Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Mol Cancer Ther ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38920409

RESUMO

Poly (ADP-ribose) polymerases 1 (PARP1) is a critical enzyme involved in DNA damage repair. It belongs to a super family of proteins and catalyzes poly (ADP-ribosyl)ation (PARylation). PARP1 inhibitors are effective to treat tumors that have homologous recombination deficiency (HRD) such as the ones with BRCA1/2 mutations. The PARP1 inhibitors that have been approved by FDA inhibit both PARP1 and PARP2. PARP2 has also been suggested to have similar function in DNA repair as PARP1. In addition to inhibiting PARP1 enzymatic activities, PARP1 inhibitors also cause PARP1 enzyme to be "trapped" on DNA which leads to DNA replication fork to stall and eventually double-strand DNA breaks and cell death. Here, we report a PARP1 inhibitor, Senaparib, which has a novel chemical structure and high potency inhibiting PARP1/2 enzymes. Senaparib was highly potent in cell viability tests against tumor cells with BRCA1/2 mutations. It was efficacious in CDX and PDX xenograft models in tumor harboring BRCA1/2 mutations. In combination studies, Senaparib used with temozolomide (TMZ) had shown strong synergistic cytotoxicity in both in vitro and in vivo experiments. Senaparib represents a novel class of PARP1 inhibitors that can be used for the treatment of cancer. A phase III clinical study of Senaparib for maintenance treatment following first-line chemotherapy in patients with advanced ovarian cancer has met its primary endpoint, and a new drug application of Senaparib has been accepted by National Medical Products Administration (NMPA) of China for review.

2.
Front Public Health ; 12: 1331679, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38344233

RESUMO

The pollution posed by medical waste complicate the procedures of medical waste logistics (MWL), and the increasingly frequent occurrence of public health emergencies has magnified the risks posed by it. In this study, the authors established an index of the factors influencing the risks posed by MWL along five dimensions: the logistics business, emergency capacity, equipment, personnel, and management. The best-worst case method was used to identify the critical risk-related factors and rank them by importance. Following this, we assessed the risk posed by MWL in four major cities in China as an example and propose the corresponding measures of risk control. The results showed that the linking of business processes was the most important factor influencing the risk posed by MWL. The other critical risk-related factors included the location of the storage site, the capacity for emergency transportation, measures to manage emergencies, and the safety of packaging. Of the cities considered, Beijing was found to be a high-risk city, and its MWL needed to be improved as soon as possible in light of the relevant critical risks. Shanghai, Guangzhou, and Shenzhen were evaluated as general-risk cities, which meant that the risks of MWL were not a priority in these areas, and the other goals of urban development should be comprehensively considered during the long-term planning for MWL in these municipalities.


Assuntos
Resíduos de Serviços de Saúde , Humanos , China , Emergências , Cidades , Saúde Pública
3.
Cancer ; 129(7): 1041-1050, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36718624

RESUMO

BACKGROUND: Senaparib is a novel, selective poly(ADP-ribose) polymerase-1/2 inhibitor with strong antitumor activity in preclinical studies. This first-in-human, phase 1, dose-escalation study examined the safety and preliminary efficacy of senaparib in patients with advanced solid tumors. METHODS: Patients with advanced solid tumors were enrolled from three centers in Australia, using a conventional 3 + 3 design. Dose-escalation cohorts continued until the maximum tolerated dose or a recommended phase 2 dose was determined. Patients received one dose of oral senaparib and, if no dose-limiting toxicity occurred within 7 days, they received senaparib once daily in 3-week cycles. The primary end points were safety and tolerability. RESULTS: Thirty-nine patients were enrolled at 10 dose levels ranging from 2 to 150 mg. No dose-limiting toxicities were observed in any cohort. Most treatment-emergent adverse events were grade 1-2 (91%). Seven patients (17.9%) reported hematologic treatment-emergent adverse events. Treatment-related adverse events occurred in eight patients (20.5%), and the most frequent was nausea (7.7%). Two deaths were reported after the end of study treatment, one of which was considered a complication from senaparib-related bone marrow failure. Pharmacokinetic analysis indicated that senaparib the accumulation index was 1.06-1.67, and absorption saturation was 80-150 mg daily. In 22 patients with evaluable disease, the overall response rate was 13.6%, and the disease control rate was 81.8%. The overall response rate was 33.3% for the BRCA mutation-positive subgroup and 6.3% for the nonmutated subgroup. CONCLUSIONS: Senaparib was well tolerated in Australian patients with advanced solid tumors, with encouraging signals of antitumor activity. The recommended phase 2 dose for senaparib was determined to be 100 mg daily. GOV ID: NCT03507543.


Assuntos
Antineoplásicos , Neoplasias , Inibidores de Poli(ADP-Ribose) Polimerases , Humanos , Antineoplásicos/efeitos adversos , Antineoplásicos/uso terapêutico , Austrália , Dose Máxima Tolerável , Neoplasias/patologia , Inibidores de Poli(ADP-Ribose) Polimerases/efeitos adversos , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico
4.
J Nutr Biochem ; 112: 109174, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36280127

RESUMO

Nonalcoholic fatty liver disease (NAFLD), which ranges from simple steatosis to nonalcoholic steatohepatitis (NASH), is the most common chronic liver disease. Yet, the molecular mechanisms for the progression of steatosis to NASH remain largely undiscovered. Thus, there is a need for identifying specific gene and pathway changes that drive the progression of NAFLD. This study uses high-fat Western diet (HFWD) together with liquid sugar [fructose and sucrose (F/S)] feeding for 12 weeks in mice to induce obesity and examine hepatic transcriptomic changes that occur in NAFLD progression. The combination of a HFWD+F/S in the drinking water exacerbated HFWD-induced obesity, hyperinsulinemia, hyperglycemia, hepatic steatosis, inflammation, and human and murine fibrosis gene set enrichment that is consistent with progression to NASH. RNAseq analysis revealed differentially expressed genes (DEGs) associated with HFWD and HFWD+F/S dietary treatments compared to Chow-fed mice. However, liquid sugar consumption resulted in a unique set of hepatic DEGs in HFWD+F/S-fed mice, which were enriched in the complement and coagulation cascades using network and biological analysis. Cluster analysis identified Orosomucoid (ORM) as a HFWD+F/S upregulated complement and coagulation cascades gene that was also upregulated in hepatocytes treated with TNFα or free fatty acids in combination with hypoxia. ORM expression was found to correlate with NAFLD parameters in obese mice. Taken together, this study examined key genes, biological processes, and pathway changes in the liver of HFWD+F/S mice in an effort to provide insight into the molecular basis for which the addition of liquid sugar promotes the progression of NAFLD.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Transcriptoma , Frutose/efeitos adversos , Frutose/metabolismo , Sacarose/efeitos adversos , Sacarose/metabolismo , Dieta Ocidental/efeitos adversos , Fígado/metabolismo , Dieta Hiperlipídica/efeitos adversos , Obesidade/metabolismo , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
5.
Clin Transl Med ; 12(11): e1091, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36314066

RESUMO

BACKGROUND: The melanocortin receptor accessory proteins (MRAP1 and MRAP2) are well-known endocrine regulators for the trafficking and signalling of all five melanocortin receptors (MC1R-MC5R). The observation of MRAP2 on regulating several non-melanocortin G protein-coupled receptors (GPCRs) has been sporadically reported, whereas other endogenous GPCR partners of the MRAP protein family are largely unknown. METHODS: Here, we performed single-cell transcriptome analysis and drew a fine GPCR blueprint and MRAPs-associated network of two major endocrine organs, the hypothalamus and adrenal gland at single-cell resolution. We also integrated multiple bulk RNA-seq profiles and single-cell datasets of human and mouse tissues, and narrowed down a list of 48 GPCRs with strong endogenous co-expression correlation with MRAPs. RESULTS: 36 and 46 metabolic-related GPCRs were consequently identified as novel interacting partners of MRAP1 or MRAP2, respectively. MRAPs exhibited protein-protein interactions and varying pharmacological properties on the surface translocation, constitutive activities and ligand-stimulated downstream signalling of these GPCRs. Knockdown of MRAP2 expression by hypothalamic administration of adeno-associated virus (AAV) packed shRNA stimulated body weight gain in mouse model. Co-injection of corticotropinreleasing factor (CRF), the agonist of corticotropin releasing hormone receptor 1 (CRHR1), suppressed feeding behaviour in a MRAP2-dependent manner. CONCLUSIONS: Collectively, our study has comprehensively elucidated the complex GPCR networks in two major endocrine organs and redefined the MRAP protein family as broad-spectrum GPCR modulators. MRAP proteins not only serve as a vital endocrine pivot on the regulation of global GPCR activities in vivo that could explain the composite physiological phenotypes of the MRAP2 null murine model but also provide us with new insights of the phenotyping investigation of GPCR-MRAP functional complexes.


Assuntos
Proteínas de Transporte , Receptores de Melanocortina , Animais , Humanos , Camundongos , Receptores de Melanocortina/genética , Receptores de Melanocortina/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Melanocortinas/metabolismo , Glândulas Suprarrenais/metabolismo , Hipotálamo/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo
6.
Front Endocrinol (Lausanne) ; 13: 820896, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35250878

RESUMO

The Melanocortin-3 receptor (MC3R) and Melanocortin-4 receptor (MC4R), two members of the key hypothalamic neuropeptide signaling, function as complex mediators to control the central appetitive and energy homeostasis. The melanocortin 2 receptor accessory protein 2 (MRAP2) is well-known for its modulation on the trafficking and signaling of MC3R and MC4R in mammals. In this study, we cloned and elucidated the pharmacological profiles of MRAP2 on the regulation of central melanocortin signaling in a relatively primitive poikilotherm amphibian species, the Mexican axolotl (Ambystoma mexicanum). Our results showed the higher conservation of axolotl mc3r and mc4r across species than mrap2, especially the transmembrane regions in these proteins. Phylogenetic analysis indicated that the axolotl MC3R/MC4R clustered closer to their counterparts in the clawed frog, whereas MRAP2 fell in between the reptile and amphibian clade. We also identified a clear co-expression of mc3r, mc4r, and mrap2 along with pomc and agrp in the axolotl brain tissue. In the presence of MRAP2, the pharmacological stimulation of MC3R by α-MSH or ACTH significantly decreased. MRAP2 significantly decreased the cell surface expression of MC4R in a dose dependent manner. The co-localization and formation of the functional complex of axolotl MC3R/MC4R and MRAP2 on the plasma membrane were further confirmed in vitro. Dramatic changes of the expression levels of mc3r, mrap2, pomc, and agrp in the fasting axolotl hypothalamus indicated their critical roles in the metabolic regulation of feeding behavior and energy homeostasis in the poikilotherm aquatic amphibian.


Assuntos
Ambystoma mexicanum , Melanocortinas , Proteína Relacionada com Agouti/genética , Ambystoma mexicanum/metabolismo , Animais , Mamíferos/metabolismo , Melanocortinas/metabolismo , Filogenia , Pró-Opiomelanocortina/genética , Receptor Tipo 2 de Melanocortina
7.
Pharmacogenet Genomics ; 32(2): 67-71, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34545025

RESUMO

Metformin is the first-choice oral anti-hyperglycemic drug for type 2 diabetes mellitus (T2DM) patients. There are controversies about the association of SLC22A1 rs622342, which was not reported in the Chinese population, and ataxia-telangiectasia mutated (ATM) rs11212617 polymorphisms with metformin efficacy in T2DM. Our study was to investigate the effects of the two single nucleotide polymorphisms on the efficacy of metformin in T2DM of Han nationality in Chaoshan China. After enrollment, 82 newly diagnosed T2DM patients went on 2-month metformin monotherapy. According to BMI before treatment, the patients were divided into a normal weight group (≥18.5 and <25 kg/m2) and an overweight group (BMI ≥ 25 and <30 kg/m2). T-test, Pearson χ2 test, and regression analysis, which adjusted for age, BMI, sex, the dose of metformin, education, tea drink, smoking, and sweet, were used to evaluate the effects of rs622342 and rs11212617 on several variables, such as fasting plasma glucose (FPG). Compared with the AA or CC genotype, patients with AC genotype of rs622342 achieved greater reduction in Δ60FPG and Δ(60-30)FPG (P = 0.00820, 0.00089, respectively). For 11212617, the reduction in Δ30FPG and Δ60FPG was significantly different among patients with the AC genotype (P = 0.00026, 0.00820, respectively). Our results indicated that common variants of SLC22A1 rs622342 and ATM rs11212617 were associated with the efficacy of metformin in T2DM of Han nationality in Chaoshan China.


Assuntos
Ataxia Telangiectasia , Diabetes Mellitus Tipo 2 , Metformina , Proteínas Mutadas de Ataxia Telangiectasia/genética , Glicemia , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/genética , Hemoglobinas Glicadas/metabolismo , Humanos , Hipoglicemiantes/uso terapêutico , Metformina/uso terapêutico , Polimorfismo de Nucleotídeo Único/genética
8.
Mol Metab ; 53: 101317, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34400348

RESUMO

OBJECTIVE: Homo- or heterodimerization of G protein-coupled receptors (GPCRs) generally alters the normal functioning of these receptors and mediates their responses to a variety of physiological stimuli in vivo. It is well known that melanocortin-3 receptor (MC3R) and melanocortin-4 receptor (MC4R) are key regulators of appetite and energy homeostasis in the central nervous system (CNS). However, the GPCR partners of MC3R and MC4R are not well understood. Our objective is to analyze single cell RNA-seq datasets of the hypothalamus to explore and identify novel GPCR partners of MC3R and MC4R and examine the pharmacological effect on the downstream signal transduction and membrane translocation of melanocortin receptors. METHODS: We conducted an integrative analysis of multiple single cell RNA-seq datasets to reveal the expression pattern and correlation of GPCR families in the mouse hypothalamus. The emerging GPCRs with important metabolic functions were selected for cloning and co-immunoprecipitation validation. The positive GPCR partners were then tested for the pharmacological activation, competitive binding assay and surface translocation ELISA experiments. RESULTS: Based on the expression pattern of GPCRs and their function enrichment results, we narrowed down the range of potential GPCR interaction with MC3R and MC4R for further confirmation. Co-immunoprecipitation assay verified 23 and 32 novel GPCR partners that interacted with MC3R and MC4R in vitro. The presence of these GPCR partners exhibited different effects in the physiological regulation and signal transduction of MC3R and MC4R. CONCLUSIONS: This work represented the first large-scale screen for the functional GPCR complex of central melanocortin receptors and defined a composite metabolic regulatory GPCR network of the hypothalamic nucleuses.


Assuntos
Melanocortinas/metabolismo , Receptor Tipo 3 de Melanocortina/metabolismo , Receptor Tipo 4 de Melanocortina/metabolismo , Animais , Células Cultivadas , Células HEK293 , Humanos , Hipotálamo/metabolismo , Camundongos , Receptor Tipo 3 de Melanocortina/genética , Receptor Tipo 4 de Melanocortina/genética , Transdução de Sinais
9.
Inorg Chem ; 60(16): 12186-12196, 2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34310113

RESUMO

A new versatile chelating ligand for intermediate size and softness radiometals [64Cu]Cu2+ and [111In]In3+, H2pyhox, was synthesized by introducing pyridine as a new donor moiety to complement 8-hydroxyquinoline on an ethylenediamine backbone. The combination of pyridine and oxine as donor sets was explored through structural analysis, and crystals of the three metal complexes with Cu2+, La3+, and In3+ demonstrate how the ligand adapts to accommodate metal ions of different sizes and charge. Exhaustive in-batch UV solution studies characterized the protonation constants of the free ligand as well as the formation constants of the metal complexes with Cu2+, In3+, and La3+. Preliminary concentration-dependent radiolabeling studies with [111In]In3+ and [64Cu]Cu2+ show the robustness of H2pyhox to successfully coordinate both radiometals under mild conditions (<15 min, room temperature, pH 6). H2pyhox is the first oxinate ligand to successfully radiolabel [225Ac]Ac3+, albeit only at high concentrations (0.1-1 mM) with gentle heating to 37 °C. Whole serum, protein, and ligand challenge assays further demonstrate the kinetic inertness of the [111In]In3+ and [64Cu]Cu2+ radiometal-ligand complexes, confirming H2pyhox to be a promising versatile radiopharmaceutical chelator.

10.
Dalton Trans ; 50(11): 3874-3886, 2021 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-33629999

RESUMO

Advances in nuclear medicine depend on chelating ligands that form highly stable and kinetically inert complexes with relevant radiometal ions for use in diagnosis or therapy. A new potentially decadentate ligand, H5decaox, was synthesised to incorporate two 8-hydroxyquinoline moieties on either end of a diethylenetriamine backbone decorated with three carboxylic acids, one at each N atom of the backbone. Metal complexation was assessed using nuclear magnetic resonance (NMR) spectroscopy and high-resolution mass spectrometry (HR-MS) with In3+, Zr4+ and La3+. Solution thermodynamic studies provided the stepwise protonation constants and metal formation constants, indicating a high affinity for both In3+ and Zr4+ (pIn = 32.3 and pZr = 34.7), and density functional theory (DFT) calculations provided insight into the coordination environments with either metal ion. Concentration dependent radiolabeling experiments with [111In]InCl3 and [89Zr]ZrCl4 showed promise as quantitative radiolabeling (>95%) occurred at micromolar concentrations, under mild, near-physiological conditions of pH 7 and room temperature for 30 minutes. Serum stability of both radiometal complexes was investigated and the [111In]In(decaox) complex remained 91% intact after 24 hours while the [89Zr]Zr(decaox) complex was 86% intact over the same time, comparable to other chelating ligands previously assessed with the same methods. The high radiolabeling yields, limited serum protein transchelation and structural insight of the [89Zr]Zr(decaox) complex suggest a promising fit between the oxinate-containing ligand and the Zr4+ ion, setting the stage for further investigations with a functionalised version of the chelator for its potential in PET imaging.

11.
Exp Ther Med ; 21(3): 219, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33603828

RESUMO

Microglia activation plays vital roles in neuroinflammatory pathologys. Lemurs tyrosine kinase 2 (LMTK2) was reported to regulate NF-κB signals. In the present study, the roles of LMTK2 were investigated in lipopolysaccharide (LPS)-treated BV-2 cells. Reverse transcription-quantitative (RT-q)PCR and western blotting (WB) were utilized to analyze LMTK2 levels in LPS-treated BV2 cells. MTT assay determined cell viabilities. Nitric oxide (NO) and prostaglandin E2 (PGE2) levels were assessed through Griess and enzyme-linked immunosorbent assay (ELISA), respectively. The expression level of inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2) were detected through RT-qPCR and WB. The release of inflammatory mediators under LPS stimulation, tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), IL-6 and IL-10, were analyzed through ELISA. WB was used to analyze the nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase 1 (HO-1)/NAD(P)H dehydrogenase quinone 1 (NQO1) signal pathway. The results showed that the levels of the inflammatory mediators, iNOS, NO, COX-2 and PGE2, along with pro-inflammatory factors, TNF-α, IL-1ß and IL-6, were significantly decreased following the induction of exogenous LMTK2 expression by LMTK2 overexpression plasmids in LPS-induced BV2 microglia. In contrast, anti-inflammatory factor IL-10 showed obvious decrease. Additionally, LMTK2 overexpression induced the elevation of Nrf2 in the cytoplasm and nucleus, along with the upregulation of HO-1 and NQO1 expression. In conclusion, LMTK2 is postulated to regulate neuroinflammation possibly through Nrf2 pathway. The present study is essential to reveal the underlying function of LMTK2 and to identify novel therapeutic targets for drug development in treating neuroinflammation.

12.
Bioconjug Chem ; 32(7): 1348-1363, 2021 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32216377

RESUMO

Herein, we present the syntheses and characterization of a new undecadendate chelator, H4py4pa, and its bifunctional analog H4py4pa-phenyl-NCS, conjugated to the monoclonal antibody, Trastuzumab, which targets the HER2+ cancer. H4py4pa possesses excellent affinity for 225Ac (α, t1/2 = 9.92 d) for targeted alpha therapy (TAT), where quantitative radiolabeling yield was achieved at ambient temperature, pH = 7, in 30 min at 10-6 M chelator concentration, leading to a complex highly stable in mouse serum for at least 9 d. To investigate the chelation of H4py4pa with large metal ions, lanthanum (La3+), which is the largest nonradioactive metal of the lanthanide series, was adopted as a surrogate for 225Ac to enable a series of nonradioactive chemical studies. In line with the 1H NMR spectrum, the DFT (density functional theory)-calculated structure of the [La(py4pa)]- anion possessed a high degree of symmetry, and the La3+ ion was secured by two distinct pairs of picolinate arms. Furthermore, the [La(py4pa)]- complex also demonstrated a superb thermodynamic stability (log K[La(py4pa)]- ∼ 20.33, pLa = 21.0) compared to those of DOTA (log K[La(DOTA)]- ∼ 24.25, pLa = 19.2) or H2macropa (log K[La(macropa)]- = 14.99, pLa ∼ 8.5). Moreover, the functional versatility offered by the bifunctional py4pa precursor permits facile incorporation of various linkers for bioconjugation through direct nucleophilic substitution. In this work, a short phenyl-NCS linker was incorporated to tether H4py4pa to Trastuzumab. Radiolabeling studies, in vitro serum stability, and animal studies were performed in parallel with the DOTA-benzyl-Trastuzumab. Both displayed excellent in vivo stability and tumor specificity.


Assuntos
Actínio/química , Partículas alfa/uso terapêutico , Antineoplásicos Imunológicos/uso terapêutico , Quelantes/química , Complexos de Coordenação/uso terapêutico , Compostos Radiofarmacêuticos/uso terapêutico , Trastuzumab/uso terapêutico , Animais , Antineoplásicos Imunológicos/química , Antineoplásicos Imunológicos/farmacocinética , Complexos de Coordenação/química , Complexos de Coordenação/farmacocinética , Teoria da Densidade Funcional , Humanos , Camundongos , Compostos Radiofarmacêuticos/química , Compostos Radiofarmacêuticos/farmacocinética , Termodinâmica , Distribuição Tecidual , Trastuzumab/química , Trastuzumab/farmacocinética , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Int J Biol Macromol ; 166: 1246-1257, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33159940

RESUMO

Insect mitochondrial DNA (mtDNA) ranges from 14 to 19 kbp, and the size difference is attributed to the AT-rich control region. Jewel wasps have a parasitoid lifestyle, which may affect mitochondria function and evolution. We sequenced, assembled, and annotated mitochondrial genomes in Nasonia and outgroup species. Gene composition and order are conserved within Nasonia, but they differ from other parasitoids by two large inversion events that were not reported before. We observed a much higher substitution rate relative to the nuclear genome and mitochondrial introgression between N. giraulti and N. oneida, which is consistent with previous studies. Most strikingly, N. vitripennis mtDNA has an extremely long control region (7665 bp), containing twenty-nine 217 bp tandem repeats and can fold into a super-cruciform structure. In contrast to tandem repeats commonly found in other mitochondria, these high-copy repeats are highly conserved (98.7% sequence identity), much longer in length (approximately 8 Kb), extremely GC-rich (50.7%), and CpG-rich (percent CpG 19.4% vs. 1.1% in coding region), resulting in a 23 kbp mtDNA beyond the typical size range in insects. These N. vitripennis-specific mitochondrial repeats are not related to any known sequences in insect mitochondria. Their evolutionary origin and functional consequences warrant further investigations.


Assuntos
Composição de Bases/genética , DNA Mitocondrial/genética , Genoma de Inseto , Sequências de Repetição em Tandem/genética , Vespas/genética , Animais , Sequência de Bases , Ilhas de CpG/genética , Metilação de DNA/genética , Rearranjo Gênico/genética , Genoma Mitocondrial , Anotação de Sequência Molecular , Filogenia
14.
Genome Biol Evol ; 12(12): 2508-2520, 2020 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-33283864

RESUMO

Wolbachia are widespread intracellular bacteria that mediate many important biological processes in arthropod species. In this study, we identified 210 conserved single-copy genes in 33 genome-sequenced Wolbachia strains in the A-F supergroups. Phylogenomic analyses with these core genes indicate that all 33 Wolbachia strains maintain the supergroup relationship, which was classified previously based on the multilocus sequence typing (MLST) genes. Using an interclade recombination screening method, 14 inter-supergroup recombination events were discovered in six genes (2.9%) among 210 single-copy orthologs. This finding suggests a relatively low frequency of intergroup recombination. Interestingly, they have occurred not only between A and B supergroups (nine events) but also between A and E supergroups (five events). Maintenance of such transfers suggests possible roles in Wolbachia infection-related functions. Comparisons of strain divergence using the five genes of the MLST system show a high correlation (Pearson correlation coefficient r = 0.98) between MLST and whole-genome divergences, indicating that MLST is a reliable method for identifying related strains when whole-genome data are not available. The phylogenomic analysis and the identified core gene set in our study will serve as a valuable foundation for strain identification and the investigation of recombination and genome evolution in Wolbachia.


Assuntos
Genoma Bacteriano , Filogenia , Recombinação Genética , Wolbachia/genética
15.
J Am Vet Med Assoc ; 257(3): 299-304, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32657662

RESUMO

OBJECTIVE: To examine the effectiveness of applying selective pressure to improve hip joint quality in purpose-bred detection dogs by use of PennHIP distraction index (DI) values along with Orthopedic Foundation for Animals (OFA) hip joint scores and to determine whether age, sex, coat color, breed, and body weight were associated with hip joint quality. ANIMALS: 615 purpose-bred detection dogs assessed for hip joint quality. PROCEDURES: Orthopedic records of 615 purpose-bred detection dogs (569 Labrador Retrievers and 46 Labrador Retriever-German Wirehaired Pointer crossbred dogs) from 2000 through 2017 were analyzed. From 2000 to 2014, hip joint quality scores were determined by OFA evaluation only (429 dogs). Beginning in 2015, both PennHIP and OFA evaluations were used to select male and female breeding stock (179 dogs; 7 dogs were removed from analysis because they did not undergo both evaluations). Selection threshold DI value for sires and dams was ≤ 0.30; all had hip joint scores of excellent or good by OFA standards. Standard ventrodorsal hip joint-extended and stress (compression and distraction) pelvic radiographs were submitted for OFA and PennHIP evaluations. RESULTS: Hip joint quality scores were unchanged by use of OFA measurements only. When both PennHIP and OFA measurements were used for the selection of breeding stock, hip joint quality scores improved significantly. Sex and age were significant predictors of DI values. CONCLUSIONS AND CLINICAL RELEVANCE: PennHIP DI values were an effective measurement of hip joint quality for selecting breeding stock, and the addition of DI values to OFA measurements significantly improved hip joint quality in a population of purpose-bred dogs.


Assuntos
Doenças do Cão , Luxação do Quadril , Displasia Pélvica Canina , Instabilidade Articular , Animais , Cães , Feminino , Luxação do Quadril/veterinária , Displasia Pélvica Canina/diagnóstico por imagem , Displasia Pélvica Canina/genética , Articulação do Quadril/diagnóstico por imagem , Instabilidade Articular/veterinária , Masculino , Cães Trabalhadores
16.
G3 (Bethesda) ; 10(8): 2565-2572, 2020 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-32571804

RESUMO

Jewel wasps in the genus of Nasonia are parasitoids with haplodiploidy sex determination, rapid development and are easy to culture in the laboratory. They are excellent models for insect genetics, genomics, epigenetics, development, and evolution. Nasonia vitripennis (Nv) and N. giraulti (Ng) are closely-related species that can be intercrossed, particularly after removal of the intracellular bacterium Wolbachia, which serve as a powerful tool to map and positionally clone morphological, behavioral, expression and methylation phenotypes. The Nv reference genome was assembled using Sanger, PacBio and Nanopore approaches and annotated with extensive RNA-seq data. In contrast, Ng genome is only available through low coverage resequencing. Therefore, de novo Ng assembly is in urgent need to advance this system. In this study, we report a high-quality Ng assembly using 10X Genomics linked-reads with 670X sequencing depth. The current assembly has a genome size of 259,040,977 bp in 3,160 scaffolds with 38.05% G-C and a 98.6% BUSCO completeness score. 97% of the RNA reads are perfectly aligned to the genome, indicating high quality in contiguity and completeness. A total of 14,777 genes are annotated in the Ng genome, and 72% of the annotated genes have a one-to-one ortholog in the Nv genome. We reported 5 million Ng-Nv SNPs which will facility mapping and population genomic studies in Nasonia In addition, 42 Ng-specific genes were identified by comparing with Nv genome and annotation. This is the first de novo assembly for this important species in the Nasonia model system, providing a useful new genomic toolkit.


Assuntos
Vespas , Wolbachia , Animais , Genoma , Genômica , Laboratórios , Vespas/genética , Wolbachia/genética
17.
Sci Rep ; 10(1): 7930, 2020 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-32382090

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

18.
Dalton Trans ; 49(22): 7605-7619, 2020 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-32459231

RESUMO

The peptide is an important class of biological targeting molecule; herein, a new bifunctional octadentate non-macrocyclic H4octapa, tBu4octapa-alkyl-NHS, which is compatible with solid-phase peptide synthesis and thus useful for radiopeptide preparation, has been synthesized. To preserve denticity, the alkyl-N-hydroxylsuccinimide linker was covalently attached to the methylene-carbon on one of the acetate arms, yielding a chiral carbon center. According to density-functional theory (DFT) calculations using [Lu(octapa-alkyl-benzyl-ester)]- as a simulation model, the chirality has minimal effects on the complex geometry; regardless of the S-/R-stereochemistry, DFT calculations revealed two possible geometric isomers, distorted bicapped trigonal antiprism (DBTA) and distorted square antiprism (DSA), due to the asymmetry in the chelator. To evaluate the biological behavior of the new bifunctionalization, two well-studied PSMA (prostate-specific membrane antigen)-targeting peptidomimetics of varying hydrophobicity were chosen as proof-of-principle targeting vector molecules. Radiolabeling both bioconjugates with lutetium-177 was highly efficient at room temperature in 15 min at micromolar chelator concentration pH = 7. Both the in vitro serum challenge and the lanthanum(iii) challenge studies revealed complex lability, and notably, progressive bone accumulation was only observed with the more hydrophobic linker (i.e. H4octapa-alkyl-PSMA617). This in vivo result informs potential alterations exerted by the linker on the complex geometry and stability, with an appropriate biological targeting vector adopted for such evaluations.


Assuntos
Alcanos/química , Compostos Organometálicos/síntese química , Peptídeos/síntese química , Compostos Radiofarmacêuticos/síntese química , Técnicas de Síntese em Fase Sólida , Teoria da Densidade Funcional , Estrutura Molecular , Compostos Organometálicos/química , Peptídeos/química , Compostos Radiofarmacêuticos/química , Estereoisomerismo
19.
Inorg Chem ; 59(10): 7238-7251, 2020 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-32337985

RESUMO

A phosphinate-bearing picolinic acid-based chelating ligand (H6dappa) was synthesized and characterized to assess its potential as a bifunctional chelator (BFC) for inorganic radiopharmaceuticals. Nuclear magnetic resonance (NMR) spectroscopy was employed to investigate the chelator coordination chemistry with a variety of nonradioactive trivalent metal ions (In3+, Lu3+, Y3+, Sc3+, La3+, Bi3+). Density functional theory (DFT) calculations explored the coordination environments of aforementioned metal complexes. The thermodynamic stability of H6dappa with four metal ions (In3+, Lu3+, Y3+, Sc3+) was deeply investigated via potentiometric and spectrophotometric (UV-vis) titrations, employing a combination of acidic in-batch, joint potentiometric/spectrophotometric, and ligand-ligand competition titrations; high stability constants and pM values were calculated for all four metal complexes. Radiolabeling conditions for three clinically relevant radiometal ions were optimized ([111In]In3+, [177Lu]Lu3+, [90Y]Y3+), and the serum stability of [111In][In(dappa)]3- was studied. Through concentration-, time-, temperature-, and pH-dependent labeling experiments, it was determined that H6dappa radiolabels most effectively at near-physiological pH for all radiometal ions. Furthermore, very rapid radiolabeling at ambient temperature was observed, as maximal radiolabeling was achieved in less than 1 min. Molar activities of 29.8 GBq/µmol and 28.2 GBq/µmol were achieved for [111In]In3+ and [177Lu]Lu3+, respectively. For H6dappa, high thermodynamic stability did not correlate with kinetic inertness-lability was observed in serum stability studies, suggesting that its metal complexes might not be suitable as a BFC in radiopharmaceuticals.


Assuntos
Complexos de Coordenação/síntese química , Índio/química , Lutécio/química , Ácidos Fosfínicos/química , Ácidos Picolínicos/química , Ítrio/química , Complexos de Coordenação/química , Estrutura Molecular , Termodinâmica
20.
Dalton Trans ; 49(17): 5547-5562, 2020 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-32270167

RESUMO

Both scandium-44 and yttrium-86 are popular PET isotopes with appropriate half-lives for immuno-positron emission tomography (immuno-PET) imaging. Herein, a new bifunctional H4pypa ligand, H4pypa-phenyl-NCS, is synthesized, conjugated to a monoclonal antibody, TRC105, and labeled with both radionuclides to investigate the long-term in vivo stability of each complex. While the 44Sc-labeled radiotracer exhibited promising pharmacokinetics and stability in 4T1-xenograft mice (n = 3) even upon prolonged interactions with blood serum proteins, the progressive bone uptake of the 86Y-counterpart indicated in vivo demetallation, obviating H4pypa as a suitable chelator for Y3+ ion in vivo. The solution chemistry of [natY(pypa)]- was studied in detail and the complex found to be thermodynamically stable in solution with a pM value 22.0, ≥3 units higher than those of the analogous DOTA- and CHX-A''-DTPA-complexes; the 86Y-result in vivo was therefore most unexpected. To explore further this in vivo lability, Density Functional Theory (DFT) calculation was performed to predict the geometry of [Y(pypa)]- and the results were compared with those for the analogous Sc- and Lu-complexes; all three adopted the same coordination geometry (i.e. distorted capped square antiprism), but the metal-ligand bonds were much longer in [Y(pypa)]- than in [Lu(pypa)]- and [Sc(pypa)]-, which could indicate that the size of the binding cavity is too small for the Y3+ ion, but suitable for both the Lu3+ and Sc3+ ions. Considered along with results from [86Y][Y(pypa-phenyl-TRC105)], it is noted that when matching chelators with radionuclides, chemical data such as the thermodynamic stability and in vitro inertness, albeit useful and necessary, do not always translate to in vivo inertness, especially with the prolonged blood circulation of the radiotracer bound to a monoclonal antibody. Although H4pypa is a nonadentate chelator, which theoretically matches the coordination number of the Y3+ ion, we show herein that its binding cavity, in fact, favors smaller metal ions such as Sc3+ and Lu3+ and further exploitation of the Sc-pypa combination is desired.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA