Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
BMC Microbiol ; 24(1): 231, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38951812

RESUMO

BACKGROUND: Natural products are important sources for the discovery of new biopesticides to control the worldwide destructive pests Acyrthosiphon pisum Harris. Here, insecticidal substances were discovered and characterized from the secondary metabolites of the bio-control microorganism Bacillus velezensis strain ZLP-101, as informed by whole-genome sequencing and analysis. RESULTS: The genome was annotated, revealing the presence of four potentially novel gene clusters and eight known secondary metabolite synthetic gene clusters. Crude extracts, prepared through ammonium sulfate precipitation, were used to evaluate the effects of strain ZLP-101 on Acyrthosiphon pisum Harris aphid pests via exposure experiments. The half lethal concentration (LC50) of the crude extract from strain ZLP-101 against aphids was 411.535 mg/L. Preliminary exploration of the insecticidal mechanism revealed that the crude extract affected aphids to a greater extent through gastric poisoning than through contact. Further, the extracts affected enzymatic activities, causing holes to form in internal organs along with deformation, such that normal physiological activities could not be maintained, eventually leading to death. Isolation and purification of extracellular secondary metabolites were conducted in combination with mass spectrometry analysis to further identify the insecticidal components of the crude extracts. A total of 15 insecticidal active compounds were identified including iturins, fengycins, surfactins, and spergualins. Further insecticidal experimentation revealed that surfactin, iturin, and fengycin all exhibited certain aphidicidal activities, and the three exerted synergistic lethal effects. CONCLUSIONS: This study improved the available genomic resources for B. velezensis and serves as a foundation for comprehensive studies of the insecticidal mechanism by Bacillus velezensis ZLP-101 in addition to the active components within biological control strains.


Assuntos
Afídeos , Bacillus , Inseticidas , Lipopeptídeos , Animais , Afídeos/efeitos dos fármacos , Bacillus/genética , Bacillus/metabolismo , Lipopeptídeos/farmacologia , Lipopeptídeos/química , Lipopeptídeos/metabolismo , Lipopeptídeos/isolamento & purificação , Inseticidas/farmacologia , Inseticidas/metabolismo , Inseticidas/química , Família Multigênica , Metabolismo Secundário , Controle Biológico de Vetores , Sequenciamento Completo do Genoma , Genoma Bacteriano/genética
2.
Biochem Genet ; 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38877158

RESUMO

Endophytic fungi associated with plants may contain undiscovered bioactive compounds. Under standard laboratory conditions, most undiscovered compounds are inactive, whereas their production could be stimulated under different cultivation conditions. In this study, six endophytic fungi were isolated from the bark of Koelreuteria paniculata in Quancheng Park, Jinan City, Shandong Province, one of which was identified as a new subspecies of Aureobasidium pullulans, named A. pullulans KB3. Additionally, metabolomic tools were used to screen suitable media for A. pullulans KB3 fermentation, and the results showed that peptone dextrose medium (PDM) was more beneficial to culture A. pullulans KB3 for isolation of novel compounds. Sphaerolone, a polyketone compound, was initially isolated from A. pullulans KB3 via scaled up fermentation utilizing PDM. Additionally, the whole-genome DNA of A. pullulans KB3 was sequenced to facilitate compound isolation and identify the biosynthesis gene clusters (BGCs). This study reports the multi-omics (metabolome and genome) analysis of A. pullulans KB3, laying the foundation for discovering novel compounds of silent BGCs and identifying their biosynthesis pathway.

3.
Sci Adv ; 10(10): eade6900, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38446877

RESUMO

The accumulation of self-renewed polarized microglia in the penumbra is a critical neuroinflammatory process after ischemic stroke, leading to secondary demyelination and neuronal loss. Although known to regulate tumor cell proliferation and neuroinflammation, HDAC3's role in microgliosis and microglial polarization remains unclear. We demonstrated that microglial HDAC3 knockout (HDAC3-miKO) ameliorated poststroke long-term functional and histological outcomes. RNA-seq analysis revealed mitosis as the primary process affected in HDAC3-deficent microglia following stroke. Notably, HDAC3-miKO specifically inhibited proliferation of proinflammatory microglia without affecting anti-inflammatory microglia, preventing microglial transition to a proinflammatory state. Moreover, ATAC-seq showed that HDAC3-miKO induced closing of accessible regions enriched with PU.1 motifs. Overexpressing microglial PU.1 via an AAV approach reversed HDAC3-miKO-induced proliferation inhibition and protective effects on ischemic stroke, indicating PU.1 as a downstream molecule that mediates HDAC3's effects on stroke. These findings uncovered that HDAC3/PU.1 axis, which mediated differential proliferation-related reprogramming in different microglia populations, drove poststroke inflammatory state transition, and contributed to pathophysiology of ischemic stroke.


Assuntos
AVC Isquêmico , Acidente Vascular Cerebral , Microglia , Acidente Vascular Cerebral/genética , Proliferação de Células , Sementes
4.
Mol Genet Genomic Med ; 12(3): e2411, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38433559

RESUMO

BACKGROUND: Hemifacial macrosomia (HFM, OMIM 164210) is a complex and highly heterogeneous disease. FORKHEAD BOX I3 (FOXI3) is a susceptibility gene for HFM, and mice with loss of function of Foxi3 did exhibit a phenotype similar to craniofacial dysmorphism. However, the specific pathogenesis of HFM caused by FOXI3 deficiency remains unclear till now. METHOD: In this study, we first constructed a Foxi3 deficiency (Foxi3-/- ) mouse model to verify the craniofacial phenotype of Foxi3-/- mice, and then used RNAseq data for gene differential expression analysis to screen candidate pathogenic genes, and conducted gene expression verification analysis using quantitative real-time PCR. RESULTS: By observing the phenotype of Foxi3-/- mice, we found that craniofacial dysmorphism was present. The results of comprehensive bioinformatics analysis suggested that the craniofacial dysmorphism caused by Foxi3 deficiency may be involved in the PI3K-Akt signaling pathway. Quantitative real-time PCR results showed that the expression of PI3K-Akt signaling pathway-related gene Akt2 was significantly increased in Foxi3-/- mice. CONCLUSION: The craniofacial dysmorphism caused by the deficiency of Foxi3 may be related to the expression of Akt2 and PI3K-Akt signaling pathway. This study laid a foundation for understanding the function of FOXI3 and the pathogenesis and treatment of related craniofacial dysmorphism caused by FOXI3 dysfunction.


Assuntos
Anormalidades Craniofaciais , Anormalidades Musculoesqueléticas , Animais , Camundongos , Biologia Computacional , Anormalidades Craniofaciais/genética , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt/genética
5.
Hortic Res ; 11(3): uhae005, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38464476

RESUMO

Citric acid gives lemons their unique flavor, which impacts their sensory traits and market value. However, the intricate process of citric acid accumulation during lemon fruit growth remains incompletely understood. Here, we achieved a chromosomal-level genome assembly for the 'Xiangshui' lemon variety, spanning 364.85 Mb across nine chromosomes. This assembly revealed 27 945 genes and 51.37% repetitive sequences, tracing the divergence from citron 2.85 million years ago. DNA methylome analysis of lemon fruits across different developmental stages revealed significant variations in DNA methylation. We observed decreased CG and CHG methylation but increased CHH methylation. Notably, the expression of RdDM pathway-related genes increased with fruit development, suggesting a connection with elevated CHH methylation, which is potentially influenced by the canonical RdDM pathway. Furthermore, we observed that elevated CHH DNA methylation within promoters significantly influenced the expression of key genes, critically contributing to vital biological processes, such as citric acid accumulation. In particular, the pivotal gene phosphoenolpyruvate carboxykinase (ClPEPCK), which regulates the tricarboxylic acid cycle, was strikingly upregulated during fruit development, concomitant with increased CHH methylation in its promoter region. Other essential genes associated with citric acid accumulation, such as the MYB transcription factor (ClPH1/4/5) and ANTHOCYANIN 1 (ClAN1), were strongly correlated with DNA methylation levels. These results strongly indicate that DNA methylation crucially orchestrates the metabolic synthesis of citric acid. In conclusion, our study revealed dynamic changes in DNA methylation during lemon fruit development, underscoring the significant role of DNA methylation in controlling the citric acid metabolic pathway.

6.
Biotechnol J ; 19(1): e2300235, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37906704

RESUMO

So far, power input has been used as the main parameter for bioreactor scale-up/-down in upstream process development and manufacturing. The rationale is that maintaining a consistent power input per unit volume should result in comparable mixing times at different scales. However, shear generated from turbulent flow may compromise the integrity of non-robust cells such as those used during the production of cell and gene therapies, which may lead to low product quality and yield. Of particular interest is the Kolmogorov length parameter that characterizes the smallest turbulent eddies in a mixture. To understand its impact on scale-up/-down decisions, the distribution of Kolmogorov length along the trajectory flow of individual particles in bioreactors was estimated in silico with the help of computational fluid dynamics simulations. Specifically, in this study the scalability of iPSC-derived lymphocyte production and the impact of shear stress across various differentiation stages were investigated. The study used bioreactors of volumes from 0.1 to 10 L, which correspond to the scales most used for parameter optimization. Our findings, which align with in vitro runs, help determine optimal agitation speed and shear stress adjustments for process transfer between scales and bioreactor types, using vertically-oriented wheel and pitched-blade impellers. In addition, empirical models specific to the bioreactors used in this study were developed. The provided computational analysis in combination with experimental data supports selection of appropriate bioreactors and operating conditions for various cell and gene therapy process steps.


Assuntos
Reatores Biológicos , Técnicas de Cultura de Células , Hidrodinâmica , Estresse Mecânico
7.
J Cereb Blood Flow Metab ; : 271678X231197173, 2023 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-38069842

RESUMO

The Class-I histone deacetylases (HDACs) mediate microglial inflammation and neurological dysfunction after traumatic brain injury (TBI). However, whether the individual Class-I HDACs play an indispensable role in TBI pathogenesis remains elusive. HDAC2 has been shown to upregulate pro-inflammatory genes in myeloid cells under brain injuries such as intracerebral hemorrhage, thereby worsening outcomes. Thus, we hypothesized that HDAC2 drives microglia toward a pro-inflammatory neurotoxic phenotype in a murine model of controlled cortical impact (CCI). Our results revealed that HDAC2 expression was highly induced in CD16/CD32+ pro-inflammatory microglia 3 and 7d after TBI. Surprisingly, microglia-targeted HDAC2 knockout (HDAC2 miKO) mice failed to demonstrate a beneficial phenotype after CCI/TBI compared to their wild-type (WT) littermates. HDAC2 miKO mice exhibited comparable levels of grey and white matter injury, efferocytosis, and sensorimotor and cognitive deficits after CCI/TBI as WT mice. RNA sequencing of isolated microglia 3d after CCI/TBI indicated the elevation of a panel of pro-inflammatory cytokines/chemokines in HDAC2 miKO mice over WT mice, and flow cytometry showed further elevated brain infiltration of neutrophils and B cells in HDAC2 miKO mice. Together, this study does not support a detrimental role for HDAC2 in microglial responses after TBI and calls for investigation into alternative mechanisms.

8.
J Neuroinflammation ; 20(1): 244, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37875988

RESUMO

BACKGROUND: Traumatic brain injury (TBI) is a significant worldwide public health concern that necessitates attention. Apoptosis signal-regulating kinase 1 (ASK1), a key player in various central nervous system (CNS) diseases, has garnered interest for its potential neuroprotective effects against ischemic stroke and epilepsy when deleted. Nonetheless, the specific impact of ASK1 on TBI and its underlying mechanisms remain elusive. Notably, mutation of ATP-binding sites, such as lysine residues, can lead to catalytic inactivation of ASK1. To address these knowledge gaps, we generated transgenic mice harboring a site-specific mutant ASK1 Map3k5-e (K716R), enabling us to assess its effects and elucidate potential underlying mechanisms following TBI. METHODS: We employed the CRIPR/Cas9 system to generate a transgenic mouse model carrying the ASK1-K716R mutation, aming to investigate the functional implications of this specific mutant. The controlled cortical impact method was utilized to induce TBI. Expression and distribution of ASK1 were detected through Western blotting and immunofluorescence staining, respectively. The ASK1 kinase activity after TBI was detected by a specific ASK1 kinase activity kit. Cerebral microvessels were isolated by gradient centrifugation using dextran. Immunofluorescence staining was performed to evaluate blood-brain barrier (BBB) damage. BBB ultrastructure was visualized using transmission electron microscopy, while the expression levels of endothelial tight junction proteins and ASK1 signaling pathway proteins was detected by Western blotting. To investigate TBI-induced neuroinflammation, we conducted immunofluorescence staining, quantitative real-time polymerase chain reaction (qRT-PCR) and flow cytometry analyses. Additionally, immunofluorescence staining and electrophysiological compound action potentials were conducted to evaluate gray and white matter injury. Finally, sensorimotor function and cognitive function were assessed by a battery of behavioral tests. RESULTS: The activity of ASK1-K716R was significantly decreased following TBI. Western blotting confirmed that ASK1-K716R effectively inhibited the phosphorylation of ASK1, JNKs, and p38 in response to TBI. Additionally, ASK1-K716R demonstrated a protective function in maintaining BBB integrity by suppressing ASK1/JNKs activity in endothelial cells, thereby reducing the degradation of tight junction proteins following TBI. Besides, ASK1-K716R effectively suppressed the infiltration of peripheral immune cells into the brain parenchyma, decreased the number of proinflammatory-like microglia/macrophages, increased the number of anti-inflammatory-like microglia/macrophages, and downregulated expression of several proinflammatory factors. Furthermore, ASK1-K716R attenuated white matter injury and improved the nerve conduction function of both myelinated and unmyelinated fibers after TBI. Finally, our findings demonstrated that ASK1-K716R exhibited favorable long-term functional and histological outcomes in the aftermath of TBI. CONCLUSION: ASK1-K716R preserves BBB integrity by inhibiting ASK1/JNKs pathway in endothelial cells, consequently reducing the degradation of tight junction proteins. Additionally, it alleviates early neuroinflammation by inhibiting the infiltration of peripheral immune cells into the brain parenchyma and modulating the polarization of microglia/macrophages. These beneficial effects of ASK1-K716R subsequently result in a reduction in white matter injury and promote the long-term recovery of neurological function following TBI.


Assuntos
Lesões Encefálicas Traumáticas , Lesões Encefálicas , Substância Branca , Camundongos , Animais , Barreira Hematoencefálica/metabolismo , Doenças Neuroinflamatórias , Substância Branca/patologia , Células Endoteliais/metabolismo , MAP Quinase Quinase Quinase 5/metabolismo , Lesões Encefálicas Traumáticas/patologia , Lesões Encefálicas/metabolismo , Proteínas de Junções Íntimas/metabolismo , Camundongos Endogâmicos C57BL
9.
JCI Insight ; 8(16)2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37606039

RESUMO

Autophagy is a promising target for promoting neural regeneration, which is essential for sensorimotor recovery following traumatic brain injury (TBI). Whether neuronal heat shock protein B2 (HSPB2), a small molecular heat shock protein, reduces injury and promotes recovery following TBI remains unclear. In this study, we demonstrated that HSPB2 was significantly increased in the neurons of a TBI mouse model, patients, and primary neuron cultures subjected to oxygen/glucose deprivation and reperfusion treatment. Upon creating a tamoxifen-induced neuron-specific HSPB2 overexpression transgenic mouse model, we found that elevated HSPB2 levels promoted long-term sensorimotor recovery and alleviated tissue loss after TBI. We also demonstrated that HSPB2 enhanced white matter structural and functional integrity, promoted central nervous system (CNS) plasticity, and accelerated long-term neural remodeling. Moreover, we found that autophagy occurred around injured brain tissues in patients, and the pro-regenerative effects of HSPB2 relied on its autophagy-promoting function. Mechanistically, HSPB2 may regulate autophagy possibly by forming the HSPB2/BCL2-associated athanogene 3/sequestosome-1 complex to facilitate the clearance of erroneously accumulated proteins in the axons. Treatment with the autophagy inhibitor chloroquine during the acute stage or delayed induction of HSPB2 remarkably impeded HSPB2's long-term reparative function, indicating the importance of acute-stage autophagy in long-term neuro-regeneration. Our findings highlight the beneficial role of HSPB2 in neuro-regeneration and functional recovery following acute CNS injury, thereby emphasizing the therapeutic potential of autophagy regulation for enhancing neuro-regeneration.


Assuntos
Lesões Encefálicas Traumáticas , Proteínas de Choque Térmico Pequenas , Animais , Camundongos , Proteínas de Choque Térmico , Autofagia , Modelos Animais de Doenças , Camundongos Transgênicos , Regeneração Nervosa
10.
Iran J Immunol ; 20(3): 348-358, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37458144

RESUMO

Background: Different subtypes of dendritic cells (DCs) can induce different types of immune responses. Our previous study found that Echinococcus granulosus (E. granulosus) antigens (Eg.ferritin, Eg.mMDH and Eg.10) stimulated DC differentiation to different subtypes and produced different immune responses. Objective: To further understand whether Eg.ferritin, Eg.mMDH and Eg.10 affect the DC-mediated immune response by promoting the differentiation of monocytes to DCs. Methods: Bone marrow-derived monocytes were exposed to three antigens of E. granulosus on days 0, 3, 5, and 7. The percentage of monocyte-derived DCs (moDCs), DCs subsets, and the expression of surface molecules of DCs at different time points in different groups were assessed by flow cytometry. The levels of cytokines of IL-1ß, IL-4, IL-6, IL-10, IL-13, IFN-γ, TNF-α, IL-12p70, IL-18, IL-23, and IL-27 in the cell culture supernatant were detected by multi-factorial detection technology. Results: The percentage of moDCs revealed that none of the three antigens blocked monocyte differentiation to DCs. The monocytes of 7-day-old cultures showed increased sensitivity to these antigens. The Eg.ferritin induced more mature DCs, which expressed high levels of MHC II and costimulatory molecules, and secreted Th1 cytokines. Eg10 and Eg.mMDH induced lower degrees of DC maturation, however differentiated DCs were in a semi-mature state due to low expression of MHC II and costimulatory molecules and secretion of higher Th2 and lower Th1 cytokines. Conclusion: Eg.ferritin promotes full maturation of DCs and induces Th1 immune response, whereas Eg.10 and Eg.mMDH induce semi-mature DCs producing higher levels of Th2 cytokines.


Assuntos
Echinococcus granulosus , Monócitos , Animais , Células Dendríticas , Citocinas/metabolismo , Diferenciação Celular , Fatores de Transcrição/metabolismo , Ferritinas/metabolismo
11.
Front Cell Infect Microbiol ; 13: 1147025, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37274316

RESUMO

Introduction: The Notch signaling pathway is involved in the development of many diseases; it regulates the development of dendritic cells (DCs), and affects the immune response of DC-mediated T cells. We previously found that ferritin and malate dehydrogenase (mMDH) in Echinococcus granulosus (E.granulosus) induced different immune responses through sensitized DCs. Therefore, in the study we explored whether the Notch signaling pathway affects the development and differentiation of DCs, causing changes in the immune response of DCs sensitized with E. granulosus antigens, and clarified whether it is involved in E.granulosus infection. Methods: We used the Notch signaling pathway inhibitor [N-[3,5-difluorophenace-tyl] -L-alanyl]-S-phenylglycinet-butyl ester (DAPT) or activator Jagged1 to construct in vitro cell models with blocked or activated Notch signaling respectively. We analyzed the effect of Notch signaling on the development and differentiation of DCs by detecting their morphology, migration function, capacity to promote T cell proliferation, and cytokine secretion. We observed the changes in DC response to E. granulosus antigens and the mediated immune response. Results: DAPT inhibited the development and maturation of DCs, which were in a non-responsive or incompetent state, reduced the sensitization of DCs to Eg.ferritin, weakened the migration ability of DCs, disrupted their ability to mediate T-cell proliferation, reduced DC expression of MHCII, CD80, CD60, and CD40 co-stimulatory molecules, prevented the secretion of cytokines and attenuated the expression of Notch1, Notch2, Notch3 receptors, Jagged1, Delta-like 4 (Delta4), and Hes1. Following Jagged1 addition, the function of DCs was restored to some extent, and the expression of Notch1, Delta4 and Hes1 was activated in response to the stimulation of Eg.ferritin. However, Eg.mMDH stimulated DCs to produce an immune response showing weak interference by DAPT and Jagged1. Discussion: The study suggests that the Notc h signaling pathway is involved in the Eg.ferritin-sensitized DC-mediated immune response, which may become a new target for treating E.granulosus infection.


Assuntos
Equinococose , Inibidores da Agregação Plaquetária , Humanos , Inibidores da Agregação Plaquetária/farmacologia , Diferenciação Celular , Transdução de Sinais , Células Dendríticas , Ferritinas
12.
Neurobiol Dis ; 179: 106066, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36889483

RESUMO

Although both are myeloid cells located surrounding cerebral vasculature, vessel-associated microglia (VAM) and perivascular macrophages (PVMs) can be distinguished by their distinct morphologies, signatures and microscopic location. As key component of neuro-glia-vascular unit (NGVU), they play prominent roles in neurovasculature development and pathological process of various central nervous system (CNS) diseases, including phagocytosis, angiogenesis, vessel damage/protection and blood flow regulation, therefore serving as potential targets for therapeutics of a broad array of CNS diseases. Herein, we will provide a comprehensive overview of heterogeneity of VAM/PVMs, highlight limitations of current understanding in this field, and discuss possible directions of future investigations.


Assuntos
Doenças do Sistema Nervoso Central , Microglia , Humanos , Microglia/fisiologia , Encéfalo/patologia , Macrófagos , Fagocitose , Doenças do Sistema Nervoso Central/patologia
13.
Front Immunol ; 14: 1243204, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38187382

RESUMO

Echinococcosis is a common human and animal parasitic disease that seriously endangers human health and animal husbandry. Although studies have been conducted on vaccines for echinococcosis, to date, there is no human vaccine available for use. One of the main reasons for this is the lack of in-depth research on basic immunization with vaccines. Our previous results confirmed that recombinant antigen P29 (rEg.P29) induced more than 90% immune protection in both mice and sheep, but data on its induction of sheep-associated cellular immune responses are lacking. In this study, we investigated the changes in CD4+ T cells, CD8+ T cells, and antigen-specific cytokines IFN-γ, IL-4, and IL-17A after rEg.P29 immunization using enzyme-linked immunospot assay (ELISPOT), enzyme-linked immunosorbent assay (ELISA), and flow cytometry to investigate the cellular immune response induced by rEg.P29 in sheep. It was found that rEg.P29 immunization did not affect the percentage of CD4+ and CD8+ T cells in peripheral blood mononuclear cells (PBMCs), and was able to stimulate the proliferation of CD4+ and CD8+ T cells after immunization in vitro. Importantly, the results of both ELISPOT and ELISA showed that rEg.P29 can induce the production of the specific cytokines IFN-γ and IL-17A, and flow cytometry verified that rEg.P29 can induce the expression of IFN-γ in CD4+ and CD8+ T cells and IL-17A in CD4+ T cells; however, no IL-4 expression was observed. These results indicate that rEg.P29 can induce Th1, Th17, and Tc1 cellular immune responses in sheep against echinococcosis infection, providing theoretical support for the translation of rEg.P29 vaccine applications.


Assuntos
Equinococose , Echinococcus granulosus , Vacinas , Humanos , Animais , Camundongos , Ovinos , Interleucina-17 , Linfócitos T CD8-Positivos , Leucócitos Mononucleares , Células Th17 , Mieloblastina , Equinococose/prevenção & controle , Citocinas , ELISPOT , Imunidade
14.
Materials (Basel) ; 15(23)2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36500072

RESUMO

Transverse tensile strength of unidirectional (UD) composites plays a key role in overall failure of fiber-reinforced composites. To predict this strength by micromechanics, calculation of actual stress in constituent matrix is essentially required. However, traditional micromechanics models can only give the volume-averaged homogenized stress rather than an actual one for a matrix, which in practice will cause large errors. In this paper, considering the effect of stress concentration on a matrix, a novel micromechanics method was proposed to give an accurate calculation of the actual stress in the matrix for UD composite under transverse tension. A stress concentration factor for a matrix in transverse tensile direction is defined, using line-averaged pointwise stress (obtained from concentric cylinder assemblage model) divided by the homogenized quantity (obtained from a bridging model). The actual stress in matrix is then determined using applied external stress multiplied by the factor. Experimental validation on six UD carbon fiber-reinforced polymer (CFRP) specimens indicates that the predicted transverse tensile strength by the proposed method presents a minor deviation with an averaged relative error of 5.45% and thus is reasonable, contrary to the traditional method with an averaged relative error of 207.27%. Furthermore, the morphology of fracture section of the specimens was studied by scanning electron microscopy (SEM). It was observed that different scaled cracks appeared within the matrix, indicating that failure of a UD composite under transverse tension is mainly governed by matrix failure. Based on the proposed approach, the transverse tensile strength of a UD composite can be accurately predicted.

15.
Virol J ; 19(1): 223, 2022 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-36550578

RESUMO

BACKGROUND: Adaptive immune response has been thought to play a key role in SARS-CoV-2 infection. The role of B cells, CD4+T, and CD8+T cells are different in vaccine-induced immune response, thus it is imperative to explore the functions and kinetics of adaptive immune response. We collected blood samples from unvaccinated and vaccinated individuals. To assess the mechanisms contributing to protective immunity of CoronaVac vaccines, we mapped the kinetics and durability of humoral and cellular immune responses after primary and boost vaccination with CoronaVac vaccine in different timepoints. MATERIALS AND METHODS: We separate PBMC and plasma from blood samples. The differentiation and function of RBD-spcific CD4+T and CD8+T cells were analyzed by flow cytometry and ELISA. Antibodies response was analyzed by ELISA. ELISPOT analysis was perfomed to detected the RBD-spcific memory B cells. CBA analysis was performed to detected the cytokine immune profiles. Graphpad prism 8 and Origin 2021 were used for statistical analysis. RESULTS: Vaccine-induced CD4+T cell responses to RBD were more prominent than CD8+T cell responses, and characterized by a predominant Th1 and weak Th17 helper response. CoronaVac vaccine triggered predominant IgG1 antibody response and effectively recalled specific antibodies to RBD protein after booster vaccination. Robust antigen-specific memory B cells were detected (p < 0.0001) following booster vaccination and maintained at 6 months (p < 0.0001) following primary vaccination. Vaccine-induced CD4+T cells correlated with CD8+T cells (r = 0.7147, 0.3258, p < 0.0001, p = 0.04), memory B cell responses (r = 0.7083, p < 0.0001), and IgG and IgA (r = 0.6168, 0.5519, p = 0.0006, 0.003) after vaccination. In addition, vaccine induced a broader and complex cytokine pattern in plasma at early stage. CONCLUSION: Taken together, these results highlight the potential role of B cell and T cell responses in vaccine-induced long-term immunity.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Leucócitos Mononucleares , COVID-19/prevenção & controle , Vacinação , Citocinas , ELISPOT , Imunidade , Anticorpos Antivirais
16.
ACS Omega ; 7(43): 38536-38542, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36340135

RESUMO

Over the years, widespread interest has been placed on rheological properties to reflect the processability of propellant slurries. Particle gradation technology plays an essential role in the improvement of the processability of propellant slurries. In this article, rheological properties of glycidyl azide polymer (GAP) propellant slurries were measured by dynamic rheological measurements with a rheometer. Submicron-sized (d 50 = 0.221 µm) and micron-sized (d 50 = 33.02 µm) CL-20 particles and ultrafine (d 50 = 2.40 µm) and micron-sized (d 50 = 341.69 µm) AP particles were utilized to investigate the influence of the addition of CL-20 and particle size gradation on rheological properties. The test results demonstrate that the LVE region remains almost invariable while the yield transition process is delayed when the relative content of submicron-sized CL-20 increases from 10 to 20%. The values of G', G″, and |η*| increase with increasing submicron-sized CL-20. Despite this, the value of |η*| can be effectively reduced to about the same value as the slurries with bimodal AP by the size gradation of CL-20. In addition, particle porosity appears to be a suitable parameter to predict trends concerning the rheological properties of the GAP propellant slurries.

17.
Rev Sci Instrum ; 93(9): 094706, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36182483

RESUMO

Electrical wire explosions have many applications in scientific research and industry. Optical diagnosis is a powerful method to clarify the evolutionary process of such explosions. In this paper, an experimental platform was established to diagnose the optical radiation of electrical wire explosions. A low-jitter trigatron switch and its trigger generator were designed to ensure accurate synchronization. The spatial-temporal evolution process and the self-emission spectrum of electrical explosion plasmas from different wires (copper and tantalum) were obtained and analyzed. The optical diagnosis results indicated that the electrical explosion of copper wire was mainly characterized by the inhomogeneity of partial ionization and the rapid expansion of the discharge channel. The spectrum in the early discharge stage of the copper wire electrical explosion was a continuum, and most of the self-radiation spectral lines belonged to Cu I or Cu II. At the later stage of the plasma dissipation process, the continuous spectrum gradually transformed into a line spectrum. The development of the tantalum wire discharge channel was relatively uniform, and the plasma was mainly established in the gas-liquid mixed phase channel of the tantalum wire. The self-emission spectrum of the tantalum wire was always continuous, and the absorption process of line spectrum radiation was distinct.

18.
AORN J ; 116(3): 219-228, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36005868

RESUMO

The spread of coronavirus disease 2019 posed a public health crisis beginning in January 2020, affecting hospitals and health care personnel worldwide and disrupting perioperative services. Organization leaders at Xijing Hospital, Xi'an, China, developed a mitigation system for the OR that involved creating a pandemic response team to identify and implement appropriate infection control practices to prevent virus transmission. The leaders addressed managing the daily surgery schedule through patient screening and a focus on the urgency and volume of procedures. They required increased use of personal protective equipment and more stringent cleaning and disinfection protocols and ensured that the physical and mental health of staff members were monitored and prioritized. This article describes how leaders implemented these enhanced processes to protect personnel from infection as they continued to provide patient care. It also describes how high-risk procedures involving patients with confirmed or suspected infections were managed and discusses lessons learned.


Assuntos
COVID-19 , Humanos , Controle de Infecções/métodos , Pandemias/prevenção & controle , Equipamento de Proteção Individual , SARS-CoV-2
19.
Trials ; 23(1): 538, 2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35765084

RESUMO

BACKGROUND: Impairments in upper limb motor function and cognitive ability are major health problems experienced by stroke patients, necessitating the development of novel and effective treatment options in stroke care. The aim of this study is to examine the effects of robot-assisted therapy on improving upper limb and cognitive functions in stroke patients. METHODS: This will be a single-blinded, 2-arm, parallel design, randomized controlled trial which will include a sample size of 86 acute and subacute stroke patients to be recruited from a single clinical hospital in Shanghai, China. Upon qualifying the study eligibility, participants will be randomly assigned to receive either robot-assisted therapy or conventional therapy with both interventions being conducted over a 6-week period in a clinical rehabilitation setting. In addition to comprehensive rehabilitation, the robot-assisted therapy group will receive a 30-min Armguider robot-assisted therapy intervention 5 days a week. Primary efficacy outcomes will include Fugl-Meyer Assessment for Upper Extremity (FMA-UE) and Mini-Mental Status Examination (MMSE). Other secondary outcomes will include Trail Making Test (TMT), Auditory Verbal Learning Test (AVLT), Digit Symbol Substitution Test (DSST), and Rey-Osterrieth Complex Figure Test (ROCFT). All trial outcomes will be assessed at baseline and at 6-week follow-up. Intention-to-treat analyses will be performed to examine changes from baseline in the outcomes. Adverse events will be monitored throughout the trial period. DISCUSSION: This will be the first randomized controlled trial aimed at examining the effects of robot-assisted therapy on upper limb and cognitive functions in acute and subacute stroke patients. Findings from the study will contribute to our understanding of using a novel robotic rehabilitation approach to stroke care and rehabilitation. TRIAL REGISTRATION: Chinese Clinical Trial Registry ChiCTR2100050856 . Registered on 5 September 2021.


Assuntos
Robótica , Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , China , Cognição , Humanos , Ensaios Clínicos Controlados Aleatórios como Assunto , Recuperação de Função Fisiológica , Reabilitação do Acidente Vascular Cerebral/efeitos adversos , Reabilitação do Acidente Vascular Cerebral/métodos , Extremidade Superior
20.
BMC Vet Res ; 18(1): 165, 2022 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-35513847

RESUMO

BACKGROUND: Sheep are an important livestock species worldwide and an essential large-animal model for animal husbandry and veterinary research. Understanding fundamental immune indicators, especially T-lymphocyte parameters, is necessary for research on sheep diseases and vaccines, to better understand the immune response to bacteria and viruses for reducing the use of antibiotics and improving the welfare of sheep. We randomly selected 36 sheep of similar ages to analyze cell-related immune indicators in peripheral blood mononuclear cells (PBMCs). The proportions of CD4+ and CD8+ T cells in PBMCs were detected by flow cytometry. We used Concanavalin A (Con A) and Phorbol-12-myristate-13-acetate (PMA)/Ionomycin to stimulate PBMCs, and measured the expression of IFN-γ, IL-4, and IL-17A using enzyme-linked immunosorbent assay (ELISA) and enzyme-linked immunospot assay (ELISpot). Simultaneously, PMA/Ionomycin/brefeldin A (BFA) was added to PBMCs, then the expression of IFN-γ, IL-4, and IL-17A was detected by flow cytometry after 4 h of culturing. In addition, we observed the proliferation of PBMCs stimulated with Con A for 3, 4, and 5 days. RESULTS: The proportions of CD4+ T lymphocytes (18.70 ± 4.21%) and CD8+ T lymphocytes (8.70 ± 3.65%) were generally consistent among individuals, with a CD4/CD8 ratio of 2.40 ± 0.79. PBMCs produced high levels of IFN-γ, IL-4, and IL-17A after stimulation with PMA/Ionomycin and Con A. Furthermore, PMA/Ionomycin stimulation of PBMC yielded significantly higher cytokine levels than Con A stimulation. Flow cytometry showed that the level of IFN-γ (51.49 ± 11.54%) in CD8+ T lymphocytes was significantly (p < 0.001) higher than that in CD4+ T lymphocytes (14.29 ± 3.26%); IL-4 (16.13 ± 6.81%) in CD4+ T lymphocytes was significantly (p < 0.001) higher than that in CD8+ T lymphocytes (1.84 ± 1.33%), There was no difference in IL-17A between CD4+ (2.83 ± 0.98%) and CD8+ T lymphocytes (1.34 ± 0.67%). The proliferation of total lymphocytes, CD4+ T lymphocytes, and CD8+ T lymphocytes continued to increase between days 3 and 5; however, there were no significant differences in proliferation between the cell types during the stimulation period. CONCLUSIONS: Evaluating primary sheep immune indicators, especially T lymphocytes, is significant for studying cellular immunity. This study provided valuable data and theoretical support for assessing the immune response of sheep to pathogens and improving sheep welfare.


Assuntos
Linfócitos T CD8-Positivos , Citocinas , Animais , Linfócitos T CD4-Positivos/metabolismo , Citocinas/metabolismo , Citometria de Fluxo/veterinária , Interleucina-17/metabolismo , Interleucina-4 , Ionomicina/farmacologia , Leucócitos Mononucleares , Ativação Linfocitária , Ovinos , Acetato de Tetradecanoilforbol/metabolismo , Acetato de Tetradecanoilforbol/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA