Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
BMJ Open Respir Res ; 11(1)2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38834332

RESUMO

OBJECTIVE: This study aims to explore the common genetic basis between respiratory diseases and to identify shared molecular and biological mechanisms. METHODS: This genome-wide pleiotropic association study uses multiple statistical methods to systematically analyse the shared genetic basis between five respiratory diseases (asthma, chronic obstructive pulmonary disease, idiopathic pulmonary fibrosis, lung cancer and snoring) using the largest publicly available genome wide association studies summary statistics. The missions of this study are to evaluate global and local genetic correlations, to identify pleiotropic loci, to elucidate biological pathways at the multiomics level and to explore causal relationships between respiratory diseases. Data were collected from 27 November 2022 to 30 March 2023 and analysed from 14 April 2023 to 13 July 2023. MAIN OUTCOMES AND MEASURES: The primary outcomes are shared genetic loci, pleiotropic genes, biological pathways and estimates of genetic correlations and causal effects. RESULTS: Significant genetic correlations were found for 10 paired traits in 5 respiratory diseases. Cross-Phenotype Association identified 12 400 significant potential pleiotropic single-nucleotide polymorphism at 156 independent pleiotropic loci. In addition, multitrait colocalisation analysis identified 15 colocalised loci and a subset of colocalised traits. Gene-based analyses identified 432 potential pleiotropic genes and were further validated at the transcriptome and protein levels. Both pathway enrichment and single-cell enrichment analyses supported the role of the immune system in respiratory diseases. Additionally, five pairs of respiratory diseases have a causal relationship. CONCLUSIONS AND RELEVANCE: This study reveals the common genetic basis and pleiotropic genes among respiratory diseases. It provides strong evidence for further therapeutic strategies and risk prediction for the phenomenon of respiratory disease comorbidity.


Assuntos
Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Humanos , Doenças Respiratórias/genética , Pleiotropia Genética , Doença Pulmonar Obstrutiva Crônica/genética , Asma/genética
2.
Heliyon ; 9(5): e15825, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37180921

RESUMO

To improve the flammability of foamed polyurethane/wood-flour composites (FWPC), ammonium polyphosphate (APP) was used as a flame retardant to modified FWPC. The effects of different flame treatment processes on flame performance, smoke suppression, thermal property, and surface micrographs of flame retardant FWPC were investigated. The results showed that FWPC with the addition or impregnation process both improved the combustion behaviors. Compared with the addition process, FWPC-impregnation (FWPC-I) had a lower total heat release (THR), lower peak heat release rate (PHRR), prolonged time to ignition (TTI), more residues, and better combustion safety. FWPC-I had the highest residual carbon rate reaching 39.98%. A flame-retardant layer containing the P-O group was formed in the residual carbon of FWPC-I. Although APP had negative effects on the physical properties of FWPC, it was an effective flame-retardant ability for foamed polyurethane/wood-flour composites.

3.
Artigo em Inglês | MEDLINE | ID: mdl-30046341

RESUMO

Ischemic stroke is an increasingly important public health problem, and no effective treatments are approved. Xijiao Dihuang Decoction (XDD), a famous herbal formula for treating hemorrhagic fever syndromes, has been shown to exert powerful neuroprotective property. The aim of this study was to identify the chemical constituents in XDD, observe the neuroprotective effect of XDD against acute ischemic stroke, and explore the specific mechanisms by which these effects were mediated. With UHPLC-Q/TOF-MS, 47 components in XDD were detected and 25 of them were identified. In rats subjected to MCAO, XDD ameliorated neurological deficit, histopathology changes, and infarction volume. In addition, levels of TNF-ɑ, IL-6, and IL-1ß in XDD-treated group were significantly lower compared to the model group. Mechanistic studies showed that XDD inhibited MCAO-induced NF-κB activation, presenting as downregulating the expression of phospho-NF-κB p65 and preventing IκBɑ degradation. Besides, BDNF, GDNF, VEGF, bFGF, and CD34 levels were significantly increased by XDD, suggesting that the protective effects of XDD may also be associated with the promotion of neurogenesis and angiogenesis. In conclusion, these findings provided a novel regulatory pathway of the neuroprotective effect of XDD that helped rehabilitate patients with stroke.

4.
Artigo em Inglês | MEDLINE | ID: mdl-29234386

RESUMO

Modified Xijiao Dihuang (XJDH) decoction has been shown to exert powerful neuroprotective properties in clinical ischemic stroke treatment. It consists of 4 Chinese herbs: Buffalo Horn, Paeonia suffruticosa Andrews, Rehmannia glutinosa (Gaertn.) DC, and Paeonia lactiflora Pall. In the present study, the neuroprotective effect and specific mechanisms of XJDH in protecting PC12 cells from oxygen-glucose deprivation-induced injury were investigated. It was found that OGD/R significantly decreased the cell viability and lactate dehydrogenase (LDH) activity and increased the release of IL-1ß, IL-6, and TNF-α in PC12 cells, and these effects were suppressed by XJDH and one of its major active constituents, paeoniflorin. Additionally, XJDH inhibited caspase-3 activity and reduced cleaved caspase-3 level. Mechanistic studies showed that the expressions of TLR4, MyD88, TRAF6, and NF-κB p65 and phosphorylation of IκBα and p65 were significantly lower in the XJDH-treated group than in the OGD/R control group. Additionally, XJDH reversed the OGD/R-induced increases in p-JNK and p-ERK1/2 expression. These results suggest that XJDH protects PC12 cells from oxygen-glucose deprivation-induced injury, which may be associated with the inhibition of the TLR4-MyD88/NF-κB signaling pathway. As an anti-inflammation factor, XJDH might be used as a neuronal protection strategy for the ischemia injury and related diseases.

5.
Sci Rep ; 7(1): 13539, 2017 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-29051553

RESUMO

Pristine graphene encapsulated in hexagonal boron nitride has transport properties rivalling suspended graphene, while being protected from contamination and mechanical damage. For high quality devices, it is important to avoid and monitor accidental doping and charge fluctuations. The 2D Raman double peak in intrinsic graphene can be used to optically determine charge density, with decreasing peak split corresponding to increasing charge density. We find strong correlations between the 2D 1 and 2D 2 split vs 2D line widths, intensities, and peak positions. Charge density fluctuations can be measured with orders of magnitude higher precision than previously accomplished using the G-band shift with charge. The two 2D intrinsic peaks can be associated with the "inner" and "outer" Raman scattering processes, with the counterintuitive assignment of the phonon closer to the K point in the KM direction (outer process) as the higher energy peak. Even low charge screening lifts the phonon Kohn anomaly near the K point for graphene encapsulated in hBN, and shifts the dominant intensity from the lower to the higher energy peak.

6.
Nano Lett ; 15(9): 5969-75, 2015 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-26218679

RESUMO

Graphene is a promising material for strain engineering based on its excellent flexibility and elastic properties, coupled with very high electrical mobility. In order to implement strain devices, it is important to understand and control the clamping of graphene to its support. Here, we investigate the limits of the strong van der Waals interaction on friction clamping. We find that the friction of graphene on a SiO2 substrate can support a maximum local strain gradient and that higher strain gradients result in sliding and strain redistribution. Furthermore, the friction decreases with increasing strain. The system used is graphene placed over a nanoscale SiO2 grating, causing strain and local strain variations. We use a combination of atomic force microscopy and Raman scattering to determine the friction coefficient, after accounting for compression and accidental charge doping, and model the local strain variation within the laser spot size. By using uniaxial strain aligned to a high crystal symmetry direction, we also determine the 2D Raman Grüneisen parameter and deformation potential in the zigzag direction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA