RESUMO
INTRODUCTION: Lung cancer stands as one of the most prevalent malignant neoplasms, with microRNAs (miRNAs) playing a pivotal role in the modulation of gene expression, impacting cancer cell proliferation, invasion, metastasis, immune escape, and resistance to therapy. METHOD: The intricate role of miRNAs in lung cancer underscores their significance as biomarkers for early detection and as novel targets for therapeutic intervention. Traditional approaches for the identification of miRNAs related to lung cancer, however, are impeded by inefficiencies and complexities. RESULTS: In response to these challenges, this study introduced an innovative deep-learning strategy designed for the efficient and precise identification of lung cancer-associated miRNAs. Through comprehensive benchmark tests, our method exhibited superior performance relative to existing technologies. CONCLUSION: Further case studies have also confirmed the ability of our model to identify lung cancer-associated miRNAs that have undergone biological validation.
RESUMO
BACKGROUND & AIMS: Endoplasmic reticulum (ER) membrane protein complex subunit 10 (EMC10) has been implicated in obesity. Here we investigated the roles of the two isoforms of EMC10, including a secreted isoform (scEMC10) and an ER membrane-bound isoform (mEMC10), in metabolic dysfunction-associated steatotic liver disease (MASLD). METHODS: Manifold steatotic mouse models and HepG2 cells were employed to investigate the role of EMC10 in the regulation of hepatic PERK-eIF2α-ATF4 signaling and hepatosteatosis. The therapeutic effect of scEMC10-neutralizing antibody on mouse hepatosteatosis was explored. Associations of MASLD with serum scEMC10 and hepatic mEMC10 were determined in two cohorts of participants with MASLD. RESULTS: scEMC10 promoted, while mEMC10 suppressed, the activation of hepatic PERK-eIF2α-ATF4 signaling. Emc10 gene knockout exacerbated, while hepatic overexpression of mEMC10 ameliorated, hepatic ER stress and steatosis in mice challenged with either a methionine- and choline-deficient diet or tunicamycin, highlighting a direct, suppressive role of mEMC10 in MASLD via modulation of hepatic ER stress. Overexpression of scEMC10 promoted, whereas neutralization of circulating scEMC10 prevented, hepatosteatosis in mice with fatty liver, suggesting a role of scEMC10 in MASLD development. Clinically, serum scEMC10 was increased, while hepatic mEMC10 was decreased, in participants with MASLD. Correlative analysis indicated that serum scEMC10 positively, whereas hepatic mEMC10 negatively, correlated with liver fat content and serum ALT, AST, and GGT. CONCLUSIONS: These findings demonstrate a novel isoform-specific role for EMC10 in the pathogenesis of MASLD and identify the secreted isoform as a tractable therapeutic target for MASLD via antibody-based neutralization. IMPACT AND IMPLICATIONS: We have shown the role of EMC10 in the regulation of energy homeostasis and obesity. In this study, we determine the distinct roles of the two isoforms of EMC10 in the regulation of hepatic endoplasmic reticulum stress and steatosis in mice, and report on the associations of the different EMC10 isoforms with metabolic dysfunction-associated steatotic liver disease in humans. Our findings delineate a novel regulatory axis for hepatosteatosis and identify EMC10 as a modulator of the PERK-eIF2α-ATF4 signaling cascade that may be of broad physiological significance. Moreover, our pre-clinical and clinical studies provide evidence of the therapeutic potential of targeting scEMC10 in MASLD.
Assuntos
Fator 4 Ativador da Transcrição , Estresse do Retículo Endoplasmático , Fígado Gorduroso , Isoformas de Proteínas , Animais , Estresse do Retículo Endoplasmático/fisiologia , Camundongos , Humanos , Fígado Gorduroso/metabolismo , Fígado Gorduroso/etiologia , Masculino , Isoformas de Proteínas/metabolismo , Fator 4 Ativador da Transcrição/metabolismo , Fator 4 Ativador da Transcrição/genética , Células Hep G2 , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , eIF-2 Quinase/metabolismo , Transdução de Sinais , Fígado/metabolismo , Fígado/patologia , Camundongos Knockout , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Fator de Iniciação 2 em Eucariotos/metabolismo , FemininoRESUMO
Although some cohort studies have indicated a close association between diabetes and HCC, the underlying mechanism about the contribution of diabetes to HCC progression remains largely unknown. In the study, we applied a novel HCC model in SD rat with diabetes and a series of high glucose-stimulated cell experiments to explore the effect of a high glucose environment on HCC metastasis and its relevant mechanism. Our results uncovered a novel regulatory mechanism by which nuclear translocation of metabolic enzyme PKM2 mediated high glucose-promoted HCC metastasis. Specifically, high glucose-increased PKM2 nuclear translocation downregulates chemerin expression through the redox protein TRX1, and then strengthens immunosuppressive environment to promote HCC metastasis. To the best of our knowledge, this is the first report to elucidate the great contribution of a high glucose environment to HCC metastasis from a new perspective of enhancing the immunosuppressive microenvironment. Simultaneously, this work also highlights a previously unidentified non-metabolic role of PKM2 and opens a novel avenue for cross research and intervention for individuals with HCC and comorbid diabetes.
Assuntos
Carcinoma Hepatocelular , Diabetes Mellitus , Neoplasias Hepáticas , Animais , Humanos , Ratos , Carcinoma Hepatocelular/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Glucose , Neoplasias Hepáticas/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Ratos Sprague-Dawley , Proteínas de Ligação a Hormônio da Tireoide , Microambiente TumoralRESUMO
Synthetic micro/nanomotors have attracted considerable attention due to their promising potential in the field of biomedicine. Despite their great potential, major micromotors require chemical fuels or complex devices to generate external physical fields for propulsion. Therefore, for future practical medical and environmental applications, Mg-based micromotors that exhibit water-powered movement and thus eliminate the need for toxic fuels, and that display optimal biocompatibility and biodegradability, are attracting attention. In this review, we summarized the recent microarchitectural design of Mg-based micromotors for biomedical applications. We also highlight the mechanism for realizing their water-powered motility. Furthermore, recent biomedical and environmental applications of Mg-based micromotors are introduced. We envision that advanced Mg-based micromotors will have a profound impact in biomedicine.
Assuntos
Microtecnologia , ÁguaRESUMO
CONTEXT: We have recently shown that the secreted isoform of endoplasmic reticulum membrane complex subunit 10 (scEMC10) is upregulated in human obesity and that overexpression of scEMC10 promotes, whereas antibody neutralization of circulating scEMC10 prevents diet-induced obesity in mice. OBJECTIVE: To explore associations of serum scEMC10 with body mass index (BMI), resting metabolism rate (RMR), and age in humans. DESIGN: A cross-sectional study. SETTING AND PATIENTS: A total of 833 participants from a Chinese physical examination cohort and 191 participants from the Leipzig Obesity Biobank cohort. MAIN OUTCOME MEASURES: Serum scEMC10 concentrations are measured using chemiluminescent immunoassay. RMR is calculated based on measurements from indirect calorimetry with an open-circuit ventilated-hood system. RESULTS: In the Chinese physical examination cohort, a J-shaped nonlinear correlation between BMI and serum scEMC10 was identified in participants where underweight, overweight, and obese people all presented higher serum scEMC10 levels than normal weight people. Participants younger than age 30 years old exhibited significantly higher serum scEMC10 levels than those older than 50 years of age. In addition, participants aged 30 to 40 years also had significantly higher serum scEMC10 levels than those aged 50 to 60 years. In the Leipzig Obesity Biobank cohort, we observed a significantly negative correlation between serum scEMC10 and resting energy expenditure after adjusting for BMI. Participants in the highest quartile of serum scEMC10 levels had significantly lower RMR than those in the first quartile. RMR had an independently inverse association with serum scEMC10. CONCLUSIONS: Serum scEMC10 levels are negatively associated with age and RMR in humans.
Assuntos
Metabolismo Basal , Composição Corporal , Humanos , Animais , Camundongos , Pessoa de Meia-Idade , Adulto , Estudos Transversais , Obesidade/metabolismo , Sobrepeso/metabolismo , Índice de Massa Corporal , Metabolismo Energético , Calorimetria IndiretaRESUMO
Secreted isoform of endoplasmic reticulum membrane complex subunit 10 (scEMC10) is a poorly characterized secreted protein of largely unknown physiological function. Here we demonstrate that scEMC10 is upregulated in people with obesity and is positively associated with insulin resistance. Consistent with a causal role for scEMC10 in obesity, Emc10-/- mice are resistant to diet-induced obesity due to an increase in energy expenditure, while scEMC10 overexpression decreases energy expenditure, thus promoting obesity in mouse. Furthermore, neutralization of circulating scEMC10 using a monoclonal antibody reduces body weight and enhances insulin sensitivity in obese mice. Mechanistically, we provide evidence that scEMC10 can be transported into cells where it binds to the catalytic subunit of PKA and inhibits its stimulatory action on CREB while ablation of EMC10 promotes thermogenesis in adipocytes via activation of the PKA signalling pathway and its downstream targets. Taken together, our data identify scEMC10 as a circulating inhibitor of thermogenesis and a potential therapeutic target for obesity and its cardiometabolic complications.
Assuntos
Anticorpos Neutralizantes , Resistência à Insulina , Humanos , Camundongos , Animais , Dieta , Obesidade/genética , Obesidade/prevenção & controle , Transporte Biológico , Camundongos Obesos , Proteínas de MembranaRESUMO
Background: Metabolic syndrome (MetS) refers to a cluster of metabolic disorders that are mainly caused by obesity. Skeletal muscle is a central component of systemic metabolism. However, the mechanism of skeletal muscle metabolic impairment in obesity remains unclear. This study aimed to identify key early biomarkers in skeletal muscle for the prevention and treatment of MetS in obesity. Methods: The GSE85439 dataset was downloaded from the Gene Expression Omnibus database. Gene set enrichment and immune cell infiltration analyses were performed for genome-wide genes. Differentially expressed genes (DEGs) between obese and control mice were screened and subjected to functional enrichment analysis, and a protein-protein interaction network was constructed. The results of the bioinformatics analysis were confirmed by immunofluorescence and real-time quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Results: Enrichment analysis indicated that the genes expressed in obese mice were mainly associated with acute inflammatory response. Immune cell infiltration analysis of 190 DEGs with consistent trends showed that the numbers of mast cells (MCs) and active dendritic cells were significantly higher in obese mice than in control mice. Immunofluorescence analysis confirmed that the number of MCs present in the skeletal muscle was higher in obese mice than in control mice, although no difference was observed in the active dendritic cell count. Functional enrichment analysis showed that the DEGs were mainly associated with transcriptional regulation. In the clusters of the protein-protein interaction network, four acute-phase-response genes (SAA1, SAA2, ORM1, and HP) were significantly correlated with transcription-regulating genes (SHH, IGF2, and CELA1); these seven genes were identified as hub genes. The qRT-PCR results showed that the expression levels of SAA1, SAA2, IGF2, and CELA1 were significantly higher in obese mice than in control mice; however, those of HP, ORM1, and SHH did not differ significantly between the two groups. Conclusions: The skeletal muscle of obese mice exhibits elevated MC infiltration and increased SAA1, SAA2, CELA1, and IGF2 expression. The identification of these biomarkers has increased our understanding of the potential functional mechanisms of skeletal muscle in obesity. These potential biomarkers may serve as targets for the prevention and treatment of MetS.
RESUMO
Endoplasmic reticulum membrane protein complex subunit 10 (EMC10) is an evolutionarily conserved and multifunctional factor across species. We previously reported that Emc10 knockout (KO) leads to mouse male infertility. Emc10-null spermatozoa exhibit multiple aspects of dysfunction, including reduced sperm motility. Two subunits of a Na/K-ATPase, ATP1A4 and ATP1B3, are nearly absent in Emc10 KO spermatozoa. Here, two isoforms of EMC10 were characterized in the mouse testis and epididymis: the membrane-bound (mEMC10) and secreted (scEMC10) isoforms. We present evidence that mEMC10, rather than scEMC10, is required for cytoplasm sodium homeostasis by positively regulating ATP1B3 expression in germ cells. Intra-testis mEMC10 overexpression rescued the sperm motility defect caused by Emc10 KO, while exogenous recombinant scEMC10 protein could not improve the motility of spermatozoa from either Emc10 KO mouse or asthenospermic subjects. Clinically, there is a positive association between ATP1B3 and EMC10 protein levels in human spermatozoa, whereas no correlation was proven between seminal plasma scEMC10 levels and sperm motility. These results highlight the important role of the membrane-bound EMC10 isoform in maintaining cytoplasm sodium homeostasis and sperm motility. Based on the present results, the mEMC10-Na, K/ATPase α4ß3 axis is proposed as a novel mechanism underlying the regulation of cytoplasmic sodium and sperm motility, and its components seem to have therapeutic potential for asthenospermia.
Assuntos
Astenozoospermia , Motilidade dos Espermatozoides , Animais , Astenozoospermia/metabolismo , Citoplasma/metabolismo , Homeostase , Humanos , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Isoformas de Proteínas/metabolismo , Sêmen/metabolismo , Sódio/metabolismo , ATPase Trocadora de Sódio-Potássio/genética , ATPase Trocadora de Sódio-Potássio/metabolismo , Motilidade dos Espermatozoides/fisiologia , Espermatozoides/metabolismoRESUMO
BACKGROUND: An activated, proinflammatory endothelium is a key feature in the development of complications of obesity and type 2 diabetes and can be caused by insulin resistance in endothelial cells. METHODS: We analyzed primary human endothelial cells by RNA sequencing to discover novel insulin-regulated genes and used endothelial cell culture and animal models to characterize signaling through CXCR4 (C-X-C motif chemokine receptor 4) in endothelial cells. RESULTS: CXCR4 was one of the genes most potently regulated by insulin, and this was mediated by PI3K (phosphatidylinositol 3-kinase), likely through FoxO1, which bound to the CXCR4 promoter. CXCR4 mRNA in CD31+ cells was 77% higher in mice with diet-induced obesity compared with lean controls and 37% higher in db/db mice than db/+ controls, consistent with upregulation of CXCR4 in endothelial cell insulin resistance. SDF-1 (stromal cell-derived factor-1)-the ligand for CXCR4-increased leukocyte adhesion to cultured endothelial cells. This effect was lost after deletion of CXCR4 by gene editing while 80% of the increase was prevented by treatment of endothelial cells with insulin. In vivo microscopy of mesenteric venules showed an increase in leukocyte rolling after intravenous injection of SDF-1, but most of this response was prevented in transgenic mice with endothelial overexpression of IRS-1 (insulin receptor substrate-1). CONCLUSIONS: Endothelial cell insulin signaling limits leukocyte/endothelial cell interaction induced by SDF-1 through downregulation of CXCR4. Improving insulin signaling in endothelial cells or inhibiting endothelial CXCR4 may reduce immune cell recruitment to the vascular wall or tissue parenchyma in insulin resistance and thereby help prevent several vascular complications.
Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Receptores CXCR4/metabolismo , Animais , Quimiocina CXCL12/genética , Quimiocina CXCL12/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Células Endoteliais/metabolismo , Endotélio/metabolismo , Insulina , Leucócitos/metabolismo , Camundongos , Obesidade/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Receptores CXCR4/genéticaRESUMO
Endothelial cell insulin resistance contributes to the development of vascular complications in diabetes. Hypoxia-inducible factors (HIFs) modulate insulin sensitivity, and we have previously shown that a negative regulator of HIF activity, CREB-binding protein/p300 (CBP/p300) interacting transactivator-2 (CITED2), is increased in the vasculature of people with type 2 diabetes. Therefore, we examined whether CITED2 regulates endothelial insulin sensitivity. In endothelial cells isolated from mice with a "floxed" mutation in the Cited2 gene, loss of CITED2 markedly enhanced insulin-stimulated Akt phosphorylation without altering extracellular signal-related kinase 1/2 (ERK1/2) phosphorylation. Similarly, insulin-stimulated Akt phosphorylation was increased in aortas of mice with endothelial-specific deletion of CITED2. Consistent with these observations, loss of CITED2 in endothelial cells increased insulin-stimulated endothelial nitric oxide synthase phosphorylation, Vegfa expression, and cell proliferation. Endothelial cells lacking CITED2 exhibited an increase in insulin receptor substrate (IRS)-2 protein, a key mediator of the insulin signaling cascade, whereas IRS-1 was unchanged. Conversely, overexpression of CITED2 in endothelial cells decreased IRS-2 protein by 55% without altering IRS-1, resulting in impaired insulin-stimulated Akt phosphorylation and Vegfa expression. Overexpression of HIF-2α significantly increased activity of the Irs2 promoter, and coexpression of CITED2 abolished this increase. Moreover, chromatin immunoprecipitation (ChIP) showed that loss of CITED2 increased occupancy of p300, a key component of the HIF transcriptional complex, on the Irs2 promoter. Together, these results show that CITED2 selectively inhibits endothelial insulin signaling and action through the phosphoinositide 3-kinase (PI3K)/Akt pathway via repression of HIF-dependent IRS-2 expression. CITED2 is thus a promising target to improve endothelial insulin sensitivity and prevent the vascular complications of diabetes.NEW & NOTEWORTHY Endothelial cell insulin resistance is a major contributor to the development of diabetic complications. In this study, we have shown that CITED2, a transcriptional coregulator, inhibits endothelial insulin signaling through the PI3K/Akt pathway via repression of HIF-dependent IRS-2 expression, and that deletion of CITED2 enhances insulin signaling. Thus, CITED2 represents a novel and promising target to improve insulin sensitivity in endothelial cells and prevent vascular complications in diabetes.
Assuntos
Células Endoteliais/metabolismo , Proteínas Substratos do Receptor de Insulina/metabolismo , Insulina/metabolismo , Proteínas Repressoras/metabolismo , Transativadores/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Regulação da Expressão Gênica , Camundongos , Transdução de SinaisRESUMO
BACKGROUND: The TM4 (UBAC2) protein, which contains 4 transmembrane domains and one ubiquitin binding domain, is mainly expressed in cell and nuclear membranes. The current research aimed to explore the role of TM4 in metabolic inflammation and to examine whether the ubiquitin-proteasome inhibitor PS-341 could regulate the function of TM4. METHODS: The metabolic phenotypes of TM4 knockout (KO) mice were studied. We next explored the association between the polymorphisms of TM4 and obesity in a Chinese Han population. TM4 expression in the visceral fat of obese patients who underwent laparoscopic cholecystectomy was also analysed. Finally, the effect of PS-341 on the degradation and function of the TM4 protein was investigated in vivo and in vitro. RESULTS: TM4 KO mice developed obesity, hepatosteatosis, hypertension, and glucose intolerance under a high-fat diet. TM4 counterregulated Nur77, IKKß, and NF-kB both in vivo and in vitro. The TM4 SNP rs147851454 is significantly associated with obesity after adjusting for age and sex (OR 1.606, 95% CI 1.065-2.422 P = 0.023) in 3394 non-diabetic and 1862 type 2 diabetic adults of Han Chinese. TM4 was significantly downregulated in the visceral fat of obese patients. PS-341 induced TM4 expression through inhibition of TM4 degradation in vitro. In db/db mice, PS-341 administration led to downregulation of Nur77/IKKß/NF-κB expression in visceral fat and liver, and alleviation of hyperglycaemia, hypertension, and glucose intolerance. The hyperinsulinaemic-euglycaemic clamp demonstrated that PS-341 improved the glucose infusion rate and alleviated insulin resistance in db/db mice. CONCLUSIONS: PS-341 alleviates chronic low-grade inflammation and improves insulin sensitivity through inhibition of TM4 degradation.
RESUMO
Background: Cathepsin S, as an adipokine, was reported to play a critical role in various disease, including atherosclerosis and diabetes. The present study aims to elucidate the relationship between circulating cathepsin S and cardiovascular disease (CVD) in patients with type 2 diabetes. Methods: A total of 339 type 2 diabetes individuals were enrolled in this cross-sectional community-based study. Basic information, medical and laboratory data were collected. Serum cathepsin S levels were assessed by ELISA. Results: Compared to the CVD (-) group, levels of serum cathepsin S were significantly higher in the CVD (+) group, with the median 23.68 ng/ml (18.54-28.02) and 26.81 ng/ml (21.19-37.69) respectively (P < 0.001). Moreover, patients with acute coronary syndrome (ACS) had substantially higher levels of serum cathepsin S than those with stable angina pectoris (SAP), with the median 34.65 ng/ml (24.33-42.83) and 25.52 ng/ml (20.53-31.47) respectively (P < 0.01). The spearman correlation analysis showed that circulating cathepsin S was correlated with several cardiovascular risk factors. The univariate and multivariate logistic regression analysis revealed that circulating cathepsin S was an independent risk factor for CVD (all P < 0.001) after adjustment for potential confounders. Restricted cubic spline analysis showed circulating cathepsin S had a linearity association with CVD. In addition, receiver operating characteristic (ROC) curve analysis demonstrated that the area under curve (AUC) values of cathepsin S was 0.80 (95% CI: 0.75-0.84, P < 0.001), with the optimal cutoff value of cathepsin 26.28 ng/ml. Conclusion: Circulating cathepsin S was significantly higher in the CVD (+) group than that in the CVD (-) one among type 2 diabetes. The increased serum cathepsin S levels were associated with increased risks of CVD, even after adjusting for potential confounders. Thus, cathepsin S might be a potential diagnostic biomarker for CVD.
Assuntos
Doenças Cardiovasculares/sangue , Catepsinas/sangue , Diabetes Mellitus Tipo 2/sangue , Idoso , Biomarcadores/sangue , Doenças Cardiovasculares/complicações , Estudos Transversais , Diabetes Mellitus Tipo 2/complicações , Feminino , Humanos , Masculino , Pessoa de Meia-IdadeRESUMO
BACKGROUND: Heat shock protein 27 (HSP27) has been proposed as a vital protective factor in atherosclerosis. The objective of the present study was to evaluate the association between circulating HSP27 and carotid intima-media thickness (IMT) in individuals with type 2 diabetes and to determine whether HSP27 represents an independent marker of subclinical atherosclerosis in this patient population. METHODS: We performed a cross-sectional community-based study in 186 Chinese subjects with a median duration of type 2 diabetes of 8.2 years who underwent ultrasound carotid IMT measurement. Serum HSP27 levels were assessed by ELISA. RESULTS: Serum HSP27 levels were significantly higher in the IMT (+, > 1.0 mm) group than in the IMT (-, ≤1.0 mm) group, with the median values of 8.80 ng/mL (5.62-12.25) and 6.93 ng/mL (4.23-9.60), respectively (P = 0.006). The discriminative value of HSP27 to evaluate IMT was 7.16 ng/mL and the area under the curve was 0.72 (95%CI = 0.64-0.80, P = 0.0065). Spearman's rank correlation analysis demonstrated that the concentrations of circulating HSP27 were positively associated with carotid IMT (r = 0.198, P = 0.007) and blood urea nitrogen (r = 0.170, P < 0.05). Furthermore, in the logistic model, serum HSP27 levels were found to be independent predictors for carotid IMT in type 2 diabetic patients after adjustment for onset age of diabetes, blood pressure, total cholesterol and C-reactive protein (OR = 1.085, P = 0.022). CONCLUSIONS: Circulating HSP27, positively correlates with carotid IMT, is an independent predictor for early atherosclerotic changes in diabetes, and may represent a novel marker of subclinical atherosclerosis in type 2 diabetes.
Assuntos
Doenças das Artérias Carótidas/sangue , Diabetes Mellitus Tipo 2/sangue , Proteínas de Choque Térmico/sangue , Chaperonas Moleculares/sangue , Idoso , Doenças Assintomáticas , Biomarcadores/sangue , Doenças das Artérias Carótidas/diagnóstico por imagem , Espessura Intima-Media Carotídea , China , Estudos Transversais , Diabetes Mellitus Tipo 2/diagnóstico , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos TestesRESUMO
Chronic inflammation plays a pivotal role in insulin resistance and type 2 diabetes, yet the mechanisms are not completely understood. Here, we demonstrated that serum LPS levels were significantly higher in newly diagnosed diabetic patients than in normal control. miR-145 level in peripheral blood mononuclear cells decreased in type 2 diabetics. LPS repressed the transcription of miR-143/145 cluster and decreased miR-145 levels. Attenuation of miR-145 activity by anti-miR-145 triggered liver inflammation and increased serum chemokines in C57BL/6 J mice. Conversely, lentivirus-mediated miR-145 overexpression inhibited macrophage infiltration, reduced body weight, and improved glucose metabolism in db/db mice. And miR-145 overexpression markedly reduced plaque size in the aorta in ApoE-/- mice. Both OPG and KLF5 were targets of miR-145. miR-145 repressed cell proliferation and induced apoptosis partially by targeting OPG and KLF5. miR-145 also suppressed NF-κB activation by targeting OPG and KLF5. Our findings provide an association of the environment with the progress of metabolic disorders. Increasing miR-145 may be a new potential therapeutic strategy in preventing and treating metabolic diseases such as type 2 diabetes and atherosclerosis.
Assuntos
Aterosclerose/tratamento farmacológico , Diabetes Mellitus Tipo 2/sangue , Intolerância à Glucose/sangue , MicroRNAs/metabolismo , MicroRNAs/uso terapêutico , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Modelos Animais de Doenças , Regulação para Baixo/efeitos dos fármacos , Vetores Genéticos/farmacologia , Vetores Genéticos/uso terapêutico , Glucose/farmacologia , Células HEK293 , Humanos , Leucócitos Mononucleares/metabolismo , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoE , MicroRNAs/genética , MicroRNAs/farmacologia , Oligonucleotídeos Antissenso/farmacologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Células THP-1 , TransfecçãoRESUMO
BACKGROUND: Transcription factor 7-like 2 (TCF7L2), which previously known as TCF-4, is a major form of transcription factor involved in the downstream WNT signaling and exhibits the strongest association to diabetes susceptibility. Although we still do not know mechanistically how TCF7L2 exerts its physiological functions on pancreatic endocrine cells, it had been suggested that TCF7L2 may directly affect ß-cell function by regulating the activation of PI3K/AKT signaling pathway. METHODS: MIN6 cells were transfected with TCF7L2 knockdown virus or lenti-TCF7L2 virus for 48 h to evaluate the contribution of TCF7L2 to the PI3K/AKT signaling pathway and pancreatic ß-cell function. This was confirmed by measuring the expression of PI3K p85 and p-Akt by western blotting and insulin secretion by enzyme-linked immunosorbent assay (ELISA), respectively. Chromatin immunoprecipitation (ChIP) and polymerase chain reaction (PCR) experiments were performed to explore the genomic distribution of TCF7L2-binding sites in the promoter of PIK3R1, the affinity between which was analyzed by the luciferase reporter assay. RESULTS: In the present study, we strikingly identified that TCF7L2 could profoundly inhibit the expression of PIK3R1 gene and its encoding protein PI3K p85, which then could lead to the activation of PI3K/AKT signaling and stimulate insulin secretion in pancreatic ß-cells. However, the integrity and stability of evolutionarily conserved TCF7L2-binding motif plays a very crucial role in the binding events between transcription factor TCF7L2 and its candidate target genes. We also found that the affinity of TCF7L2 to the promoter region of PIK3R1 alters upon the specific binding sites, which further provides statistical validation to the necessity of TCF7L2-binding motif. CONCLUSIONS: This study demonstrated that TCF7L2 is closely bound to the specific binding regions of PIK3R1 promoter and prominently controls the transcription of its encoding protein p85, which further affects the activation of PI3K/AKT signaling pathway and insulin secretion.
RESUMO
OBJECTIVE: Cathepsin S is highly expressed in subcutaneous and visceral adipose tissue. Cathepsin S correlates with central obesity and contributes to the formation and progression of atherosclerosis. Here, we sought to evaluate the association of serum cathepsin S with metabolic syndrome (MS) in overweight and obese Chinese adults. METHODS: We evaluated serum cathepsin S levels in a cross-sectional sample of 781 overweight and obese Chinese adults by ELISA. Glucose, insulin, lipid profile, inflammatory markers, and adipokines were also measured. RESULTS: Cathepsin S was significantly associated with BMI, waist circumference, waist-to-hip ratio, fasting glucose, fasting insulin, the homeostatic model assessment of insulin resistance (HOMA-IR), systolic blood pressure, C-reactive protein (CRP), triglycerides, and HDL cholesterol (all P < 0.05). Plasma cathepsin S levels increased significantly (P = 0.045 for trend) with increasing numbers of MS components after adjustment for potential confounders. In the highest cathepsin S quartile, the MS risk was significantly higher (odds ratio 2.30; 95% confidence interval, 1.89-2.78) than in the lowest quartile after adjustment for age, gender, alcohol consumption, smoking, education, physical activity, self-reported CVD, and family history of diabetes. This association remained strong (odds ratio 1.97; 95% confidence interval, 1.72-2.48) after controlling further for CRP, adiponectin, HOMA-IR, and BMI. CONCLUSIONS: Elevated circulating cathepsin S concentrations are strongly and independently associated with MS in overweight and obese Chinese adults. Prospective studies are needed to establish the role of cathepsin S in the development of MS.
Assuntos
Biomarcadores/sangue , Catepsinas/sangue , Síndrome Metabólica/sangue , Obesidade/complicações , Sobrepeso/complicações , China , Estudos Transversais , Feminino , Seguimentos , Humanos , Masculino , Síndrome Metabólica/diagnóstico , Síndrome Metabólica/etiologia , Pessoa de Meia-Idade , PrognósticoRESUMO
Spironolactone (SPR) has been shown to protect diabetic cardiomyopathy (DCM), but the specific mechanisms are not fully understood. Here, we determined the cardioprotective role of SPR in diabetic mice and further explored the potential mechanisms in both in vivo and in vitro models. Streptozotocin- (STZ-) induced diabetic rats were used as the in vivo model. After the onset of diabetes, rats were treated with either SPR (STZ + SPR) or saline (STZ + NS) for 12 weeks; nondiabetic rats were used as controls (NDCs). In vitro, H9C2 cells were exposed to aldosterone, with or without SPR. Cardiac structure was investigated with transmission electron microscopy and pathological examination; immunohistochemistry was performed to detect nitrotyrosine, collagen-1, TGF-ß1, TNF-α, and F4/80 expression; and gene expression of markers for oxidative stress, inflammation, fibrosis, and energy metabolism was detected. Our results suggested that SPR attenuated mitochondrial morphological abnormalities and sarcoplasmic reticulum enlargement in diabetic rats. Compared to the STZ + NS group, cardiac oxidative stress, fibrosis, inflammation, and mitochondrial dysfunction were improved by SPR treatment. Our study showed that SPR had cardioprotective effects in diabetic rats by ameliorating mitochondrial dysfunction and reducing fibrosis, oxidative stress, and inflammation. This study, for the first time, indicates that SPR might be a potential treatment for DCM.
Assuntos
Diabetes Mellitus Experimental/complicações , Cardiomiopatias Diabéticas/prevenção & controle , Substâncias Protetoras/uso terapêutico , Espironolactona/uso terapêutico , Animais , Diabetes Mellitus Experimental/metabolismo , Cardiomiopatias Diabéticas/metabolismo , Inflamação/metabolismo , Masculino , Miocárdio/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Ratos , Ratos Sprague-Dawley , Espironolactona/farmacologiaRESUMO
Infertility is a severe public health problem worldwide that prevails up to 15% in reproductive-age couples, and male infertility accounts for half of total infertility. Studies on genetically modified animal models have identified lots of genes involved in the pathogenesis of male infertility. The underlying causes, however, remain largely unclear. In this study, we provide evidence that EMC10, one subunit of endoplasmic reticulum (ER) membrane protein complex (EMC), is required for male fertility. EMC10 is significantly decreased in spermatozoa from patients with asthenozoospermia and positively associated with human sperm motility. Male mice lacking Emc10 gene are completely sterile. Emc10-null spermatozoa exhibit multiple defects including abnormal morphology, decreased motility, impaired capacitation, and impotency of acrosome reaction, thereby which are incapable of fertilizing intact or ZP-free oocytes. However, intracytoplasmic sperm injection could rescue this defect caused by EMC10 deletion. Mechanistically, EMC10 deficiency leads to inactivation of Na/K-ATPase, in turn giving rise to an increased level of intracellular Na+ in spermatozoa, which contributes to decreased sperm motility and abnormal morphology. Other mechanistic investigations demonstrate that the absence of EMC10 results in a reduction of HCO3- entry and subsequent decreases of both cAMP-dependent protein kinase A substrate phosphorylation and protein tyrosine phosphorylation. These data demonstrate that EMC10 is indispensable to male fertility via maintaining sperm ion balance of Na+ and HCO3-, and also suggest that EMC10 is a promising biomarker for male fertility and a potential pharmaceutical target to treat male infertility.
Assuntos
Fertilidade , Proteínas de Membrana/metabolismo , Proteínas/metabolismo , Motilidade dos Espermatozoides , Espermatozoides/metabolismo , Reação Acrossômica , Adulto , Animais , Deleção de Genes , Humanos , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas/genética , ATPase Trocadora de Sódio-Potássio/metabolismo , Espermatozoides/citologia , Espermatozoides/patologiaRESUMO
The pineal hormone melatonin influences the secretion of insulin by pancreatic islets via the Gproteincoupled melatonin receptors 1 and 2 that are expressed in pancreatic ßcells. Genomewide association studies indicate that melatonin receptor 1B (MTNR1B) single nucleotide polymorphisms are tightly associated with type 2 diabetes mellitus (T2DM). However, the underlying mechanism is unclear. Raf1 serves a critical role in the mitogenactivated protein kinase (MAPK) pathways in ßcell survival and proliferation and, therefore, may be involved in the mechanism by which melatonin impacts on T2DM through MTNR1B. In the present study, the mRNA expression of the two mouse insulin genes Ins1 and Ins2 was investigated in MIN6 cells treated with different concentrations of melatonin, and insulin secretion was detected under the same conditions. Following the overexpression or silencing of MTNR1B, the activities of components of the MAPK signaling pathway, including Raf1 and ERK, were evaluated. The impact of MTNR1B knockdown on the melatoninregulated insulin gene expression and insulin secretion were also investigated. The results demonstrated that exogenous melatonin inhibited the expression of insulin mRNA in the MIN6 cells. Insulin secretion by the MIN6 cells, however, was not affected by melatonin. The MAPK signaling pathway was inhibited in MIN6 cells by treatment with melatonin or the overexpression of MTNR1B. The knockdown of MTNR1B totally attenuated the regulating effect of melatonin on insulin gene expression. Additionally, the inductive effect of melatonin on the expression of insulin mRNA was attenuated when the activities of Raf1 or ERK were blocked using the chemical inhibitors GW5074 and U0126, respectively. It may be concluded that melatonin exerts an inhibitory effect on insulin transcription via MTNR1B and the downstream MAPK signaling pathway.
Assuntos
Diabetes Mellitus Tipo 2/genética , Insulina/genética , Receptor MT2 de Melatonina/genética , Animais , Butadienos/administração & dosagem , Diabetes Mellitus Tipo 2/patologia , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Indóis/administração & dosagem , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/patologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Melatonina/genética , Melatonina/metabolismo , Camundongos , Nitrilas/administração & dosagem , Fenóis/administração & dosagem , Proteínas Proto-Oncogênicas c-raf/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-raf/genética , Receptor MT2 de Melatonina/antagonistas & inibidoresRESUMO
RATIONALE: Activation of monocytes/macrophages by hyperlipidemia associated with diabetes mellitus and obesity contributes to the development of atherosclerosis. PKCδ (protein kinase C δ) expression and activity in monocytes were increased by hyperlipidemia and diabetes mellitus with unknown consequences to atherosclerosis. OBJECTIVE: To investigate the effect of PKCδ activation in macrophages on the severity of atherosclerosis. METHODS AND RESULTS: PKCδ expression and activity were increased in Zucker diabetic rats. Mice with selective deletion of PKCδ in macrophages were generated by breeding PKCδ flox/flox mice with LyzM-Cre and ApoE-/- mice (MPKCδKO/ApoE-/- mice) and studied in atherogenic (AD) and high-fat diet (HFD). Mice fed AD and HFD exhibited hyperlipidemia, but only HFD-fed mice had insulin resistance and mild diabetes mellitus. Surprisingly, MPKCδKO/ApoE-/- mice exhibited accelerated aortic atherosclerotic lesions by 2-fold versus ApoE-/- mice on AD or HFD. Splenomegaly was observed in MPKCδKO/ApoE-/- mice on AD and HFD but not on regular chow. Both the AD or HFD increased macrophage number in aortic plaques and spleen by 1.7- and 2-fold, respectively, in MPKCδKO/ApoE-/- versus ApoE-/- mice because of decreased apoptosis (62%) and increased proliferation (1.9-fold), and not because of uptake, with parallel increased expressions of inflammatory cytokines. Mechanisms for the increased macrophages in MPKCδKO/ApoE-/- were associated with elevated phosphorylation levels of prosurvival cell-signaling proteins, Akt and FoxO3a, with reduction of proapoptotic protein Bim associated with PKCδ induced inhibition of P85/PI3K. CONCLUSIONS: Accelerated development of atherosclerosis induced by insulin resistance and hyperlipidemia may be partially limited by PKCδ isoform activation in the monocytes, which decreased its number and inflammatory responses in the arterial wall.