Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Micromachines (Basel) ; 15(4)2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38675248

RESUMO

The rapid and sensitive detection of foodborne pathogens is crucial for ensuring food safety. Among virus testing methods, polymerase chain reaction (PCR) has served as the gold-standard technique in most food safety regulation organizations. However, to enhance the speed and efficiency of PCR, novel approaches are continually being explored. In this work, leveraging the photothermal effects and high thermal conductivity of gold nanoparticles, we have significantly improved the heating and cooling rates of thermal cycles, enabling ultra-fast PCR detection. Specifically, we present a pre-degassing multiplex digital PCR chip integrated with gold nanoparticles. We further developed a portable system with a light source for photothermal heating cycling, along with an optoelectronic sensor to analyze PCR amplification products after rapid thermal cycling. As proof of concept, the proposed chip and portable device was applied for the on-site detection of several types of foodborne pathogens, including Escherichia coli, Listeria monocytogenes, Staphylococcus aureus, and Salmonella. The whole system could distinguish those pathogens within 20 min, showing good potential for the rapid detection of multiple types of foodborne pathogens.

2.
Reproduction ; 168(1)2024 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-38670156

RESUMO

In brief: Oogonial stem cells in the adult ovary can generate oocytes, but they are usually quiescent. TGFB1 is key in stimulating the proliferation of OSC, thereby ensuring the sustained reproductive potential in poultry species. Abstract: Oogonial stem cells (OSCs) are a type of germ stem cell present in the adult ovary. They have the ability to self-renew through mitosis and differentiate into oocytes through meiosis. We have previously identified a population of OSCs in the chicken ovary, but the underlying mechanisms controlling their activation and proliferation were unclear. In this study, we observed that OSCs showed robust proliferation when cultured on a layer of chicken embryo fibroblasts (CEF), suggesting that CEF may secrete certain crucial factors that activate OSC proliferation. We further detected TGFB1 as a potent signaling molecule to promote OSC proliferation. Additionally, we revealed the signaling pathways that play important roles downstream of TGFB1-induced OSC proliferation. These findings provide insights into the mechanisms underlying OSC proliferation in chickens and offer a foundation for future research on in situ activation of OSC proliferation in ovary and improvement of egg-laying performance in chickens.


Assuntos
Proliferação de Células , Galinhas , Fator de Crescimento Transformador beta1 , Animais , Fator de Crescimento Transformador beta1/metabolismo , Fator de Crescimento Transformador beta1/farmacologia , Feminino , Células Cultivadas , Embrião de Galinha , Oogônios/citologia , Oogônios/metabolismo , Oogônios/fisiologia , Ovário/citologia , Ovário/metabolismo , Transdução de Sinais , Fibroblastos/citologia , Fibroblastos/metabolismo , Células-Tronco Germinativas Adultas/citologia , Células-Tronco Germinativas Adultas/metabolismo , Células-Tronco Germinativas Adultas/fisiologia
3.
Int J Biol Macromol ; 253(Pt 6): 127261, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37802433

RESUMO

TMEM16A is highly expressed in a variety of tumor cells and is involved in the growth and metastasis of malignancies. It has been established that down-regulation of TMEM16A expression or functional activity can inhibit tumor cells growth. However, there is a lack of targeted inhibitors with high efficiency and low toxicity. Here, we identified a novel inhibitor daidzein from dozens of natural product molecules. Whole-cell patch clamp data indicated that daidzein inhibits TMEM16A channel in a dose-dependent manner, with IC50 of 1.39 ± 0.59 µM. Western blot result showed that daidzein can also reduce the expression of TMEM16A protein in LA795 cells. These results indicated that the inhibitory effects of daidzein exert on TMEM16A in two ways, both inhibiting TMEM16A current and decreasing its protein expression. In addition, the putative binding sites of daidzein on TMEM16A are G608, G628, and K839 through molecular docking. Moreover, daidzein concentration-dependently reduced cell viability and cell migration, causing G1/S cell cycle arrest in vitro. It was also confirmed that daidzein can effectively inhibit the growth of LA795 lung adenocarcinoma cells implanted nude mice in vivo. In conclusion, daidzein can be used as a lead compound for the development of therapeutic drugs for lung adenocarcinoma.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Camundongos , Animais , Canais de Cloreto/metabolismo , Simulação de Acoplamento Molecular , Camundongos Nus , Adenocarcinoma de Pulmão/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico
4.
Genes (Basel) ; 14(4)2023 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-37107539

RESUMO

Layer and broiler hens show a dramatic difference in the volume and frequency of egg production. However, it is unclear whether the intrinsic competency of oocyte generation is also different between the two types of chicken. All oocytes were derived from the primordial germ cells (PGC) in the developing embryo, and female PGC proliferation (mitosis) and the subsequent differentiation (meiosis) determine the ultimate ovarian pool of germ cells available for future ovulation. In this study, we systematically compared the cellular phenotype and gene expression patterns during PGC mitosis (embryonic day 10, E10) and meiosis (E14) between female layers and broilers to determine whether the early germ cell development is also subjected to the selective breeding of egg production traits. We found that PGCs from E10 showed much higher activity in cell propagation and were enriched in cell proliferation signaling pathways than PGCs from E14 in both types of chicken. A common set of genes, namely insulin-like growth factor 2 (IGF2) and E2F transcription factor 4 (E2F4), were identified as the major regulators of cell proliferation in E10 PGCs of both strains. In addition, we found that E14 PGCs from both strains showed an equal ability to initiate meiosis, which was associated with the upregulation of key genes for meiotic initiation. The intrinsic cellular dynamics during the transition from proliferation to differentiation of female germ cells were conserved between layers and broilers. Hence, we surmise that other non-cell autonomous mechanisms involved in germ-somatic cell interactions would contribute to the divergence of egg production performance between layers and broilers.


Assuntos
Galinhas , Células Germinativas , Animais , Feminino , Galinhas/genética , Células Germinativas/metabolismo , Meiose/genética , Oócitos , Mitose/genética
5.
Talanta ; 256: 124303, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36724692

RESUMO

DDAO (1,3-Dichloro-7-hydroxy-9,9-dimethyl-2(9H)-acridone) is a near-infrared (NIR) fluorophore that has received increasing attention in recent years, exhibiting near-infrared emission at 658 nm, low pKa (∼5.0), good water solubility and high quantum yield (Φ = 0.39). The reported DDAO-based fluorescent probes can be applied to biological imaging ofenzymes and other substances in vivo with high sensitivity and selectivity. Herein, using -OCN as the detection group, a novel NIR H2S fluorescent probe DDAO-CN based on DDAO was designed and synthesized. In PBS buffer (10 mM, pH 7.4), probe DDAO-CN displayed specific selection, short response time (within 10 s) and low detection limit (4.3 nM) towards to H2S under the catalysis of CTAB. At the same time, the probe is able to sense H2S gas produced by food spoilage via the fluorescent test strip loaded with DDAO-CN. Moreover, since the probe has optimal pH range (6.0-9.0), it has been successfully used for bioimaging H2S in the HeLa cells with low cytotoxicity.


Assuntos
Corantes Fluorescentes , Sulfeto de Hidrogênio , Humanos , Corantes Fluorescentes/química , Células HeLa , Água
6.
Nat Commun ; 13(1): 2899, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35610255

RESUMO

Osteoclast over-activation leads to bone loss and chloride homeostasis is fundamental importance for osteoclast function. The calcium-activated chloride channel Anoctamin 1 (also known as TMEM16A) is an important chloride channel involved in many physiological processes. However, its role in osteoclast remains unresolved. Here, we identified the existence of Anoctamin 1 in osteoclast and show that its expression positively correlates with osteoclast activity. Osteoclast-specific Anoctamin 1 knockout mice exhibit increased bone mass and decreased bone resorption. Mechanistically, Anoctamin 1 deletion increases intracellular Cl- concentration, decreases H+ secretion and reduces bone resorption. Notably, Anoctamin 1 physically interacts with RANK and this interaction is dependent upon Anoctamin 1 channel activity, jointly promoting RANKL-induced downstream signaling pathways. Anoctamin 1 protein levels are substantially increased in osteoporosis patients and this closely correlates with osteoclast activity. Finally, Anoctamin 1 deletion significantly alleviates ovariectomy induced osteoporosis. These results collectively establish Anoctamin 1 as an essential regulator in osteoclast function and suggest a potential therapeutic target for osteoporosis.


Assuntos
Anoctamina-1/metabolismo , Reabsorção Óssea , Osteoporose , Animais , Reabsorção Óssea/metabolismo , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Fatores de Transcrição NFATC/metabolismo , Osteoclastos/metabolismo , Osteogênese/genética , Osteoporose/metabolismo , Ovariectomia , Ligante RANK/genética , Ligante RANK/metabolismo
7.
J Membr Biol ; 254(4): 353-365, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34263350

RESUMO

Calcium-activated chloride channels (CaCCs) are widespread chloride channels which rely on calcium activation to perform their functions. In 2008, TMEM16A (also known as anoctamin1, ANO1) was identified as the molecular basis of the CaCCs, which provided the possibility to study the physiological function of CaCCs. TMEM16A is widely expressed in various cells and controls basic physiological functions, including neuronal and cardiac excitability, nerve transduction, smooth muscle contraction, epithelial Cl- secretion and fertilization. However, the abnormal function of TMEM16A may cause a variety of diseases, including asthma, gastrointestinal motility disorder and various cancers. Therefore, TMEM16A is a putative drug target for many diseases, and it is important to determine specific and efficient modulators of TMEM16A channel. In recent years, we and others have screened several natural modulators of TMEM16A against cancers and gastrointestinal motility dysfunction. This article reviews the screening methods, efficacy of TMEM16A modulators and pharmacological effects of TMEM16A modulators on different diseases. GRAPHIC ABSTACT.


Assuntos
Cálcio , Canais de Cloreto , Anoctamina-1/genética , Cálcio/metabolismo , Canais de Cloreto/genética , Motilidade Gastrointestinal
8.
Front Pharmacol ; 12: 643489, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33935737

RESUMO

Background: Effective anticancer therapy can be achieved by identifying novel tumor-specific drug targets and screening of new drugs. Recently, TMEM16A has been identified to be overexpressed in lung adenocarcinoma, and inhibitors of TMEM16A showed obvious antitumor efficacy. Methods: YFP fluorescence quenching and whole-cell patch clamp experiments were used to explore the inhibitory effect of silibinin on TMEM16A. Molecular docking and site-directed mutagenesis were performed to confirm the binding sites of silibinin and TMEM16A. MTT assay, wound healing assay, and annexin-V assay were used to detect the effect of silibinin on cancer cell proliferation, migration, and apoptosis. shRNA was transfected into LA795 cells to knock down the expression of endogenous TMEM16A. Tumor xenograft mice combined with Western blot experiments reveal the inhibitory effect and mechanism of silibinin in vivo. Results: Silibinin concentration dependently inhibited the whole-cell current of TMEM16A with an IC50 of 30.90 ± 2.10 µM. The putative binding sites of silibinin in TMEM16A were K384, R515, and R535. The proliferation and migration of LA795 cells were downregulated by silibinin, and the inhibition effect can be abolished by knockdown of the endogenous TMEM16A. Further, silibinin was injected to tumor xenograft mice which exhibited significant antitumor activity without weight loss. Finally, Western blotting results showed the mechanism of silibinin inhibiting lung adenocarcinoma was through apoptosis and downregulation of cyclin D1. Conclusion: Silibinin is a novel TMEM16A inhibitor, and it can be used as a lead compound for the development of lung adenocarcinoma therapy drugs.

9.
Biochem Pharmacol ; 178: 114062, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32492446

RESUMO

To overcome the adverse effects of conventional chemotherapy for cancers, various nanoparticles based drug delivery systems have been developed. However, nanoparticles delivering drugs directly to kill tumor cells still faced with challenges, because tumors possessed adopt complex mechanism to resist damages, which compromised the therapeutic efficacy. TMEM16A/CaCCs (Calcium activates chloride channels) has been identified to be overexpressed in lung adenocarcinoma which can serve as a novel tumor specific drug target in our previous work. Here, we developed a novel dual-targeted antitumor strategy via designing a novel nano-assembled, pH-sensitive drug-delivery system loading with specific inhibitors of TMEM16A against lung adenocarcinoma. For validation, we assayed the novel dual-targeting therapy on xenograft mouse model which exhibited significant antitumor activity and not affect mouse body weight. The dual targeting therapy accomplished in this study will shed light on the development of advanced antitumor strategy.


Assuntos
Adenocarcinoma de Pulmão/metabolismo , Anoctamina-1/antagonistas & inibidores , Anoctamina-1/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Neoplasias Pulmonares/metabolismo , Nanopartículas/administração & dosagem , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/metabolismo , Adenocarcinoma de Pulmão/tratamento farmacológico , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Concentração de Íons de Hidrogênio , Neoplasias Pulmonares/tratamento farmacológico , Camundongos , Camundongos Nus
10.
J Membr Biol ; 253(2): 167-181, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32170353

RESUMO

KCNQ2 channel is one of the important members of potassium voltage-gated channel. KCNQ2 is closely related to neuronal excitatory diseases including epilepsy and neuropathic pain, and also acts as a drug target of the anti-epileptic drug, retigabine (RTG). In the past few decades, RTG has shown strong efficacy in the treatment of refractory epilepsy but has been withdrawn from clinical use due to its multiple adverse effects in clinical phase III trials. To overcome the drawbacks of RTG, several RTG analogues have been developed with different activation potency to KCNQ2. However, the detailed molecular mechanism by which these RTG analogues regulate KCNQ2 channel remains obscure. In this study, we used molecular simulations to analyse the interaction mode between the RTG analogues and KCNQ2, and to determine their molecular mechanism of action. Our data show that the van der Waals interactions, hydrophobic interactions, hydrogen bond, halogen bond, and π-π stacking work together to maintain the binding stability of the drugs in the binding pocket. On an atomic scale, the amide group in the carbamate and the amino group in the 2-aminophenyl moiety of RTG and RL648_81 are identified as key interaction sites. Our finding provides insight into the molecular mechanism by which KCNQ2 channels are regulated by RTG analogues. It also provides direct theoretical support for optimizing design of the KCNQ2 channel openers in the future, which will help treat refractory epilepsy caused by nerve excitability.


Assuntos
Carbamatos/farmacologia , Ativação do Canal Iônico/efeitos dos fármacos , Canal de Potássio KCNQ2/química , Canal de Potássio KCNQ2/fisiologia , Moduladores de Transporte de Membrana/farmacologia , Fenilenodiaminas/farmacologia , Sequência de Aminoácidos , Sítios de Ligação , Ligação de Hidrogênio , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ligação Proteica , Conformação Proteica , Relação Estrutura-Atividade
11.
Pharmacol Res ; 155: 104721, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32097750

RESUMO

TMEM16A plays critical roles in physiological process and may serve as drug targets for diverse diseases. Recently, TMEM16A has started to be regarded as potential primary lung adenocarcinoma targets. Here, we identified that arctigenin, a natural compound, is a novel TMEM16A inhibitor, and it can suppress lung adenocarcinoma growth through inhibiting TMEM16A both in vitro and in vivo. Our data also showed that the IC50 of actigenin to TMEM16A whole-cell current was 19.29 ± 4.69 µM, and the putative binding sites of arctigenin in TMEM16A were R515 and R535. Arctigenin concentration-dependently inhibited the proliferation and migration of LA795, however, the inhibition effect can be abolished by knockdown of the endogenous TMEM16A with shRNA. Further, we injected arctigenin on xenograft mouse model which exhibited significant antitumor activity with no adverse effect. At last, western blotting results showed the mechanism of arctigenin inhibiting lung adenocarcinoma was through inhibiting MAPK pathway. In summary, TMEM16A is a novel drug target for lung adenocarcinoma treatment. Arctigenin can be used as a lead compound for the development of lung adenocarcinoma therapy drugs.


Assuntos
Adenocarcinoma de Pulmão/tratamento farmacológico , Anoctamina-1/antagonistas & inibidores , Antineoplásicos/uso terapêutico , Furanos/uso terapêutico , Lignanas/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Adenocarcinoma de Pulmão/metabolismo , Animais , Anoctamina-1/genética , Anoctamina-1/metabolismo , Anoctamina-1/fisiologia , Antineoplásicos/farmacologia , Linhagem Celular , Furanos/farmacologia , Humanos , Lignanas/farmacologia , Neoplasias Pulmonares/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos Endogâmicos BALB C
12.
Biophys J ; 118(1): 262-272, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31818463

RESUMO

The calcium-activated chloride channel TMEM16A is involved in many physiological processes, and insufficient function of TMEM16A may lead to the occurrence of various diseases. Therefore, TMEM16A activators are supposed to be potentially useful for treatment of TMEM16A downregulation-inducing diseases. However, the TMEM16A activators are relatively rare, and the underlying activation mechanism of them is unclear. In the previous work, we have proved that ginsenoside Rb1 is a TMEM16A activator. In this work, we explored the activation mechanism of ginsenoside analogs on TMEM16A through analyzing the interactions between six ginsenoside analogs and TMEM16A. We identified GRg2 and GRf can directly activate TMEM16A by screening five novel ginsenosids analogs (GRb2, GRf, GRg2, GRh2, and NGR1). Isolated guinea pig ileum assay showed both GRg2 and GRf increased the amplitude and frequency of ileum contractions. We explored the molecular mechanisms of ginsenosides activating TMEM16A by combining molecular simulation with electrophysiological experiments. We proposed a TMEM16A activation process model based on the results, in which A697 on TM7 and L746 on TM8 bind to the isobutenyl of ginsenosides through hydrophobic interaction to fix the spatial location of ginsenosides. N650 on TM6 and E705 on TM7 bind to ginsenosides through electrostatic interaction, which causes the inner half of α-helix 6 to form physical contact with ginsenosides and leads to the pore opening. It should be emphasized that TMEM16A can be activated by ginsenosides only when both the above two conditions are satisfied. This is the first, to our knowledge, report of TMEM16A opening process activated by small-molecule activators. The mechanism of ginsenosides activating TMEM16A will provide important clues for TMEM16A gating mechanism and for new TMEM16A activators screening.


Assuntos
Anoctamina-1/metabolismo , Ginsenosídeos/química , Ginsenosídeos/farmacologia , Animais , Anoctamina-1/química , Sítios de Ligação , Células CHO , Cricetulus , Relação Dose-Resposta a Droga , Ginsenosídeos/metabolismo , Cobaias , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Conformação Proteica , Eletricidade Estática
13.
Biochem Biophys Res Commun ; 517(3): 445-451, 2019 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-31378368

RESUMO

Nutlin-3 shows a potent antitumor efficacy through downregulation of the cancerogenic ether à go-go 1 (Eag1) channel. However, the molecular mechanisms responsible for the regulation of Eag1 by Nutlin-3 in cancer cells remain unclear. In this study, we propose a novel anticancer mechanism of Nutlin-3, in which Nutlin-3 acts through the p53-Eag1-PI3K/AKT pathway. We first confirmed that Eag1 was downregulated through the activation of p53 by Nutlin-3. We then revealed that the inhibition of Eag1 electrophysiological function resulted in the decrease of viability, migration and invasion of HeLa cells. It is worth noting that the antitumor effect of Nutlin-3 was abolished in the Eag1 knockdown HeLa cell lines by siRNA. And Nutlin-3 can decrease the cell viability of H8 cells which were stably transfected with Eag1, but has no obvious inhibitory effect on blank H8 cells. Finally, we demonstrated that the decrease in Eag1 channel activity induced by Nutlin-3 treatment exerts anticancer activity by inhibiting the PI3K/AKT pathway. Our study therefore fills the gap between p53 pathway and its cellular function mediated by Eag1, shedding light on the new anti-cancer mechanism of Nutlin-3.


Assuntos
Antineoplásicos/farmacologia , Canais de Potássio Éter-A-Go-Go/genética , Regulação Neoplásica da Expressão Gênica , Imidazóis/farmacologia , Fosfatidilinositol 3-Quinases/genética , Piperazinas/farmacologia , Proteínas Proto-Oncogênicas c-akt/genética , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Canais de Potássio Éter-A-Go-Go/antagonistas & inibidores , Canais de Potássio Éter-A-Go-Go/metabolismo , Células HeLa , Humanos , Especificidade de Órgãos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
14.
Pharmacol Res ; 146: 104323, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31229561

RESUMO

Calcium-activated chloride channels (CaCCs)/TMEM16A control diverse fundamental physiological functions, and abnormal function of TMEM16A will lead to various diseases including asthma, hypertension, gastrointestinal hypomotility and cancers. Therefore, TMEM16A as drug targets for related diseases has been increasingly concerned by researchers. In this work, COS were reported as novel natural activators of TMEM16A. It was demonstrated that COS can activate TMEM16A in a concentration dependent manner, with an EC50 of 74.5 µg/mL. Then, fluorescence experiments and inside-out patch clamp experiments were combined to confirm that COS can directly activate TMEM16A. Further, we compared the activation effects of COS monomers DP2 to DP6, with DP3 the best activator. Molecular simulation was performed to find that the binding sites between DP3 and TMEM16A are E143 and E146 in TMEM16A, and it was speculated that COS and TMEM16A may be combined by electrostatic interaction. Finally, we verified that guinea pig ileum contraction was promoted by COS and the monomers through activating TMEM16A. Collectively, COS are novel efficient natural activators of TMEM16A, with potential to be developed to treatment diseases caused by down-regulation of TMEM16A including gastrointestinal hypomotility.


Assuntos
Anoctamina-1/metabolismo , Quitosana/química , Quitosana/farmacologia , Canais de Cloreto/metabolismo , Oligossacarídeos/química , Oligossacarídeos/farmacologia , Animais , Sítios de Ligação/efeitos dos fármacos , Cálcio/metabolismo , Linhagem Celular , Cobaias , Células HEK293 , Humanos , Íleo/efeitos dos fármacos , Íleo/metabolismo , Camundongos , Proteínas de Neoplasias/metabolismo
15.
J Cell Physiol ; 234(6): 8698-8708, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30370542

RESUMO

Calcium-activated chloride channels (CaCCs) are ion channels with key roles in physiological processes. They are abnormally expressed in various cancers, including esophageal squamous cell cancer, head and neck squamous cell carcinoma, colorectal cancer, and gastrointestinal stromal tumors. The CaCC component TMEM16A/ANO1 was recently shown to be overexpressed in lung adenocarcinoma cells and may serve as a tumorigenic protein. In this study, we determined that matrine is a potent TMEM16A inhibitor that exerts anti-lung adenocarcinoma effects. Patch clamp experiments showed that matrine inhibited TMEM16A current in a concentration-dependent manner with an IC 50 of 27.94 ± 4.78 µM. Molecular simulation and site-directed mutation experiments demonstrated that the matrine-sensitive sites of the TMEM16A channel involve the amino acids Y355, F411, and F415. Results of cell viability and wound healing assays showed that matrine significantly inhibited the proliferation and migration of LA795 cells, which exhibit high TMEM16A expression. In contrast, matrine has only weak inhibitory effect on CCD-19Lu and HeLa cells lacking TMEM16A expression. Matrine-induced effects on the proliferation and migration of LA795 cells were abrogated upon shRNA-mediated TMEM16A knockdown in LA795 cells. Finally, in vivo experiments demonstrated that matrine dramatically inhibited the growth of lung adenocarcinoma xenograft tumors in mice but did not affect mouse body weight. Collectively, these data indicate that matrine is an effective and safe TMEM16A inhibitor and that TMEM16A is the target of matrine anti-lung adenocarcinoma activity. These findings provide new insight for the development of novel treatments for lung adenocarcinoma.


Assuntos
Adenocarcinoma de Pulmão/tratamento farmacológico , Alcaloides/farmacologia , Anoctamina-1/antagonistas & inibidores , Antineoplásicos/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Quinolizinas/farmacologia , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/metabolismo , Adenocarcinoma de Pulmão/patologia , Animais , Anoctamina-1/genética , Anoctamina-1/metabolismo , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Células HeLa , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Camundongos Endogâmicos BALB C , Mutação , Invasividade Neoplásica , Transdução de Sinais , Carga Tumoral/efeitos dos fármacos , Matrinas
16.
J Cell Physiol ; 234(5): 7161-7173, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30362536

RESUMO

Mortality-to-incidence ratios in patients with cancer are extremely high, positioning cancer as a major cause of death worldwide. Ether-à-go-go-1 (Eag1) is an ion channel that plays important roles in tumour proliferation, malignant transformation, invasion, metastasis, recurrence, and prognosis. Therefore, identifying potent and specific Eag1 channel inhibitors is crucial. In this study, we identified the first natural inhibitor of Eag1, the traditional Chinese medicine agent tetrandrine, and explored the underlying mechanism. Tetrandrine directly interacted with Eag1 and inhibited the currents in a concentration-dependent manner (IC50 of 69.97 ± 5.2 µM), and the amino acids Ile 550 , Thr 552 , and Gln 557 in the Eag1 C-linker domain were critical for tetrandrine's inhibitory effect. Moreover, tetrandrine reduced the proliferation of HeLa cells and Chinese hamster ovary (CHO) cells stably expressing Eag1 in a concentration-dependent manner. Finally, tetrandrine (30 mg/kg/day) inhibited tumor growth in mice, demonstrating a 64.21% inhibitory rate of HeLa cell-transplanted tumors. These results suggest that tetrandrine is a potent and selective Eag1 channel inhibitor, and could act as a leading compound in the development of therapies for Eag1 ion channel dysfunction-induced diseases.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Benzilisoquinolinas/farmacologia , Canais de Potássio Éter-A-Go-Go/antagonistas & inibidores , Bloqueadores dos Canais de Potássio/farmacologia , Neoplasias do Colo do Útero/tratamento farmacológico , Animais , Células CHO , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Cricetulus , Canais de Potássio Éter-A-Go-Go/genética , Canais de Potássio Éter-A-Go-Go/metabolismo , Feminino , Células HeLa , Humanos , Masculino , Potenciais da Membrana , Camundongos Endogâmicos BALB C , Mutação , Transdução de Sinais , Carga Tumoral/efeitos dos fármacos , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/patologia , Cicatrização/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
17.
J Cell Physiol ; 234(6): 7856-7873, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30515811

RESUMO

TMEM16A (also known as anoctamin 1, ANO1) is the molecular basis of the calcium-activated chloride channels, with ten transmembrane segments. Recently, atomic structures of the transmembrane domains of mouse TMEM16A (mTMEM16A) were determined by single-particle electron cryomicroscopy. This gives us a solid ground to discuss the electrophysiological properties and functions of TMEM16A. TMEM16A is reported to be dually regulated by Ca2+ and voltage. In addition, the dysfunction of TMEM16A has been found to be involved in many diseases including cystic fibrosis, various cancers, hypertension, and gastrointestinal motility disorders. TMEM16A is overexpressed in many cancers, including gastrointestinal stromal tumors, gastric cancer, head and neck squamous cell carcinoma (HNSCC), colon cancer, pancreatic ductal adenocarcinoma, and esophageal cancer. Furthermore, overexpression of TMEM16A is related to the occurrence, proliferation, and migration of tumor cells. To date, several studies have shown that many natural compounds and synthetic compounds have regulatory effects on TMEM16A. These small molecule compounds might be novel drugs for the treatment of diseases caused by TMEM16A dysfunction in the future. In addition, recent studies have shown that TMEM16A plays different roles in different diseases through different signal transduction pathways. This review discusses the topology, electrophysiological properties, modulators and functions of TMEM16A in mediates nociception, gastrointestinal dysfunction, hypertension, and cancer and focuses on multiple regulatory mechanisms regarding TMEM16A.


Assuntos
Anoctamina-1/genética , Proliferação de Células/efeitos dos fármacos , Neoplasias/genética , Bibliotecas de Moléculas Pequenas/uso terapêutico , Animais , Anoctamina-1/antagonistas & inibidores , Movimento Celular/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Camundongos , Neoplasias/tratamento farmacológico , Neoplasias/patologia
18.
J Membr Biol ; 250(5): 483-492, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28852814

RESUMO

Calcium-activated chloride channels (CaCCs) play vital roles in a variety of physiological processes. Dysfunction of the CaCCs is implicated in many diseases. Drug discovery targeting at CaCCs has recently become possible with the determination that TMEM16A is the molecular identity of CaCCs. In this study, we demonstrated that resveratrol (RES), a Chinese traditional medicine compound, is a novel activator of TMEM16A. The yellow fluorescence protein quenching assay and measurement of intracellular calcium fluorescence intensity show that RES activates TMEM16A channels in an intracellular Ca2+-independent way. The data of inside-out patch clamp revealed that RES dose-dependently activates TMEM16A (EC50 = 47.92 ± 9.35 µM). Furthermore, RES enhanced the contractions of the ileum of guinea pigs by activating the TMEM16A channel, which indicated that RES might be a promising drug for the treatment of gastrointestinal hypomotility. As RES was able to induce TMEM16A channel activation, TMEM16A can be added to the list of RES drug targets.


Assuntos
Anoctamina-1/agonistas , Sinalização do Cálcio/efeitos dos fármacos , Agonistas dos Canais de Cloreto/farmacologia , Motilidade Gastrointestinal/efeitos dos fármacos , Íleo/fisiologia , Proteínas de Neoplasias/agonistas , Estilbenos/farmacologia , Animais , Anoctamina-1/genética , Anoctamina-1/metabolismo , Agonistas dos Canais de Cloreto/química , Relação Dose-Resposta a Droga , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacologia , Cobaias , Células HEK293 , Humanos , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Plantas Medicinais , Resveratrol , Estilbenos/química
19.
J Membr Biol ; 250(2): 123-132, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28160046

RESUMO

Eag1 (ether-à-go-go-1), a member of the voltage-dependent potassium channel family, is expressed mainly in the brain, and at low levels in placenta, testis, and adrenal gland, and only transiently in myoblasts. Recently, several studies have suggested that Eag1 is selectively expressed in various tumor tissues. Eag1 plays important roles in tumor proliferation, malignant transformation, invasion, metastasis, recurrence, and prognosis. Therefore, it has become a new molecular target for tumor diagnosis, prognosis evaluation, and tumor-targeted therapy. This review provides information about the current progress in understanding Eag1 structure, electrophysiological characteristics, and role in cancer.


Assuntos
Canais de Potássio Éter-A-Go-Go/metabolismo , Neoplasias/metabolismo , Canais de Potássio/metabolismo , Animais , Eletrofisiologia , Canais de Potássio Éter-A-Go-Go/genética , Humanos , Neoplasias/genética , Canais de Potássio/genética , Proteína Supressora de Tumor p53/metabolismo
20.
Pflugers Arch ; 469(5-6): 681-692, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28124133

RESUMO

Calcium-activated chloride channels (CaCCs) play important roles in many physiological processes, and the molecular basis of CaCCs has been identified as TMEM16A in many cell types. It is well established that TMEM16A is a drug target in many diseases, including cystic fibrosis, hypertension, asthma, and various tumors. Therefore, identifying potent and specific modulators of the TMEM16A channel is crucial. In this study, we identified the first natural activator of TMEM16A from traditional Chinese medicine and explored its mechanism. Our data showed that Ginsenoside Rb1 (GRb1) can activate TMEM16A directly from the intracellular side in a dose-dependent manner at an EC50 of 38.4 ± 2.14 µM. GRb1 specifically activated TMEM16A/B, but not the other previously proposed CaCC mediators such as CFTR and bestrophin. Moreover, GRb1 promoted proliferation of CHO cells stably expressing TMEM16A, in a concentration-dependent manner. Finally, we showed that GRb1 increased the amplitude and frequency of contractions in an isolated guinea pig ileum assay in vivo. In summary, GRb1 can be considered a lead compound for the development of novel drugs for the treatment of diseases caused by TMEM16A dysfunction.


Assuntos
Anoctamina-1/metabolismo , Ginsenosídeos/farmacologia , Íleo/efeitos dos fármacos , Contração Muscular , Animais , Anoctamina-1/efeitos dos fármacos , Células CHO , Proliferação de Células , Cricetinae , Cricetulus , Cobaias , Íleo/fisiologia , Camundongos , Músculo Liso/efeitos dos fármacos , Músculo Liso/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA