Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.687
Filtrar
1.
Phys Rev Lett ; 132(18): 180801, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38759167

RESUMO

We report new experimental results on exotic spin-spin-velocity-dependent interactions between electron spins. We designed an elaborate setup that is equipped with two nitrogen-vacancy (NV) ensembles in diamonds. One of the NV ensembles serves as the spin source, while the other functions as the spin sensor. By coherently manipulating the quantum states of two NV ensembles and their relative velocity at the micrometer scale, we are able to scrutinize exotic spin-spin-velocity-dependent interactions at short force ranges. For a T-violating interaction, V_{6}, new limits on the corresponding coupling coefficient, f_{6}, have been established for the force range shorter than 1 cm. For a P,T-violating interaction, V_{14}, new constraints on the corresponding coupling coefficient, f_{14}, have been obtained for the force range shorter than 1 km.

3.
Quant Imaging Med Surg ; 14(5): 3628-3642, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38720862

RESUMO

Background: Due to the variations in surgical approaches and prognosis between intraspinal schwannomas and meningiomas, it is crucial to accurately differentiate between the two prior to surgery. Currently, there is limited research exploring the implementation of machine learning (ML) methods for distinguishing between these two types of tumors. This study aimed to establish a classification and regression tree (CART) model and a random forest (RF) model for distinguishing schwannomas from meningiomas. Methods: We retrospectively collected 88 schwannomas (52 males and 36 females) and 51 meningiomas (10 males and 41 females) who underwent magnetic resonance imaging (MRI) examinations prior to the surgery. Simple clinical data and MRI imaging features, including age, sex, tumor location and size, T1-weighted images (T1WI) and T2-weighted images (T2WI) signal characteristics, degree and pattern of enhancement, dural tail sign, ginkgo leaf sign, and intervertebral foramen widening (IFW), were reviewed. Finally, a CART model and RF model were established based on the aforementioned features to evaluate their effectiveness in differentiating between the two types of tumors. Meanwhile, we also compared the performance of the ML models to the radiologists. The receiver operating characteristic (ROC) curve, accuracy, sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) were used to evaluate the models and clinicians' discrimination performance. Results: Our investigation reveals significant variations in ten out of 11 variables in the training group and five out of 11 variables in the test group when comparing schwannomas and meningiomas (P<0.05). Ultimately, the CART model incorporated five variables: enhancement pattern, the presence of IFW, tumor location, maximum diameter, and T2WI signal intensity (SI). The RF model combined all 11 variables. The CART model, RF model, radiologist 1, and radiologist 2 achieved an area under the curve (AUC) of 0.890, 0.956, 0.681, and 0.723 in the training group, and 0.838, 0.922, 0.580, and 0.659 in the test group, respectively. Conclusions: The RF prediction model exhibits more exceptional performance than an experienced radiologist in discriminating intraspinal schwannomas from meningiomas. The RF model seems to be better in discriminating the two tumors than the CART model.

4.
Front Bioeng Biotechnol ; 12: 1396892, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38720877

RESUMO

Hydrogel is considered as a promising candidate for wound dressing due to its tissue-like flexibility, good mechanical properties and biocompatibility. However, traditional hydrogel dressings often fail to fulfill satisfied mechanical, antibacterial, and biocompatibility properties simultaneously, due to the insufficient intrinsic bactericidal efficacy and the addition of external antimicrobial agents. In this paper, hydroxyl-contained acrylamide monomers, N-Methylolacrylamide (NMA) and N-[Tris (hydroxymethyl)methyl] acrylamide (THMA), are employed to prepare a series of polyacrylamide hydrogel dressings xNMA-yTHMA, where x and y represent the mass fractions of NMA and THMA in the hydrogels. We have elucidated that the abundance of hydroxyl groups determines the antibacterial effect of the hydrogels. Particularly, hydrogel 35NMA-5THMA exhibits excellent mechanical properties, with high tensile strength of 259 kPa and large tensile strain of 1737%. Furthermore, the hydrogel dressing 35NMA-5THMA demonstrates remarkable inherent antibacterial without exogenous antimicrobial agents owing to the existence of abundant hydroxyl groups. Besides, hydrogel dressing 35NMA-5THMA possesses excellent biocompatibility, in view of marginal cytotoxicity, low hemolysis ratio, and negligible inflammatory response and organ toxicity to mice during treatment. Encouragingly, hydrogel 35NMA-5THMA drastically promote the healing of bacteria-infected wound in mice. This study has revealed the importance of polyhydroxyl in the antibacterial efficiency of hydrogels and provided a simplified strategy to design wound healing dressings with translational potential.

5.
Chemphyschem ; : e202400143, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38726743

RESUMO

Electrocatalytic nitrogen reduction reaction (NRR) is a green and highly efficient way to replace the industrial Haber-Bosch process. Herein, clusters consisting of three transition metal atoms loaded on C2N as NRR electrocatalysts are investigated using density functional theory (DFT). Meanwhile, Ca was introduced as a promoter and the role of Ca in NRR was investigated. It was found that Ca anchored to the catalyst can act as an electron donor and effectively promote the activation of N2 on M3. In both M3@C2N and M3Ca@C2N (M = Fe, Co, Ni), the limiting potential (UL) is less negative than that of the Ru(0001) surface and has the ability to suppress the competitive hydrogen evolution reaction (HER). Among them, Fe3@C2N is suggested to be the most promising candidate for NRR with high thermal stability, strong N2 adsorption ability, low limiting potential, and good NRR selectivity. The concepts of trimetallic sites and alkaline earth metal promoters in this work provide theoretical guidance for the rational design of atomically active sites in electrocatalytic NRR.

6.
Front Oncol ; 14: 1329279, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38737911

RESUMO

Secondary acute lymphoblastic leukemia (s-ALL) refers to acute lymphoblastic leukemia that occurs after a previous malignant tumor, including therapy-related acute lymphoblastic leukemia (t-ALL) and prior malignant tumor acute lymphoblastic leukemia (pm-ALL). We report a case of a 51-year-old female patient who developed acute lymphoblastic leukemia 14 years after being diagnosed with diffuse large B-cell lymphoma (DLBCL). The patient was unresponsive to conventional chemotherapy for acute lymphoblastic leukemia (ALL) and achieved remission with a combination of sorafenib and decitabine based on the molecular biology characteristics of her B-ALL.

7.
Am J Cancer Res ; 14(4): 1768-1783, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38726285

RESUMO

Genetic and epigenetic aberrations display an essential role in the initiation and progression of diffuse large B-cell lymphoma (DLBCL). 5-methylcytosine (m5C), a common RNA modification, regulates various cellular processes and contributes to tumorigenesis and cancer progression. However, m5C alterations in DLBCL remain unclear. Our research constructed an m5C prognostic model utilizing GEO data sets, which can efficiently predict the prognosis of patients with DLBCL, and verified the m5C prognostic model genes by immunohistochemistry analysis. This model was constructed using unsupervised consensus clustering analyses, Least Absolute Shrinkage and Selection Operator (LASSO), and multivariate Cox regression analyses. Based on the expression of m5C genes in the model, patients with DLBCL could be effectively divided into groups with significant survival time differences. The m5C risk-score signature demonstrated a highly significant independent prognostic value. Results from tumor microenvironment analyses revealed that m5C genes altered the infiltration of eosinophils, Tregs, and M2 macrophages. Additionally, they regulated T cell activation by modulating the expression of CTLA4, PDL1, B2M, CD8A, ICOS, and other relevant immune checkpoint expressions. In conclusion, our study presents a robust m5C prognostic model that effectively predicts prognosis in DLBCL. This model may offer a new approach for prognostic stratification and potential therapeutic interventions for patients with DLBCL.

8.
J Hum Genet ; 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38730005

RESUMO

Mitochondrial diseases are a group of genetic diseases caused by mutations in mitochondrial DNA and nuclear DNA. However, the genetic spectrum of this disease is not yet complete. In this study, we identified a novel variant m.4344T>C in mitochondrial tRNAGln from a patient with developmental delay. The mutant loads of m.4344T>C were 95% and 89% in the patient's blood and oral epithelial cells, respectively. Multialignment analysis showed high evolutionary conservation of this nucleotide. TrRosettaRNA predicted that m.4344T>C variant would introduce an additional hydrogen bond and alter the conformation of the T-loop. The transmitochondrial cybrid-based study demonstrated that m.4344T>C variant impaired the steady-state level of mitochondrial tRNAGln and decreased the contents of mitochondrial OXPHOS complexes I, III, and IV, resulting in defective mitochondrial respiration, elevated mitochondrial ROS production, reduced mitochondrial membrane potential and decreased mitochondrial ATP levels. Altogether, this is the first report in patient carrying the m.4344T>C variant. Our data uncover the pathogenesis of the m.4344T>C variant and expand the genetic mutation spectrum of mitochondrial diseases, thus contributing to the clinical diagnosis of mitochondrial tRNAGln gene variants-associated mitochondrial diseases.

9.
Anal Chim Acta ; 1307: 342642, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38719399

RESUMO

BACKGROUND: Similar to hypochlorous acid (HClO), hypobromous acid (HBrO) is one of the most notable reactive oxygen species (ROS). Overexpression of HBrO is linked to various diseases causing organ and tissue loss. Due to HBrO's role in the oxidation of micropollutants, real-time monitoring of HBrO in water-based systems is essential. Tetraphenylethylene (TPE)-based organic aggregation-induced emission luminophores (AIEgens) are an emerging category of fluorescent probe materials that have attracted considerable attentions. However, AIE probes are rarely applied to detect HBrO. Developing faster, more precise, and more sensitive AIE probes is thus crucial for detecting biological and environmental HBrO. RESULTS: A small molecule fluorescent probe 4-(1,2,2-triphenylvinyl)benzamidoxime (SWJT-21) was synthesized for the sensitive and selective detection of hypobromous acid (HBrO) based on aggregation-induced emission (AIE). The amidoxime unit of SWJT-21 would undergo an oxidation reaction with HBrO, leading to a structure differentiation between the probe and the product, and therefore the turn-on fluorescence by the AIE effect. The probe could recognize hypobromous acid rapidly (less than 3 s) in high aqueous phase (99 % water) with a turn-on fluorescence response. It was determined that the limit of detection for HBrO was 5.47 nM. Moreover, SWJT-21 demonstrates potential as a test strip for the detection of HBrO. SWJT-21 was also successfully used for the monitoring of HBrO in water samples and for the detection of endogenous/exogenous HBrO in living cells and zebrafish. SIGNIFICANCE: A special AIE fluorescence turn-on probe SWJT-21 based on tetraphenylethylene was designed for detecting HBrO in the environmental and biological systems. This probe has an extremely low detection limit of 5.47 nM and is able to detect HBrO in 99 % aqueous phase in less than 3 s.


Assuntos
Bromatos , Corantes Fluorescentes , Estilbenos , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Bromatos/análise , Bromatos/química , Estilbenos/química , Animais , Humanos , Peixe-Zebra , Espectrometria de Fluorescência , Limite de Detecção , Estrutura Molecular
10.
Int J Mol Sci ; 25(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38731930

RESUMO

Soluble starch synthases (SSs) play important roles in the synthesis of cassava starch. However, the expression characteristics of the cassava SSs genes have not been elucidated. In this study, the MeSSIII-1 gene and its promoter, from SC8 cassava cultivars, were respectively isolated by PCR amplification. MeSSIII-1 protein was localized to the chloroplasts. qRT-PCR analysis revealed that the MeSSIII-1 gene was expressed in almost all tissues tested, and the expression in mature leaves was 18.9 times more than that in tuber roots. MeSSIII-1 expression was induced by methyljasmonate (MeJA), abscisic acid (ABA), and ethylene (ET) hormones in cassava. MeSSIII-1 expression patterns were further confirmed in proMeSSIII-1 transgenic cassava. The promoter deletion analysis showed that the -264 bp to -1 bp MeSSIII-1 promoter has basal activity. The range from -1228 bp to -987 bp and -488 bp to -264 bp significantly enhance promoter activity. The regions from -987 bp to -747 bp and -747 bp to -488 bp have repressive activity. These findings will provide an important reference for research on the potential function and transcriptional regulation mechanisms of the MeSSIII-1 gene and for further in-depth exploration of the regulatory network of its internal functional elements.


Assuntos
Regulação da Expressão Gênica de Plantas , Manihot , Proteínas de Plantas , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Manihot/genética , Manihot/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Sintase do Amido/genética , Sintase do Amido/metabolismo , Ácido Abscísico/farmacologia , Ácido Abscísico/metabolismo , Etilenos/metabolismo
11.
Heliyon ; 10(9): e29896, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38707273

RESUMO

In this study, ionic liquids (ILs) were used as organic modifiers by introducing montmorillonite nanolayers containing potential C and N active sites between the montmorillonite nanolayers. Organically modified montmorillonite (ILs-Mt-p) was further prepared by high-temperature pyrolysis under N2 and used for the removal of ofloxacin (OFL) by activated peroxymonosulfate (PMS). Combined with XPS and other characterization analyses, it was found that the catalyst materials prepared from different organic modifiers had similar surface functional groups and graphitized structures, but contained differences in the types and numbers of C and N active sites. The catalyst (3CPC-Mt-p) obtained after pyrolysis of montmorillonite modified with cetylpyridinium chloride (CPC) had optimal catalytic performance, in which graphitic C, graphitic N, and carbonyl group (C[bond, double bond]O) could synergistically promote the activation of PMS by electron transfer, and 77.3 % of OFL could be removed within 60 min. The effects of OFL concentration, initial pH, and anions on the effects of OFL removal by the 3CPC-Mt-p/PMS system were further investigated. Satisfactory degradation results were obtained over a wide pH range. Cl- promoted the system to degrade OFL, while the presence of SO42-, H2PO4- and HA showed some inhibition, but overall the 3CPC-Mt-p catalysts had a strong anti-interference ability, showing good application prospects. The quenching experiments and EPR tests showed that O2-- and 1O2 in the 3CPC-Mt-p/PMS system were the main reactive oxygen species for the degradation of OFL, and •OH was also involved in the reaction. This study provides ideas for the construction and modulation of active sites in mineral materials such as montmorillonite and broadens the application of montmorillonite composite catalysts in advanced oxidation processes for the treatment of antibiotic wastewater.

12.
Front Cardiovasc Med ; 11: 1364332, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38707890

RESUMO

Background: Postoperative acute kidney injury (PO-AKI) is a prevalent complication among patients with acute type A aortic dissection (aTAAD) for which unrecognized trajectories of renal function recovery, and their heterogeneity, may underpin poor success in identifying effective therapies. Methods: This was a retrospective, single-center cohort study in a regional Great Vessel Center including patients undergoing aortic dissection surgery. Estimated glomerular filtration rate (eGFR) recovery trajectories of PO-AKI were defined through the unsupervised latent class mixture modeling (LCMM), with an assessment of patient and procedural characteristics, complications, and early-term survival. Internal validation was performed by resampling. Results: A total of 1,295 aTAAD patients underwent surgery and 645 (49.8%) developed PO-AKI. Among the PO-AKI cohort, the LCMM identified two distinct eGFR trajectories: early recovery (ER-AKI, 51.8% of patients) and late or no recovery (LNR-AKI, 48.2% of patients). Binary logistic regression identified five critical determinants regarding poor renal recovery, including chronic kidney disease (CKD) history, renal hypoperfusion, circulation arrest time, intraoperative urine, and myoglobin. LNR-AKI was associated with increased mortality, continuous renal replacement therapies, mechanical ventilation, ICU stay, and hospital stay. The assessment of the predictive model was good, with an area under the curve (AUC) of 0.73 (95% CI: 0.69-0.76), sensitivity of 61.74%, and specificity of 75.15%. The internal validation derived a consistent average AUC of 0.73. The nomogram was constructed for clinicians' convenience. Conclusion: Our study explored the PO-AKI recovery patterns among surgical aTAAD patients and identified critical determinants that help to predict individuals at risk of poor recovery of renal function.

13.
Hortic Res ; 11(4): uhae065, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38689696

RESUMO

Terpenoids are important contributors to the aroma of grapes and wines. Grapes contain terpenoids in both volatile free form and non-volatile glycosidic form, with the latter being more abundant. Glycosylated terpenoids are deemed as latent aromatic potentials for their essential role in adding to the flowery and fruity bouquet of wines. However, the transcriptional regulatory mechanism underlying glycosylated terpenoid biosynthesis remains poorly understood. Our prior study identified an AP2/ERF transcription factor, VviERF003, through DNA pull-down screening using the promoter of terpenoid glycosyltransferase VviGT14 gene. This study demonstrated that both genes were co-expressed and synchronized with the accumulation of glycosylated monoterpenoids during grape maturation. VviERF003 can bind to the VviGT14 promoter and promote its activity according to yeast one-hybrid and dual-luciferase assays. VviERF003 upregulated VviGT14 expression in vivo, leading to increased production of glycosylated monoterpenoids based on the evidence from overexpression or RNA interference in leaves, berry skins, and calli of grapes, as well as tomato fruits. Additionally, VviERF003 and VviGT14 expressions and glycosylated monoterpenoid levels were induced by ethylene in grapes. The findings suggest that VviERF003 is ethylene-responsive and stimulates glycosylated monoterpenoid biosynthesis through upregulating VviGT14 expression.

14.
World J Gastroenterol ; 30(16): 2209-2219, 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38690022

RESUMO

Laryngopharyngeal reflux disease (LPRD) is an inflammatory condition in the laryngopharynx and upper aerodigestive tract mucosa caused by reflux of stomach contents beyond the esophagus. LPRD commonly presents with sym-ptoms such as hoarseness, cough, sore throat, a feeling of throat obstruction, excessive throat mucus. This complex condition is thought to involve both reflux and reflex mechanisms, but a clear understanding of its molecular mechanisms is still lacking. Currently, there is no standardized diagnosis or treatment protocol. Therapeutic strategies for LPRD mainly include lifestyle modifications, proton pump inhibitors and endoscopic surgery. This paper seeks to provide a comprehensive overview of the existing literature regarding the mechanisms, patho-physiology and treatment of LPRD. We also provide an in-depth exploration of the association between LPRD and gastroesophageal reflux disease.


Assuntos
Refluxo Gastroesofágico , Refluxo Laringofaríngeo , Inibidores da Bomba de Prótons , Humanos , Refluxo Laringofaríngeo/fisiopatologia , Refluxo Laringofaríngeo/diagnóstico , Refluxo Laringofaríngeo/terapia , Refluxo Gastroesofágico/fisiopatologia , Refluxo Gastroesofágico/terapia , Refluxo Gastroesofágico/diagnóstico , Inibidores da Bomba de Prótons/uso terapêutico , Resultado do Tratamento , Estilo de Vida
15.
World J Stem Cells ; 16(4): 444-458, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38690512

RESUMO

BACKGROUND: Leukemia stem cells (LSCs) are found to be one of the main factors contributing to poor therapeutic effects in acute myeloid leukemia (AML), as they are protected by the bone marrow microenvironment (BMM) against conventional therapies. Gossypol acetic acid (GAA), which is extracted from the seeds of cotton plants, exerts anti-tumor roles in several types of cancer and has been reported to induce apoptosis of LSCs by inhibiting Bcl2. AIM: To investigate the exact roles of GAA in regulating LSCs under different microenvironments and the exact mechanism. METHODS: In this study, LSCs were magnetically sorted from AML cell lines and the CD34+CD38- population was obtained. The expression of leucine-rich pentatricopeptide repeat-containing protein (LRPPRC) and forkhead box M1 (FOXM1) was evaluated in LSCs, and the effects of GAA on malignancies and mitochondrial function were measured. RESULTS: LRPPRC was found to be upregulated, and GAA inhibited cell proliferation by degrading LRPPRC. GAA induced LRPPRC degradation and inhibited the activation of interleukin 6 (IL-6)/janus kinase (JAK) 1/signal transducer and activator of transcription (STAT) 3 signaling, enhancing chemosensitivity in LSCs against conventional chemotherapies, including L-Asparaginase, Dexamethasone, and cytarabine. GAA was also found to downregulate FOXM1 indirectly by regulating LRPPRC. Furthermore, GAA induced reactive oxygen species accumulation, disturbed mitochondrial homeostasis, and caused mitochondrial dysfunction. By inhibiting IL-6/JAK1/STAT3 signaling via degrading LRPPRC, GAA resulted in the elimination of LSCs. Meanwhile, GAA induced oxidative stress and subsequent cell damage by causing mitochondrial damage. CONCLUSION: Taken together, the results indicate that GAA might overcome the BMM protective effect and be considered as a novel and effective combination therapy for AML.

16.
J Am Chem Soc ; 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38717282

RESUMO

In this study, we investigated the role of aluminum cations in facilitating hydride transfer during the hydrogenation of imines within the context of Noyori-type metal-ligand cooperative catalysis. We propose a novel model involving aluminum cations directly coordinated with imines to induce activation from the lone pair electron site, a phenomenon termed σ-induced activation. The aluminum metal-hydride amidate complex ("HMn-NAl") exhibits a higher ability of hydride transfer in the hydrogenation of imines compared to its lithium counterpart ("HMn-NLi"). Density functional theory (DFT) calculations uncover that the aluminum cation efficiently polarizes unsaturated bonds through σ-electron-induced activation in the transition state of hydride transfer, thereby enhancing substrate electrophilicity more efficiently. Additionally, upon substrate coordination, aluminum's coordination saturation improves the hydride nucleophilicity of the HMn-NAl complex via the breakage of the Al-H coordination bond.

17.
Front Genet ; 15: 1249501, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38699234

RESUMO

Background: Numerous studies have reported a high incidence and risk of severe illness due to coronavirus disease 2019 (COVID-19) in patients with type 2 diabetes (T2DM). COVID-19 patients may experience elevated or decreased blood sugar levels and may even develop diabetes. However, the molecular mechanisms linking these two diseases remain unclear. This study aimed to identify the common genes and pathways between T2DM and COVID-19. Methods: Two public datasets from the Gene Expression Omnibus (GEO) database (GSE95849 and GSE164805) were analyzed to identify differentially expressed genes (DEGs) in blood between people with and without T2DM and COVID-19. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed on the common DEGs. A protein-protein interaction (PPI) network was constructed to identify common genes, and their diagnostic performance was evaluated by receiver operating characteristic (ROC) curve analysis. Validation was performed on the GSE213313 and GSE15932 datasets. A gene co-expression network was constructed using the GeneMANIA database to explore interactions among core DEGs and their co-expressed genes. Finally, a microRNA (miRNA)-transcription factor (TF)-messenger RNA (mRNA) regulatory network was constructed based on the common feature genes. Results: In the GSE95849 and GSE164805 datasets, 81 upregulated genes and 140 downregulated genes were identified. GO and KEGG enrichment analyses revealed that these DEGs were closely related to the negative regulation of phosphate metabolic processes, the positive regulation of mitotic nuclear division, T-cell co-stimulation, and lymphocyte co-stimulation. Four upregulated common genes (DHX15, USP14, COPS3, TYK2) and one downregulated common feature gene (RIOK2) were identified and showed good diagnostic accuracy for T2DM and COVID-19. The AUC values of DHX15, USP14, COPS3, TYK2, and RIOK2 in T2DM diagnosis were 0.931, 0.917, 0.986, 0.903, and 0.917, respectively. In COVID-19 diagnosis, the AUC values were 0.960, 0.860, 1.0, 0.9, and 0.90, respectively. Validation in the GSE213313 and GSE15932 datasets confirmed these results. The miRNA-TF-mRNA regulatory network showed that TYH2 was targeted by PITX1, PITX2, CRX, NFYA, SREBF1, RELB, NR1L2, and CEBP, whereas miR-124-3p regulates THK2, RIOK2, and USP14. Conclusion: We identified five common feature genes (DHX15, USP14, COPS3, TYK2, and RIOK2) and their co-regulatory pathways between T2DM and COVID-19, which may provide new insights for further molecular mechanism studies.

18.
Front Microbiol ; 15: 1364486, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38699479

RESUMO

Introduction: The composition of the intestinal microbiome correlates significantly with an animal's health status. Hence, this indicator is highly important and sensitive for protecting endangered animals. However, data regarding the fungal diversity of the wild Budorcas taxicolor (takin) gut remain scarce. Therefore, this study analyzes the fungal diversity, community structure, and pathogen composition in the feces of wild B. taxicolor. Methods: To ensure comprehensive data analyses, we collected 82 fecal samples from five geographical sites. Amplicon sequencing of the internal transcribed spacer (ITS) rRNA was used to assess fecal core microbiota and potential pathogens to determine whether the microflora composition is related to geographical location or diet. We further validated the ITS rRNA sequencing results via amplicon metagenomic sequencing and culturing of fecal fungi. Results and discussion: The fungal diversity in the feces of wild Budorcas taxicolor primarily comprised three phyla (99.69%): Ascomycota (82.19%), Fungi_unclassified (10.37%), and Basidiomycota (7.13%). At the genus level, the predominant fungi included Thelebolus (30.93%), Functional_unclassified (15.35%), and Ascomycota_unclassified (10.37%). Within these genera, certain strains exhibit pathogenic properties, such as Thelebolus, Cryptococcus, Trichosporon, Candida, Zopfiella, and Podospora. Collectively, this study offers valuable information for evaluating the health status of B. taxicolor and formulating protective strategies.

19.
Sci Adv ; 10(18): eadk1698, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38701206

RESUMO

Deltas are threatened by erosion due to climate change and reduced sediment supply, but their response to these changes remains poorly quantified. We investigate the abandoned Yellow River delta that has transitioned from rapid growth to ongoing deterioration due to a river avulsion removing the sediment supply. Integrating bathymetric data, process observations, and sediment transport modeling, we find that while the subaerial delta was stabilized by engineering measures, the subaqueous delta continued to erode due to intensified storms, losing 39% of its mass deposited before the avulsion. Long-term observations show that winter storms initiate scouring of the subaqueous delta, contributing up to 70% of seabed erosion. We then analyze 108 global deltas to assess subaqueous delta erosion risks and identify 17 deltas facing similar situations of sediment decline and storm intensification during the past 40 years. Our findings suggest that subaqueous delta erosion must be integrated into delta sustainability evaluations.

20.
Nano Lett ; 24(19): 5754-5760, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38708987

RESUMO

Two-dimensional (2D) FenGeTe2, with n = 3, 4, and 5, has been realized in experiments, showing strong magnetic anisotropy with enhanced critical temperature (Tc). The understanding of its magnetic anisotropy is crucial for the exploration of more stable 2D magnets and its spintronic applications. Here, we report a quantitative reconstruction of the magnetization magnitude and its direction in ultrathin Fe4GeTe2 using nitrogen vacancy centers. Through imaging stray magnetic fields, we identified the spin-flop transition at approximately 80 K, resulting in a change of the easy axis from the out-of-plane direction to the in-plane direction. Moreover, by analyzing the thermally activated escape behavior of the magnetization near Tc in terms of the Ginzburg-Landau model, we observed the in-plane magnetic anisotropy effect and the formation capability of magnetic domains at ∼0.4 µm2 µT-1. Our findings contribute to the quantitative understanding of the magnetic anisotropy effect in a vast range of 2D van der Waals magnets.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA