LH1 polypeptides. Furthermore, circular dichroism signals for the LH1 Qy transition of Hlr. halochloris appeared with a positive sign (as in BChl b-containing Blastochloris species) and opposite those of BChl a-containing purple bacteria, possibly due to a combined effect of slight differences in the transition dipole moments between BChl a and BChl b and in the interactions between adjacent BChls in their assembled state. Based on these findings and LH1 amino acid sequences, it is proposed that Hlr. halochloris evolved its unique and tunable light-harvesting system with electrostatic charges in order to carry out photosynthesis and thrive in its punishing hypersaline and alkaline habitat.


Assuntos
Proteínas de Bactérias/metabolismo , Bacterioclorofilas/metabolismo , Ectothiorhodospiraceae/metabolismo , Extremófilos/metabolismo , Complexos de Proteínas Captadores de Luz/metabolismo , Sequência de Aminoácidos , Ligação de Hidrogênio , Conformação Molecular , Peptídeos/metabolismo , Fotossíntese , Ligação Proteica , Eletricidade Estática , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA