Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
iScience ; 27(6): 109851, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38784023

RESUMO

The development of tyrosine kinase inhibitors (TKIs) has revolutionarily increased the overall survival of patients with chronic myeloid leukemia (CML). However, drug resistance remains a major obstacle. Here, we demonstrated that a BCR-ABL1-independent long non-coding RNA, IRAIN, is constitutively expressed at low levels in CML, resulting in imatinib resistance. IRAIN knockdown decreased the sensitivity of CD34+ CML blasts and cell lines to imatinib, whereas IRAIN overexpression significantly increased sensitivity. Mechanistically, IRAIN downregulates CD44, a membrane receptor favorably affecting TKI resistance, by binding to the nuclear factor kappa B subunit p65 to reduce the expression of p65 and phosphorylated p65. Therefore, the demethylating drug decitabine, which upregulates IRAIN, combined with imatinib, formed a dual therapy strategy which can be applied to CML with resistance to TKIs.

2.
Am J Physiol Cell Physiol ; 326(5): C1410-C1422, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38525541

RESUMO

Adipose dysfunction in lipodystrophic SEIPIN deficiency is associated with multiple metabolic disorders and increased risks of developing cardiovascular diseases, such as atherosclerosis, cardiac hypertrophy, and heart failure. Recently, adipose transplantation has been found to correct adipose dysfunction and metabolic disorders in lipodystrophic Seipin knockout mice; however, whether adipose transplantation could improve lipodystrophy-associated cardiovascular consequences is still unclear. Here, we aimed to explore the effects of adipose transplantation on lipodystrophy-associated metabolic cardiovascular diseases in Seipin knockout mice crossed into atherosclerosis-prone apolipoprotein E (Apoe) knockout background. At 2 months of age, lipodystrophic Seipin/Apoe double knockout mice and nonlipodystrophic Apoe knockout controls were subjected to adipose transplantation or sham operation. Seven months later, mice were euthanized. Our data showed that although adipose transplantation had no significant impact on endogenous adipose atrophy or gene expression, it remarkably increased plasma leptin but not adiponectin concentration in Seipin/Apoe double knockout mice. This led to significantly reduced hyperlipidemia, hepatic steatosis, and insulin resistance in Seipin/Apoe double knockout mice. Consequently, atherosclerosis burden, intraplaque macrophage infiltration, and aortic inflammatory gene expression were all attenuated in Seipin/Apoe double knockout mice with adipose transplantation. However, adipocyte morphology, macrophage infiltration, or fibrosis of the perivascular adipose tissue was not altered in Seipin/Apoe double knockout mice with adipose transplantation, followed by no significant improvement of vasoconstriction or relaxation. In conclusion, we demonstrate that adipose transplantation could alleviate lipodystrophy-associated metabolic disorders and atherosclerosis but has an almost null impact on perivascular adipose abnormality or vascular dysfunction in lipodystrophic Seipin/Apoe double knockout mice.NEW & NOTEWORTHY Adipose transplantation (AT) reverses multiply metabolic derangements in lipodystrophy, but whether it could improve lipodystrophy-related cardiovascular consequences is unknown. Here, using Seipin/Apoe double knockout mice as a lipodystrophy disease model, we showed that AT partially restored adipose functionality, which translated into significantly reduced atherosclerosis. However, AT was incapable of reversing perivascular adipose abnormality or vascular dysfunction. The current study provides preliminary experimental evidence on the therapeutic potential of AT on lipodystrophy-related metabolic cardiovascular diseases.


Assuntos
Tecido Adiposo , Aterosclerose , Subunidades gama da Proteína de Ligação ao GTP , Lipodistrofia , Camundongos Knockout , Animais , Camundongos , Tecido Adiposo/metabolismo , Tecido Adiposo/transplante , Apolipoproteínas E/genética , Apolipoproteínas E/deficiência , Apolipoproteínas E/metabolismo , Aterosclerose/genética , Aterosclerose/metabolismo , Aterosclerose/patologia , Subunidades gama da Proteína de Ligação ao GTP/deficiência , Subunidades gama da Proteína de Ligação ao GTP/genética , Subunidades gama da Proteína de Ligação ao GTP/metabolismo , Proteínas Heterotriméricas de Ligação ao GTP/genética , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Resistência à Insulina , Leptina/sangue , Leptina/metabolismo , Lipodistrofia/metabolismo , Lipodistrofia/genética , Lipodistrofia/patologia , Camundongos Endogâmicos C57BL
3.
Int Immunopharmacol ; 131: 111899, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38513576

RESUMO

The prevalence rate of allergic diseases including asthma, atopic rhinitis (AR) and atopic dermatitis (AD) has been significantly increasing in recent decades due to environmental changes and social developments. With the study of innate lymphoid cells, the crucial role played by type 2 innate lymphoid cells (ILC2s) have been progressively unveiled in allergic diseases. ILC2s, which are a subset of innate lymphocytes initiate allergic responses. They respond swiftly during the onset of allergic reactions and produce type 2 cytokines, working in conjunction with T helper type 2 (Th2) cells to induce and sustain type 2 immune responses. The role of ILC2s represents an intriguing frontier in immunology; however, the intricate immune mechanisms of ILC2s in allergic responses remain relatively poorly understood. To gain a comphrehensive understanding of the research progress of ILC2, we summarize recent advances in ILC2s biology in pathologic allergic inflammation to inspire novel approaches for managing allergic diseases.


Assuntos
Imunidade Inata , Rinite Alérgica , Humanos , Linfócitos , Citocinas , Inflamação
4.
Front Immunol ; 15: 1348272, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38361946

RESUMO

The epithelial barrier serves as a critical defense mechanism separating the human body from the external environment, fulfilling both physical and immune functions. This barrier plays a pivotal role in shielding the body from environmental risk factors such as allergens, pathogens, and pollutants. However, since the 19th century, the escalating threats posed by environmental pollution, global warming, heightened usage of industrial chemical products, and alterations in biodiversity have contributed to a noteworthy surge in allergic disease incidences. Notably, allergic diseases frequently exhibit dysfunction in the epithelial barrier. The proposed epithelial barrier hypothesis introduces a novel avenue for the prevention and treatment of allergic diseases. Despite increased attention to the role of barrier dysfunction in allergic disease development, numerous questions persist regarding the mechanisms underlying the disruption of normal barrier function. Consequently, this review aims to provide a comprehensive overview of the epithelial barrier's role in allergic diseases, encompassing influencing factors, assessment techniques, and repair methodologies. By doing so, it seeks to present innovative strategies for the prevention and treatment of allergic diseases.


Assuntos
Hipersensibilidade , Humanos , Alérgenos
5.
Metab Brain Dis ; 38(6): 1971-1981, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37097437

RESUMO

BACKGROUND: Circular RNAs (circRNA) have been reported to be involved in the progression of cerebral infarction. The purpose of this study was to reveal the role and potential molecular mechanism of circZfp609 (mmu_circ_0001797) in cerebral infarction. METHODS: C57BL/6J mice was used to construct middle cerebral artery occlusion (MCAO) mice model, and primary mouse astrocytes were treated with oxygen-glucose deprivation/reperfusion (OGD/R) process. The circZfp609, microRNA (miR)-145a-5p and BTB and CNC homology 1 (BACH1) expression levels were detected by quantitative real-time PCR. Cell proliferation and apoptosis were assessed by cell counting kit 8 assay, EdU assay and flow cytometry. Western blot analysis was used to measure protein levels, and ELISA assay was utilized to detect the levels of inflammation factors. Lactate dehydrogenase (LDH) level was measured by LDH Assay Kit. Dual-luciferase reporter assay, RIP assay and RNA pull-down assay were used to evaluate RNA interaction. RESULTS: CircZfp609 was upregulated in MCAO mice and OGD/R-induced astrocytes. Knockdown of circZfp609 promoted cell proliferation, while suppressed apoptosis and inflammation in OGD/R-induced astrocytes. CircZfp609 served as a sponge for miR-145a-5p, and miR-145a-5p inhibitor reversed the regulation of circZfp609 knockdown on OGD/R-induced astrocyte injury. BACH1 was a target of miR-145a-5p, and its overexpression abolished the inhibition effect of miR-145a-5p on OGD/R-induced astrocyte injury. Besides, circZfp609 downregulation also relieved the brain injury of MCAO mice through miR-145a-5p/BACH1 axis. CONCLUSION: Our data showed that circZfp609 might promote cerebral infarction by regulating the miR-145a-5p/BACH1 pathway.


Assuntos
Infarto Cerebral , MicroRNAs , RNA Circular , Animais , Camundongos , Apoptose , Infarto Cerebral/genética , Cinacalcete , Glucose , Inflamação , Camundongos Endogâmicos C57BL , MicroRNAs/genética , RNA Circular/genética , RNA Circular/metabolismo
6.
Clin Hemorheol Microcirc ; 84(3): 247-262, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36872771

RESUMO

BACKGROUND: Circular RNA (circRNA) has been found to play an important role in the progression of many diseases, including ischemic stroke. However, the regulatory mechanism of circSEC11A in ischemic stroke progression need to further investigation. METHODS: Human brain microvascular endothelial cells (HBMECs) were stimulated by oxygen glucose deprivation (OGD). CircSEC11A, SEC11A mRNA and miR (microRNA)-29a-3p were quantified by quantitative real-time PCR (qRT-PCR). SEMA3A, BAX and BCL2 protein level was quantified by western blot. Oxidative stress, cell proliferation, angiogenesis and apoptosis abilities were gauged by oxidative stress assay kit, 5-Ethynyl-2'-Deoxyuridine (EdU) staining, tube formation assay and flow cytometry assays, respectively. Direct relationship between miR-29a-3p and circSEC11A or SEMA3A was validated by dual-luciferase reporter assay, RIP assay and RNA pull-down assay. RESULTS: CircSEC11A was upregulated in OGD-induced HBMECs. OGD promoted the oxidative stress and apoptosis and inhibited cell proliferation and angiogenesis, while circSEC11A knockdown relieved the effects. CircSEC11A functioned as the sponge for miR-29a-3p, and miR-29a-3p inhibitor reversed the effects of si-circSEC11A on OGD-induced HBMECs oxidative injuries. Moreover, SEMA3A served as the target gene of miR-29a-3p. MiR-29a-3p inhibition ameliorated OGD-induced HBMECs oxidative injuries, while SEMA3A overexpression rescued the impacts of miR-29a-3p mimic. CONCLUSION: CircSEC11A promoted the malignant progression in OGD-induced HBMECs through the mediation of miR-29a-3p/SEMA3A axis. This study has provided the new insight into the underlying application of circSEC11A in cell model of ischemic stroke.


Assuntos
AVC Isquêmico , MicroRNAs , Humanos , Oxigênio/metabolismo , Semaforina-3A/genética , Semaforina-3A/metabolismo , Células Endoteliais/metabolismo , Glucose/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Encéfalo/irrigação sanguínea , Encéfalo/metabolismo , Apoptose , Proliferação de Células , Estresse Oxidativo , Peptídeo Hidrolases/metabolismo
7.
J Oncol ; 2022: 2514555, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35794987

RESUMO

The aim of this study was to investigate the effect of vestibular disruption on autophagy-related proteins and the tumour-associated pathway P13K/Akt in rat sleep and its hypothalamus tissue and to examine whether catechins trigger tumour autophagy. Healthy adult male rats were randomly selected and divided into the vestibular damage group, the sham operation group, and the control group, with 8 rats in each group. A vestibular damage model was established through penetrating the tympanic membrane of the external auditory canal by injecting sodium p-aminophenylarsonate. The electroencephalogram (EGG) activity was used to record the sleep-wakefulness cycle of rats, and the expression levels of hypothalamic orexin (orexin) mRNA and autophagy proteins were detected. Primary hippocampal neurons were intervened with orexin at different concentrations and at different times to detect cell viability and the expression of autophagy protein and P13K/Akt signal pathway protein. The results showed that compared with the control group and the sham operation group, NREM duration in the vestibular damage group decreased significantly (P < 0.05), while its W time increased significantly (P < 0.05). The expression level of orexin mRNA in the hypothalamus of the vestibular damage group was significantly higher than that of the other two groups (P < 0.05), the expression of autophagy microtubule-related proteins LC3B and Beclin-1 increased significantly (P < 0.05), and the protein expression level of p62 decreased significantly (P < 0.05). After orexin intervention, compared with the control group, the expression of Beclin-1 protein that positively correlated with autophagy decreased significantly (P < 0.05) and the expression of mTOR, PDK1, and Akt protein increased significantly (P < 0.05). Compared with the orexin intervention group, the expression of Beclin-1 and LC3B proteins in cells of the orexin receptor inhibitor (Almorexant) group, the autophagy activator (Rapamycin) group, the orexin + Almorexant group, and the orexin + Rapamycin group increased significantly (P < 0.05), and the expression of mTOR, PDK1, and Akt proteins decreased significantly (P < 0.05). Catechins trigger autophagy in part by regulating the p-Akt/p-mTOR and P13K pathways and by stimulating the MAPK pathway. Catechins initiate apoptosis in common tumour types of hepatocellular carcinoma cells by activating autophagy-related pathways. The conclusion is that vestibular damage can affect the sleep-wakefulness cycle of rats; the level of autophagy in hypothalamic tissue is upregulated and may affect cell proliferation and activity through mTOR-P13K/Akt, which has a certain reference value for tumor formation and provides a basis for the research of insomnia or sleep disorders caused by tumors. Autophagy activation is a key process by which catechins promote apoptosis in tumour cells, providing an avenue for more research on the use of catechins-rich diets for cardiovascular protection in the treatment of tumours.

8.
Mol Neurobiol ; 59(4): 2441-2455, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35083659

RESUMO

Encephalitis mediated by autoantibodies against neuronal antigens and herpes simplex encephalitis (HSE) are seemingly separate causes of encephalopathy in adults. Autoimmune encephalitis (AE) is autoimmune in origin, and herpes simplex encephalitis is infectious. The purpose of this study was to examine the role of cerebrospinal fluid (CSF) exosomes from patients with antibody-positive AE and HSE. Towards this, exosomes were isolated from CSF from 13 patients with anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis, 11 patients with anti-gamma-aminobutyric acid-B (GABAB) receptor encephalitis, 9 patients with anti-leucine-rich glioma-inactivated 1 (LGI1) encephalitis, and 8 patients with anti-contactin-associated protein-like 2 (CASPR2) encephalitis, and 12 control individuals negative of antibodies against neuronal autoantigens. There were ten miRNAs highly expressed in patients with anti-NMDAR encephalitis compared to those in control subjects. Eight miRNAs were found to be lower expressed in anti-NMDAR encephalitis CSF-derived exosomes. Furthermore, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways enriched by AE differential expressed exosomic miRNAs demonstrated that AE-related exosomic miRNAs may participate as a feedback regulation in cancer development. In addition, the exosome concentration in CSF of 9 HSE patients was significantly higher compared to those from 9 HSV( -) patients. This observation was consistent with the results that exosome concentration was found to be higher in the animal model which was inoculated intranasally with HSV-1 compared to controls. Furthermore, western blot demonstrated that the subunits of NMDAR, GABABR, and AMPAR were detected highly expressed in exosomes derived from sera of HSV-1-treated animal model compared to controls. More importantly, exosomes isolated from CSF of HSE patients contained higher expression levels of two miRNAs encoded by HSV, miR-H2-3p, and miR-H4-3p compared to those from HSV( -) patients. In summary, HSV may trigger brain autoimmunity in HSE by presentation of surface autoantigens via exosomes.


Assuntos
Encefalite Antirreceptor de N-Metil-D-Aspartato , Encefalite por Herpes Simples , Exossomos , MicroRNAs , Animais , Encefalite Antirreceptor de N-Metil-D-Aspartato/líquido cefalorraquidiano , Encefalite Antirreceptor de N-Metil-D-Aspartato/etiologia , Autoanticorpos , Autoantígenos , Encefalite , Encefalite por Herpes Simples/líquido cefalorraquidiano , Encefalite por Herpes Simples/complicações , Doença de Hashimoto , Humanos , MicroRNAs/genética
9.
Blood Adv ; 5(17): 3303-3308, 2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34468723

RESUMO

In patients with Gárdos channelopathy (p.R352H), an increased concentration of intracellular Ca2+ was previously reported. This is a surprising finding because the Gárdos channel (KCa3.1) is a K+ channel. Here, we confirm the increased intracellular Ca2+ for patients with the KCa3.1 mutation p.S314P. Furthermore, we provide the concept of KCa3.1 activity resulting in a flickering of red blood cell (RBC) membranepotential, which activates the CaV2.1 channel allowing Ca2+ to enter the RBC. Activity of the nonselective cation channel Piezo1 modulates the aforementioned interplay in away that a closed Piezo1 is in favor of the KCa3.1-CaV2.1 interaction. In contrast, Piezo1 openings compromise the membrane potential flickering, thus limiting the activity of CaV2.1. With the compound NS309, we mimic a gain-of-function mutation of KCa3.1. Assessing the RBC Ca2+ response by Fluo-4-based flow cytometry and by measuring the membrane potential using the Macey-Bennekou-Egée method, we provide data that support the concept of the KCa3.1/CaV2.1/Piezo1 interplay as a partial explanation for an increased number of high Ca2+ RBCs. With the pharmacological inhibition of KCa3.1 (TRAM34 and Senicapoc), CaV2.1 (ω-agatoxin TK), and Piezo1 (GsMTx-4), we could project the NS309 behavior of healthy RBCs to the RBCs of Gárdos channelopathy patients.


Assuntos
Canalopatias , Agatoxinas , Cálcio/metabolismo , Eritrócitos/metabolismo , Humanos , Canais Iônicos/genética
10.
Neurol Res ; 43(4): 307-313, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33274693

RESUMO

Background and purpose: To investigate the effect of Emodin on the inflammatory response of brain tissue and the expression of the TLR3 pathway in mice with herpes virus encephalitis.Method: Twenty male BALB/c mice were randomly divided into the NS group, HSV-1 group, HSV-1 + Emodin group and HSV-1 + ACV group. The histopathological features and the effect of TLR3 expression were observed by staining and immunohistochemistry (IHC) respectively. The gene expression of TLR3, trif, TRADD, TRAF6, traf3, p38, Nemo and IRF3 was detected by polymerase chain reaction (PCR). The protein production of TLR3 and its downstream molecules was detected by Western blot. The expression of IL-6, TNF-α and IFN-ß in the brain tissues was detected by ELISA.Result: Compared to the HSV-1 group, the pathological changes (inflammatory cell infiltration, necrotic temporal lobe and massive hemorrhage) were not as obvious as those in the HSV-1+emodin and HSV-1+ACV groups. The TLR3 staining increased significantly in the HSV-1 groups and decreased in the HSV-1 + emodin group. Compared with the NS group, the mRNA expression of TLR3, TRIF, TRADD, TRAF6, traf3, p38, NEMO and IRF3 decreased by 20%-60% in the HSV-1 + emodin group and 30% in the HSV-1 + ACV group, respectively. The expression of IL-6, TNF-α and IFN-ß decreased by 30%-50% in the HSV-1 + emodin group and showed no significant change in the HSV-1 + ACV group, respectively.Conclusion: Emodin could inhibit the inflammatory response in the brain of mice with herpes virus encephalitis. The inhibition of TLR3 expression may play an important role in this process.


Assuntos
Encéfalo/metabolismo , Emodina/uso terapêutico , Encefalite por Herpes Simples/metabolismo , Herpes Simples/metabolismo , Herpesvirus Humano 1 , Receptor 3 Toll-Like/biossíntese , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Sistema Nervoso Central/efeitos dos fármacos , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/patologia , Emodina/farmacologia , Encefalite por Herpes Simples/tratamento farmacológico , Encefalite por Herpes Simples/patologia , Herpes Simples/tratamento farmacológico , Herpes Simples/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Receptor 3 Toll-Like/antagonistas & inibidores
11.
Medicine (Baltimore) ; 99(11): e19484, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32176083

RESUMO

Novel molecular signatures are needed to improve the early and accurate diagnosis of autism spectrum disorder (ASD), and indicate physicians to provide timely intervention. This study aimed to identify a robust blood non-coding RNA (ncRNA) signature in diagnosing ASD. One hundred eighty six blood samples in the microarray dataset were randomly divided into the training set (n = 112) and validation set (n = 72). Then, the microarray probe expression profile was re-annotated into the expression profile of 4143 ncRNAs though probe sequence mapping. In the training set, least absolute shrinkage and selection operator (LASSO) penalized generalized linear model was adopted to identify the 20-ncRNA signature, and a diagnostic score was calculated for each sample according to the ncRNA expression levels and the model coefficients. The score demonstrated an excellent diagnostic ability for ASD in the training set (area under receiver operating characteristic curve [AUC] = 0.96), validation set (AUC = 0.97) and the overall (AUC = 0.96). Moreover, the blood samples of 23 ASD patients and 23 age- and gender-matched controls were collected as the external validation set, in which the signature also showed a good diagnostic ability for ASD (AUC = 0.96). In subgroup analysis, the signature was also robust when considering the potential confounders of sex, age, and disease subtypes. In comparison with a 55-gene signature deriving from the same dataset, the ncRNA signature showed an obviously better diagnostic ability (AUC: 0.96 vs 0.68, P < .001). In conclusion, this study identified a robust blood ncRNA signature in diagnosing ASD, which might help improve the diagnostic accuracy for ASD in clinical practice.


Assuntos
Transtorno do Espectro Autista/sangue , Transtorno do Espectro Autista/genética , Perfilação da Expressão Gênica , Marcadores Genéticos , RNA não Traduzido/sangue , Estudos de Casos e Controles , Criança , Feminino , Humanos , Masculino , Análise em Microsséries , Distribuição Aleatória
12.
J Cell Mol Med ; 24(2): 1276-1285, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31774937

RESUMO

TIM-4 plays an important role in ischaemia-reperfusion injury of liver and kidney; however, the effects of TIM-4 on cerebral ischaemia-reperfusion injury (IRI) are unknown. The purpose of the present study was to investigate the potential role of TIM-4 in experimental brain ischaemia-reperfusion injury. In this study, cerebral ischaemia reperfusion was induced by transient middle cerebral artery occlusion (MCAO) for 1 hour in C57/BL6 mice. The TIM-4 expression was detected in vivo or vitro by real-time quantitative polymerase chain reaction, Western blot and flow cytometric analysis. In vivo, the administration of anti-TIM-4 antibodies significantly suppressed apoptosis, inhibited inflammatory cells and enhanced anti-inflammatory responses. In vitro, activated microglia exhibited reduced cellular proliferation and induced IRI injury when co-cultured with neurons; these effects were inhibited by anti-TIM-4 antibody treatment. Similarly, microglia transfected with TIM-4 siRNA and stimulated by LPS + IFN-γ alleviated the TIM-4-mediated damage to neurons. Collectively, our data indicate that the inhibition of TIM-4 can improve the inflammatory response and exerts a protective effect in cerebral ischaemia-reperfusion injury.


Assuntos
Isquemia Encefálica/prevenção & controle , Modelos Animais de Doenças , Infarto da Artéria Cerebral Média/complicações , Proteínas de Membrana/antagonistas & inibidores , Substâncias Protetoras , RNA Interferente Pequeno/genética , Traumatismo por Reperfusão/prevenção & controle , Animais , Isquemia Encefálica/etiologia , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Traumatismo por Reperfusão/etiologia , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Transdução de Sinais
13.
Medicine (Baltimore) ; 98(45): e17858, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31702648

RESUMO

Reliable molecular signatures are needed to improve the early and accurate diagnosis of autism spectrum disorder (ASD), and indicate physicians to provide timely intervention. This study aimed to identify a robust blood small nuclear RNA (snRNA) signature in diagnosing ASD. 186 blood samples in the microarray dataset were randomly divided into the training set (n = 112) and validation set (n = 72). Then, the microarray probe expression profiles were re-annotated into the expression profiles of 1253 snRNAs though probe sequence mapping. In the training set, least absolute shrinkage and selection operator (LASSO) penalized generalized linear model was adopted to identify the 9-snRNA signature (RNU1-16P, RNU6-1031P, RNU6-258P, RNU6-335P, RNU6-485P, RNU6-549P, RNU6-98P, RNU6ATAC26P, and RNVU1-15), and a diagnostic score was calculated for each sample according to the snRNA expression levels and the model coefficients. The score demonstrated a good diagnostic ability for ASD in the training set (area under receiver operating characteristic curve (AUC) = 0.90), validation set (AUC = 0.87), and the overall (AUC = 0.88). Moreover, the blood samples of 23 ASD patients and 23 age- and gender-matched controls were collected as the external validation set, in which the signature also showed a good diagnostic ability for ASD (AUC = 0.88). In subgroup analysis, the signature was robust when considering the confounders of gender, age, and disease subtypes, and displayed a significantly better performance among the female and younger cases (P = .039; P = .002). In comparison with a 55-gene signature deriving from the same dataset, the snRNA signature showed a better diagnostic ability (AUC: 0.88 vs 0.80, P = .049). In conclusion, this study identified a novel and robust blood snRNA signature in diagnosing ASD, which might help improve the diagnostic accuracy for ASD in clinical practice. Nevertheless, a large-scale prospective study was needed to validate our results.


Assuntos
Transtorno do Espectro Autista/diagnóstico , RNA Nuclear Pequeno/sangue , Adolescente , Estudos de Casos e Controles , Criança , Pré-Escolar , Diagnóstico Precoce , Feminino , Perfilação da Expressão Gênica/métodos , Humanos , Masculino , Curva ROC , Reprodutibilidade dos Testes
15.
Biomed Res Int ; 2017: 9530951, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29057271

RESUMO

Cerebral ischemic stroke, which affects the global population, is a major disease with high incidence, mortality, and disability. Accumulating evidence has indicated that abnormal microRNA (miRNA) expression plays essential roles in the pathologies of ischemic stroke. Yet, the underlying regulatory mechanism of miRNAs in cerebral ischemic stroke remains unclear. We investigated the role of miR-145 in cerebral ischemic stroke and its potential mechanism in a model using primary cultured astrocytes. We detected the expression levels of miR-145 and its target gene AQP4 and assessed the role of miR-145 in cell death and apoptosis caused by oxygen-glucose deprivation (OGD). Bioinformatics analysis was used to explore the targets of miR-145. miR-145 expression levels were significantly decreased in primary astrocytes subjected to OGD. miR-145 overexpression promoted astrocyte health and inhibited OGD-induced apoptosis. AQP4 was a direct target of miR-145, and miR-145 suppressed AQP4 expression. Moreover, AQP4 enhanced astrocyte injury in ischemic stroke, and AQP4 knockdown diminished the miR-145-mediated protective effect on ischemic injury. Taken together, our results show that miR-145 plays an important role in protecting astrocytes from ischemic injury by downregulating AQP4 expression. These findings may highlight a novel therapeutic target in cerebral ischemic stroke.


Assuntos
Aquaporina 4/genética , Isquemia Encefálica/genética , MicroRNAs/genética , Acidente Vascular Cerebral/genética , Animais , Apoptose/genética , Aquaporina 4/metabolismo , Astrócitos/metabolismo , Astrócitos/patologia , Isquemia Encefálica/patologia , Regulação da Expressão Gênica/genética , Glucose/metabolismo , Humanos , MicroRNAs/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Oxigênio/metabolismo , Cultura Primária de Células , Ratos , Acidente Vascular Cerebral/patologia
16.
Clin Rheumatol ; 35(10): 2557-64, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26898984

RESUMO

This study aimed to determine the most suitable site for diagnosis of carpal tunnel syndrome (CTS) by examining an 8-site measurement of the median nerve's cross-sectional area (CSA). A total of 36 wrists of 26 patients with nerve conduction study (NCS) proven CTS, along with 34 wrists of 23 controls whose age and gender were matched with the patients, were evaluated with ultrasonography. The CSAs of the median nerve at eight predetermined sites including at the sites of 3, 2, and 1 cm proximal to the wrist crease, wrist crease, as well as at the sites of 1, 2, 3. and 4 cm distal to the wrist crease were obtained. The correlation between CSA and NCS severity, and duration of clinical CTS symptoms was analyzed. Receiver operating characteristic (ROC) curves was applied to determine the optimum cut-off point and to evaluate the diagnostic sensitivity and specificity of sonographic measurements. The CSAs of the median nerves at the eight sites were significantly higher in the CTS subjects, relative to the controls. Moreover, anatomical variation of the median nerve was found in the CTS group. ROC results indicated the areas under curve (AUC) at the site of 4 cm distal to the wrist crease were the largest with 0.874 cm(2), and an optimal cut-off value of 0.095 yielded a sensitivity of 88.9 % and a specificity of 76.5 %. The CSAs of "CTS-wrists" positively correlated with NCS severities and the CTS symptoms duration. Using 8-site CSAs measurement of the median nerve from inlet to outlet has positive correlations with NCS severity and duration of CTS symptoms.


Assuntos
Síndrome do Túnel Carpal/diagnóstico por imagem , Nervo Mediano/diagnóstico por imagem , Ultrassonografia/métodos , Idoso , Síndrome do Túnel Carpal/fisiopatologia , Eletrodiagnóstico , Feminino , Humanos , Masculino , Nervo Mediano/fisiopatologia , Pessoa de Meia-Idade , Condução Nervosa/fisiologia , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA