Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 314: 124179, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38522375

RESUMO

The therapeutic efficacy of chemotherapy drugs can be effectively improved through the dual effects of their combination with natural polyphenols and the delivery of targeted DNA nanostructures. In this work, the interactions of topotecan (TPT), (+)-catechin (CAT), or protocatechuic acid (PCA) with a pH-sensitive DNA tetrahedron (MUC1-TD) in the binary and ternary systems at pHs 5.0 and 7.4 were investigated by fluorescence spectroscopy and calorimetry. The intercalative binding mode of TPT/CAT/PC to MUC1-TD was confirmed, and their affinity was ranked in the order of PCA > CAT > TPT. The effects of the pH-sensitivity of MUC1-TD and different molecular structures of CAT and PCA on the loading, release, and cytotoxicity of TPT were discussed. The weakened interaction under acidic conditions and the co-loading of CAT/PCA, especially PCA, improved the release of TPT loaded by MUC1-TD. The targeting of MUC1-TD and the synergistic effect with CAT/PCA, especially CAT, enhanced the cytotoxicity of TPT on A549 cells. For L02 cells, the protective effect of CAT/PCA reduced the damage caused by TPT. The single or combined TPT loaded by MUC1-TD was mainly concentrated in the nucleus of A549 cells. This work will provide key information for the combined application of TPT and CAT/PCA loaded by DNA nanostructures to improve chemotherapy efficacy and reduce side effects.


Assuntos
Catequina , Topotecan , Topotecan/efeitos adversos , Catequina/farmacologia , Hidroxibenzoatos/farmacologia , DNA/química
2.
Glob Chang Biol ; 29(17): 4898-4909, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37337363

RESUMO

Aboveground, large and higher trophic-level organisms often respond more strongly to environmental changes than small and lower trophic-level organisms. However, whether this trophic or size-dependent sensitivity also applies to the most abundant animals, microscopic soil-borne nematodes, remains largely unknown. Here, we sampled an altitudinal transect across the Tibetan Plateau and applied a community-weighted mean (CWM) approach to test how differences in climatic and edaphic properties affect nematode CWM biomass at the level of community, trophic group and taxon mean biomass within trophic groups. We found that climatic and edaphic properties, particularly soil water-related properties, positively affected nematode CWM biomass, with no overall impact of altitude on nematode CWM biomass. Higher trophic-level omnivorous and predatory nematodes responded more strongly to climatic and edaphic properties, particularly to temperature, soil pH, and soil water content than lower trophic-level bacterivorous and fungivorous nematodes. However, these differences were likely not (only) driven by size, as we did not observe significant interactions between climatic and edaphic properties and mean biomasses within trophic groups. Together, our research implies a stronger, size-independent trophic sensitivity of higher trophic-level nematodes compared with lower trophic-level ones. Therefore, our findings provide new insights into the mechanisms underlying nematode body size structure in alpine grasslands and highlight that traits independent of size need to be found to explain increased sensitivity of higher trophic-level nematodes to climatic and edaphic properties, which might affect soil functioning.


Assuntos
Nematoides , Animais , Biomassa , Solo , Tamanho Corporal , Água , Ecossistema
3.
Front Plant Sci ; 14: 1117903, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36938009

RESUMO

Biodiversity is essential for the provision of multiple ecosystem functions simultaneously (ecosystem multifunctionality EMF). Yet, it remains unclear whether and how dominant plant species impact EMF. Here, we aimed at disentangling the direct from indirect above- and belowground pathways by which dominant plant species influence EMF. We evaluated the effects of two dominant plant species (Dasiphora fruticosa, and the toxic perennial plant Ligularia virgaurea) with expected positive and negative impacts on the abiotic environment (soil water content and pH), surrounding biological communities (plant and nematode richness, biomass, and abundance in the vicinity), and on the EMF of alpine meadows, respectively. We found that the two dominant plants enhanced EMF, with a positive effect of L. virgaurea on EMF greater than that of D. fruticosa. We also observed that dominant plants impacted on EMF through changes in soil water content and pH (indirect abiotic effects), but not through changes in biodiversity of surrounding plants and nematodes (indirect biotic pathway). Our study suggests that dominant plants may play an important role in promoting EMF, thus expanding the pervasive mass-ratio hypothesis originally framed for individual functions, and could mitigate the negative impacts of vegetation changes on EMF in the alpine meadows.

4.
Front Plant Sci ; 13: 815011, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35392523

RESUMO

Nitrogen addition and clipping can exert substantial impact on species diversity but their interactions and the underlying mechanisms still remain unclear. Resource competition theory holds that sufficiently strong competitive ability of dominant species can lead to the losses of subordinate species through competitive exclusion, while niche differentiation theory suggests that the persistence of subordinate species in competitive systems can be promoted by guaranteeing positive growth rates of rare species. Taking advantage of a field experiment with nitrogen addition (10 g N m-2 year-1) and different clipping intensities (2, 15, and 30 cm) treatments in a Tibetan alpine meadow across 2015-2020, we assessed the relative importance of competitively dominant species and niche differentiation in driving species diversity changes via using community weighted mean (CWM) and variation coefficient of nearest neighbor distance (CV_NND) of functional traits including height, specific leaf area (SLA) and leaf dry matter content (LDMC). We show that nitrogen enrichment drove a strong plant diversity loss (P < 0.001). Clipping at different intensities had little effect on species diversity, but it can reduce the N-induced diversity loss. Nitrogen addition and clipping caused changes in community diversity were mainly indirectly attributed to their effects on community functional composition, and the competitive ability of dominant species. Nitrogen increased the CWM of functional traits to improve the competitive ability of dominant species. In contrast, clipping influenced species diversity positively by decreasing CWMheight (P < 0.001), and also negatively by increasing CWMSLA (P < 0.001) and decreasing CV_NNDSLA (P < 0.05). Interacting with N addition, clipping resulted in a neutral effect on species diversity, because clipping could offset the negative effects of nitrogen addition through an opposite effect on CWMheight. This study provides new insights into the mechanisms of diversity maintenance with respect to nitrogen addition and clipping. Thus, clipping is recommended as a useful management strategy to alleviate the species loss caused by nutrients enrichment and maintain the diversity of grassland ecosystems.

5.
Ann Bot ; 127(2): 241-249, 2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-32940643

RESUMO

BACKGROUND AND AIMS: Facilitation is an important ecological process for plant community structure and functional composition. Although direct facilitation has accrued most of the evidence so far, indirect facilitation is ubiquitous in nature and it has an enormous potential to explain community structuring. In this study, we assess the effect of direct and indirect facilitation on community productivity via taxonomic and functional diversity. METHODS: In an alpine community on the Tibetan Plateau, we manipulated the presence of the shrub Dasiphora fruticosa and graminoids in a fenced meadow and a grazed meadow to quantify the effects of direct and indirect facilitation. We measured four plant traits: height, lateral spread, specific leaf area (SLA) and leaf dry matter content (LDMC) of forbs; calculated two metrics of functional diversity [range of trait and community-weighted mean (CWM) of trait]; and assessed the responses of functional diversity to shrub facilitation. We used structural equation modelling to explore how shrubs directly and indirectly drove community productivity via taxonomic diversity and functional diversity. KEY RESULTS: We found stronger effects from herbivore-mediated indirect facilitation than direct facilitation on productivity and taxonomic diversity, regardless of the presence of graminoids. For functional diversity, the range and CWM of height and SLA, rather than lateral spread and LDMC, generally increased due to direct and indirect facilitation. Moreover, we found that the range of traits played a primary role over taxonomic diversity and CWM of traits in terms of shrub effects on community productivity. CONCLUSIONS: Our study reveals that the mechanism of shrub direct and indirect facilitation of community productivity in this alpine community is expanding the realized niche (i.e. expanding range of traits). Our findings indicate that facilitators might increase trait dispersion in the local community, which could alleviate the effect of environmental filters on trait values in harsh environments, thereby contributing to ecosystem functioning.


Assuntos
Ecossistema , Plantas , Herbivoria , Folhas de Planta
6.
Front Microbiol ; 11: 925, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32528430

RESUMO

Microorganisms play a crucial role in biogeochemical cycles and ecosystem processes, but the key factors driving microbial community structure are poorly understood, particularly in alpine environments. In this study, we aim to disentangle the relative contribution of abiotic and biotic factors shaping bacterial and fungal community structure at large and small spatial and integration scales in an alpine system dominated by a stress-tolerant cushion species Thylacospermum ceaspitosum. These effects were assessed in two mountain ranges of northwest China and for two contrasting phenotypes of the cushion species inhabiting two different microtopographic positions. The large- and small-scale abiotic effects include the site and microhabitat effects, respectively, while the large- and small-scale biotic effects include the effects of cushion presence and cushion phenotype, respectively. Soil microbial communities were characterized by Illumina Miseq sequencing. Uni- and multivariate statistics were used to test the effects of abiotic and biotic factors at both scales. Results indicated that the site effect representing the soil pH and abiotic hydrothermal conditions mainly affected bacterial community structure, whereas fungal community structure was mainly affected by biotic factors with an equal contribution of cushion presence and cushion phenotype effects. Future studies should analyze the direct factors contributing to shaping microbial community structure in particular of the cushion phenotypes.

7.
Bull Math Biol ; 76(2): 476-85, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24500062

RESUMO

Game-theoretic models predict that there is an ESS height for the plant population to which all individual plants should converge. To attain this conclusion, the neighborhood factors were assumed to be equal for all the individual plants, and the spatial pattern and size variation of population were left without consideration, which is clearly not right for the scenario of plant competition. We constructed a spatially-explicit, individual-based model to explore the impacts of spatial structure and size variation on individual plant's height and population's height hierarchies under the light competition. The monomorphic equilibrium of height that all the individual plants will converge to only exists for a population growing in a strictly uniform spatial pattern with no size variation. When the spatial pattern of the population is non-uniform or there's size variation among individual plants, the critical heights that individual plants will finally reach are different from each other, and the height inequality at the end of population growth will increase when the population's spatial pattern's degree of deviation from uniform and population's size variation increase. Our results argue strongly for the importance of spatial pattern and neighborhood effects in generating the diversity of population's height growth pattern.


Assuntos
Modelos Biológicos , Desenvolvimento Vegetal , Plantas/anatomia & histologia , Evolução Biológica , Ecossistema , Teoria dos Jogos , Conceitos Matemáticos , Processos Fototróficos , Árvores/anatomia & histologia , Árvores/crescimento & desenvolvimento
8.
Bull Math Biol ; 75(2): 213-22, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23307234

RESUMO

Among numerous mechanisms shaping the unimodal relationship between diversity and community biomass, the trade-off model of "CRS" theory is the most famous one. However, recent researches indicate that this relationship may also emerge under the neutral model where all species are identical with each other. By using an individual-based spatially-explicit model, we evaluated the underlying mechanisms shaping this curve for both models under different disturbance levels. We found unimodal relationships emerged for both models at low and medium disturbance levels; the richness for the trade-off community was lower than the neutral community for most of the environment severity levels, especially at the benign environment due to the strong competitive exclusions among species. Whereas under high disturbance level, the positive relationships emerged for both models; both communities had similar richness with their curves nearly overlapped with each other, that is, because the high disturbance intensity strongly decreased the competitive exclusions within the trade-off community. Our results indicate that although the underlying mechanisms are totally different, both models will produce the similar relationship between diversity and community biomass under different disturbance levels.


Assuntos
Biodiversidade , Biomassa , Ecossistema , Modelos Biológicos , Animais , Simulação por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA