Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
Front Endocrinol (Lausanne) ; 15: 1429261, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39027482

RESUMO

Objectives: To evaluate the efficacy and safety of non-steroid mineralocorticoid receptor antagonists (ns-MRAs) and sodium-glucose cotransporter 2 inhibitors (SGLT2is) in patients with diabetic kidney disease (DKD). Methods: Systematic literature searches were performed using PubMed, Embase and Web of Science encompassing inception until January 20, 2024. Randomized control trials (RCTs) comparing ns-MRAs and SGLT2is in DKD were selected. The efficacy outcomes of interest included kidney-specific composite outcome, cardiovascular (CV)-specific composite outcome, end-stage kidney disease (ESKD), and overall mortality. We also investigated safety outcomes, including acute kidney injury (AKI) and hyperkalemia. Results: A total of 10 randomized clinical trials with 35,786 patients applying various treatments were included. SGLT2is (SUCRA 99.84%) have potential superiority in kidney protection. SGLT2is (RR 1.41, 95%CI 1.26 to 1.57) and ns-MRAs (RR 1.17, 95% CI 1.08 to 1.27) were associated with significantly lower kidney-specific composite outcome than the placebo. Regarding the reduction in CV-specific composite outcome and ESKD, SGLT2is (SUCRA 91.61%; 91.38%) have potential superiority in playing cardiorenal protection. Concerning the CV-specific composite outcome (RR 1.27, 95%CI 1.09 to 1.43) and ESKD (RR 1.43, 95%CI 1.20 to 1.72), SGLT2is significantly reduced the risks compared to placebo. Regarding the reduction in overall mortality, SGLT2is (SUCRA 83.03%) have potential superiority in postponing mortality. Concerning the overall mortality, SGLT2is have comparable effects (RR 1.27, 95%CI 1.09 to 1.43) with placebo to reduce the risk of overall mortality compared to placebo. For AKI reduction, ns-MRAs (SUCRA 63.58%) have potential superiority. SGLT2is have comparable effects (RR 1.24, 95%CI 1.05 to 1.46) with placebo to reduce the risk of AKI. For hyperkalemia reduction, SGLT2is (SUCRA 93.12%) have potential superiority. SGLT2is have comparable effects (RR 1.24, 95%CI 1.05 to 1.46) with placebo to reduce the risk of AKI. Concerning hyperkalemia reduction, nsMRAs (RR 1.24 95%CI 0.39 to 3.72) and SGLT2is (RR 1.01 95%CI 0.40 to 3.02) did not show significant benefit compared to placebo. Conclusion: Concerning the efficacy and safety outcomes, SGLT2is may be recommended as a treatment regimen for maximizing kidney and cardiovascular protection, with a minimal risk of hyperkalemia in DKD. Systematic review registration: https://www.crd.york.ac.uk/prospero/, identifier CRD42023458613.


Assuntos
Nefropatias Diabéticas , Inibidores do Transportador 2 de Sódio-Glicose , Humanos , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico , Nefropatias Diabéticas/tratamento farmacológico , Antagonistas de Receptores de Mineralocorticoides/uso terapêutico , Metanálise em Rede , Ensaios Clínicos Controlados Aleatórios como Assunto , Resultado do Tratamento , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico
2.
Colloids Surf B Biointerfaces ; 242: 114093, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39029248

RESUMO

In recent years, the increasingly severe pollution of heavy metals has posed a significant threat to the environment and human safety. Heavy metal ions are highly non-biodegradable, with a tendency to accumulate through biomagnification. Consequently, accurate detection of heavy metal ions is of paramount importance. As a new type of synthetic nanomaterials, single-atom nanozymes (SANs) boast exceptional enzyme-like properties, setting them apart from natural enzymes. This unique feature affords SANs with a multitude of advantages such as dispersed active sites, low cost and variety of synthetic methods over natural enzymes, making them an enticing prospect for various applications in industrial, medical and biological fields. In this paper, we systematically summarize the synthetic methods and catalytic mechanisms of SANs. We also briefly review the analytical methods for heavy metal ions and present an overall overview of the research progress in recent years on the application of SANs in the detection of environmental heavy metal ions. Eventually, we propose the existing challenges and provide a vision for the future.


Assuntos
Metais Pesados , Nanoestruturas , Metais Pesados/análise , Metais Pesados/química , Nanoestruturas/química , Humanos , Catálise
3.
J Drug Target ; 32(7): 785-793, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38721679

RESUMO

Ferroptosis is a novel form of programmed cell death that is iron-dependent and distinct from autophagy, apoptosis, and necroptosis. It is primarily characterised by a decrease in glutathione peroxidase 4 (GPX4) activity, or by the accumulation of lipid peroxidation and reactive oxygen species (ROS). Renal fibrosis is a common pathological change in the progression of various primary and secondary renal diseases to end-stage renal disease and poses a serious threat to human health with high morbidity and mortality. Multiple pathways contribute to the development of renal fibrosis, with ferroptosis playing a crucial role in renal fibrosis pathogenesis due to its involvement in the production of ROS. Ferroptosis is related to several signalling pathways, including System Xc-/GPX4, abnormal iron metabolism and lipid peroxidation. A number of studies have indicated that ferroptosis is closely involved in the process of renal fibrosis caused by various kidney diseases such as glomerulonephritis, renal ischaemia-reperfusion injury, diabetic nephropathy and renal calculus. Identifying the underlying molecular mechanisms that determine cell death would open up new insights to address a therapeutic strategy to renal fibrosis. The review aimed to browse and summarise the known mechanisms of ferroptosis that may be associated with biological reactions of renal fibrosis.


Assuntos
Ferroptose , Fibrose , Ferroptose/fisiologia , Humanos , Animais , Nefropatias/metabolismo , Nefropatias/patologia , Espécies Reativas de Oxigênio/metabolismo , Peroxidação de Lipídeos , Transdução de Sinais , Ferro/metabolismo
4.
Anal Chim Acta ; 1309: 342677, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38772666

RESUMO

BACKGROUND: Rapid and sensitive detection for acetamiprid, a kind of widely used neonicotinoid insecticide, is very meaningful for the development of modern agriculture and the protection of human health. Highly stable electrochemiluminescence (ECL) materials are one of the key factors in ECL sensing technology. ECL materials prepared by porous materials (e.g., MOFs) coated with chromophores have been used for ECL sensing detection, but these materials have poor stability because the chromophores escape when they are in aqueous solution. Therefore, the development of highly stable ECL materials is of great significance to improve the sensitivity of ECL sensing technology. RESULTS: In this work, by combining etched metal-organic frameworks (E-UIO-66-NH2) as carrier with Tris(4,4'-dicarboxylic acid-2,2'-bipyridine)Ru(II) chloride (Ru(dcbpy)32+) as signal probe via amide bonds, highly stable nanocomposites (E-UIO-66-NH2-Ru) with excellent ECL performance were firstly prepared. Then, using MoS2 loaded with AuNPs as substrate material and co-reactant promoter, a signal off-on-off ECL aptamer sensor was prepared for sensitive detection of acetamiprid. Due to the excellent catalytic activity of E-UIO-66-NH2-Ru and MoS2@Au towards K2S2O8, the ECL signals can be enhanced by multiple signal enhancement pathways, the prepared ECL aptamer sensor could achieve sensitive detection of acetamiprid in the linear range of 10-13 to10-7 mol L-1, with the limit of detection (LOD) of 2.78ⅹ10-15 mol L-1 (S/N = 3). After the evaluation of actual sample testing, this sensing platform was proven to be an effective method for the detection of acetamiprid in food and agricultural products. SIGNIFICANCE AND NOVELTY: The E-UIO-66-NH2-Ru prepared by linking Ru(dcbpy)32+ to E-UIO-66-NH2 via amide bonding has very high stability. The synergistic catalytic effect of MoS2 and AuNPs enhanced the ECL signal. By exploring the sensing mechanism and evaluating the actual sample tests, the proposed signal "on-off" ECL sensing strategy was proved to be an effective and excellent ECL sensing method for sensitive and stable detection of acetamiprid.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Eletroquímicas , Medições Luminescentes , Estruturas Metalorgânicas , Neonicotinoides , Neonicotinoides/análise , Técnicas Eletroquímicas/métodos , Aptâmeros de Nucleotídeos/química , Medições Luminescentes/métodos , Estruturas Metalorgânicas/química , Rutênio/química , Técnicas Biossensoriais/métodos , Limite de Detecção , Complexos de Coordenação/química , Inseticidas/análise
5.
Anal Chim Acta ; 1298: 342407, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38462332

RESUMO

The accurate diagnosis of diseases can be improved by detecting multiple biomarkers simultaneously. This study presents the development of a magnetic photoelectrochemical (PEC) immunosensor array for the simultaneous detection of amyloid-ß 42 (Aß) and microtubule-associated protein (Tau), which are markers for neurodegenerative disorders. A metal-organic framework (MOF) derivative, Fe2O3@FeS2 magnetic composites with exceptional photoelectric and ferromagnetic properties was synthesized while preserving the original structure and advantages. Thus, the immunoassembly process of the sensor can be carried out in homogeneous solution and recovered by magnetic separation. For simultaneous detection, a chip is divided into multiple independent sensing sites, which have the same preparation and detection environment, allowing for the implementation of a self-calibration method. The sensor array demonstrates considerable detection ranges of 0.01-100 ng mL-1 for Aß and 0.05-100 ng mL-1 for Tau, with low detection limits of 2.1 pg mL-1 for Aß and 7.9 pg mL-1 for Tau. The PEC sensor array proposed in this study exhibits exceptional stability, selectivity, and reproducibility, providing a new method for detecting multiple markers.


Assuntos
Técnicas Biossensoriais , Técnicas Biossensoriais/métodos , Reprodutibilidade dos Testes , Imunoensaio/métodos , Peptídeos beta-Amiloides , Fenômenos Magnéticos , Técnicas Eletroquímicas/métodos , Limite de Detecção
6.
J Psychosom Res ; 178: 111599, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38309129

RESUMO

BACKGROUND: The clinical observations suggest a correlation between lower urinary tract symptoms (LUTSs) and mental health problems. Nonetheless, establishing a direct causal relationship between them remains challenging. METHODS: We initially conducted a cross-sectional study using 2005-2018 the National Health and Nutrition Examination Survey (NHANES) data. Multivariable-adjusted logistic regression was the primary statistical approach. Additionally, we employed Mendelian randomization (MR) to reducing confounding and reverse causation. Genetic instruments were obtained from publicly available genome-wide association study (GWAS) databases. Inverse Variance Weighted was the primary statistical method. RESULTS: The cross-sectional study involved 29,439 participants. Individuals with mental health problems had a higher risk of urinary incontinence (OR:4.38; 95%CI:3.32-5.76; P < 0.01) and overactive bladder (OR:2.31; 95%CI:2.02-2.63; P < 0.01). MR analysis then indicated a potential causal relationship between mental health problems and LUTSs. Depression symptoms was linked with urinary tract infection (UTI) (OR:1.005; 95%CI:1.003-1.008; PFDR < 0.01). Anxiety symptoms was related to the occurrence of UTI (OR:1.024; 95%CI:1.011-1.037; PFDR < 0.01) and bladder calcified/ contracted/ overactive (OR:1.017; 95%CI:1.007-1.027; PFDR < 0.01). The personality trait of neuroticism was related to the occurrence of cystitis (OR:1.072; 95%CI:1.022-1.125; PFDR = 0.02), extravasation of urine and difficulties with micturition (OR:1.001; 95%CI:1.001-1.002; PFDR < 0.01), and urinary frequency and incontinence (OR: 1.001; 95%CI:1.000-1.001; PFDR < 0.01). CONCLUSIONS: Our study provides various evidence for the correlation between mental health and LUTSs, emphasizing the significance of adopting a holistic approach to LUTSs management that incorporates both physical and psychological factors.


Assuntos
Sintomas do Trato Urinário Inferior , Incontinência Urinária , Humanos , Saúde Mental , Inquéritos Nutricionais , Estudos Transversais , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Sintomas do Trato Urinário Inferior/genética
7.
Biosensors (Basel) ; 14(1)2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38248417

RESUMO

Due to the limitation that natural peroxidase enzymes can only function in relatively mild environments, nanozymes have expanded the application of enzymology in the biological field by dint of their ability to maintain catalytic oxidative activity in relatively harsh environments. At the same time, the development of new and highly efficient composite nanozymes has been a challenge due to the limitations of monometallic particles in applications and the inherently poor enzyme-mimetic activity of composite nanozymes. The inherent enzyme-mimicking activity is due to Au, Ag, and Pt, along with other transition metals. Moreover, the nanomaterials exhibit excellent enzyme-mimicking activity when composited with other materials. Therefore, this paper focuses on composite nanozymes with simulated peroxidase activity that have been prepared using noble metals such as Au, Ag, and Pt and other transition metal nanoparticles in recent years. Their simulated enzymatic activity is utilized for biomedical applications such as glucose detection, cancer cell detection and tumor treatment, and antibacterial applications.


Assuntos
Nanopartículas Metálicas , Nanoestruturas , Elementos de Transição , Antibacterianos , Peroxidase , Peroxidases
8.
Colloids Surf B Biointerfaces ; 235: 113767, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38295464

RESUMO

Natural enzymes play an important role to support the regular life activities of the human body. However, the application conditions of natural enzymes are harsh and there are limitations in their use. As artificial enzymes, nanozymes possess the substrate specificity of natural enzymes. Due to the advantages of low cost, good stability and strong catalytic properties, nanozymes hold a wide range of applications in the fields of sensing, chemical, food and medicine. Some of the more common ones are noble metal nanozymes, metal oxide nanozymes and carbon-based nanozymes. Among them, metal oxide nanozymes have attracted much attention because of their decent fixity, exceedingly good physicochemical properties and other advantages. Today, malignant tumors pose a great danger to the human body and are a serious threat to human health. However, traditional treatments have more side effects, and finding new treatment modalities is particularly important for tumor treatment. For example, enzyme therapy can be used to catalyze reactions in the body to achieve tumor treatment. Nanozymes can exert enzymatic activity and effectively treat malignant tumors through catalysis and synergy, and have made certain progress. This paper reviews the detection and application of metal oxide nanozymes in tumor detection and treatment in recent years and provides an outlook on their future application and development.


Assuntos
Materiais Biomiméticos , Nanoestruturas , Neoplasias , Humanos , Nanoestruturas/química , Materiais Biomiméticos/química , Óxidos/química , Catálise , Neoplasias/diagnóstico , Neoplasias/terapia
9.
Anal Methods ; 16(5): 667-675, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38230518

RESUMO

MiRNA-targeted therapy has become a hot topic in current cancer research. The key to this treatment strategy is to clarify the specific role of miRNA in cancer. However, the roles of some miRNAs acting as oncogenic or tumor suppressors are still controversial, which are influenced by different tumor types, even in the same cancer type. Hence, we designed a novel fluorescent nanoprobe based on polydopamine nanoparticles (PDA NPs) for simultaneously detecting caspase-3 and miRNA-34a within living cells. The specific role of miRNA-34a in different cancer cells could be further identified by studying the expression alterations of caspase-3 and miRNA-34a. Confocal imaging indicated that miRNA-34a indeed acted as a tumor suppressor in anticancer drug-treated MCF-7 and HeLa cells, where the effect of miRNA-34a remains controversial. The designed nanoprobe can offer a promising approach to ascertain the oncogenic or tumor-suppressing role of miRNA in different cancer cells with a simple visualization method, which has valuable implications for exploring the practicability of precision therapy focused on miRNA and evaluating the efficacy of new miRNA-targeted anticancer medications.


Assuntos
Antineoplásicos , MicroRNAs , Neoplasias , Humanos , Células HeLa , Caspase 3/genética , MicroRNAs/genética , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Oncogenes , Neoplasias/genética
10.
Materials (Basel) ; 16(21)2023 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-37959538

RESUMO

Compared to traditional actuators (such as piezoelectric ceramics), metal actuators possess the advantages of a low energy consumption, large strain amplitude, and high strain energy density. However, most of the existing metal actuators with an excellent comprehensive performance are composed of precious metals, which are limited by high costs and have almost no possibility for large-scale production in the future. This study focuses on non-precious metal materials and exploits a one-step chemical dealloying method to prepare bulk nanoporous (NP) CoCuAl actuators (NP-CCA) from Al70Co20Cu10 alloy. The microstructure and actuation properties of the NP-CCA were analyzed in detail. The dense continuous nanoscale pores provide an excellent network connectivity for a large strain response, enabling the NP-CCA to achieve a strain amplitude of up to 1.19% (more than eight and two times that of NP-Pt and NP-Ag, respectively), comparable to precious metal actuators. In addition, the NP-CCA possesses a high strain energy density, which is prominent in many precious metal actuation materials (such as NP-Au, NP-Ag, and NP-Pt).

11.
Front Oncol ; 13: 1072634, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36910649

RESUMO

Background: This Bayesian network meta-regression analysis provides a head-to-head comparison of first-line therapeutic immune checkpoint inhibitors (ICI) and tyrosine kinase inhibitors (TKI) combinations for metastatic renal cell carcinoma (mRCC) using median follow-up time as covariate. Methods: We searched Six databases for a comprehensive analysis of randomised clinical trials (RCTs). Comparing progression free survival (PFS) and overall survival (OS) of different interventions at the same time node by Bayesian network meta-analysis. Bayesian network meta-regression analysis was performed on objective response rate (ORR), adverse events (AEs) (grade ≥ 3) and the hazard ratios (HR) associated with PFS and OS, with the median follow-up time as the covariate. Results: Eventually a total of 22 RCTs reporting 11,090 patients with 19 interventions. Lenvatinib plus Pembrolizumab (LenPem) shows dominance of PFS, and Pembrolizumab plus Axitinib (PemAxi) shows superiority in OS at each time point. After meta-regression analysis, for HRs of PFS, LenPem shows advantages; for HRs of OS, PemAxi shows superiority; For ORR, LenPem provides better results. For AEs (grade ≥ 3), Atezolizumab plus Bevacizumab (AtezoBev) is better. Conclusion: Considering the lower toxicity and the higher quality of life, PemAxi should be recommended as the optimal therapy in treating mRCC. Systematic review registration: https://www.crd.york.ac.uk/prospero/, identifier CRD4202236775.

12.
Biosensors (Basel) ; 13(3)2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36979578

RESUMO

As an inflammatory marker, procalcitonin (PCT) is more representative than other traditional inflammatory markers. In this work, a highly efficient photoelectrochemical (PEC) immunosensor was constructed based on the photoactive material Bi2S3/Ag2S to realize the sensitive detection of PCT. Bi2S3 was prepared by a hydrothermal method, and Ag2S quantum dots were deposited on the ITO/Bi2S3 surface via in situ reduction. Bi2S3 is a kind of admirable photoelectric semiconductor nanomaterial on account of its moderate bandgap width and low binding rate of photogenerated electron holes, which can effectively convert light energy into electrical energy. Therefore, based on the energy level matching principle of Bi2S3 and Ag2S, a labeled Bi2S3/Ag2S PEC immunosensor was constructed, and the sensitive detection of PCT was successfully established. The linear detection range of the PEC immunosensor was 0.50 pg∙mL-1 to 50 ng∙mL-1, and the minimum detection limit was 0.18 pg∙mL-1. Compared with the traditional PEC strategy, the proposed PEC immunosensor is simple, convenient, and has good anti-interference, sensitivity, and specificity, which could provide a meaningful theoretical basis and reference value for the clinical detection of PCT.


Assuntos
Técnicas Biossensoriais , Nanoestruturas , Técnicas Eletroquímicas/métodos , Pró-Calcitonina , Técnicas Biossensoriais/métodos , Imunoensaio/métodos , Limite de Detecção
13.
Anal Chim Acta ; 1253: 341076, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36965992

RESUMO

The successful application of electrochemiluminescence (ECL) in immunoassay for clinical diagnosis requires improving sensitivity and accuracy. Herein was reported an ECL analytical model based zinc-based metal-organic frameworks of ruthenium hybrid (RuZn MOFs) as the signal emitter. To enlarge the output difference, the quenching effect of three different noble metal nanoparticles included palladium seeds (Pdseeds), palladium octahedrons (Pdoct), and Pt-based palladium (Pd@Ptoct) core-shell were researched. Among them, Pd@Ptoct core-shell possessed higher activity and improved durability than Pd-only (NPs), they could load more protein macromolecules amicably and stabilized in the analysis system. Furthermore, since the charge redistribution owing to the hybridization of the Pt and Pd atoms in Pd@Ptoct, it could generate the electron flow maximumly from the emitter RuZn MOFs to Pd@Ptoct and result in the enhancement of quenching ECL. And the UV absorption of noble metal nanoparticles overlapped with the ECL emission of RuZn MOFs to varying degrees, which caused the behavior of resonance energy transfer (RET) reaction at the same time. This would greatly promote the sensitivity of this ECL system compared with the traditional single quenching mechanism. Based on this, a signal-off immunsensor was constructed to sensitive detection of D-dimer with linearity range from 0.001 to 200 ng mL-1, limit of detection (LOD) was 0.20 pg mL-1 and provide a further theoretical basis for the clinical application of ECL technology.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Rutênio , Zinco , Paládio , Imunoensaio , Medições Luminescentes , Técnicas Eletroquímicas , Limite de Detecção
14.
Anal Chem ; 94(45): 15873-15878, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36322926

RESUMO

Herein, a novel dual mode detection system of split-type photoelectrochemical (PEC) and visual immunoassay was developed to detect neuron specific enolase (NSE), which achieved simultaneous and reliable NSE detection due to the completely different signal readouts and transduction mechanism. Specifically, specific reactions of antigens and antibodies were performed in 96-microwell plates. Gold nanoparticle (Au NP)-loaded Fe3O4 (Au@Fe3O4) NPs were used as secondary antibody markers and signal regulators, which could produce a blue-colored solution in the presence of 3,3',5,5'-tetramethylbenzidine (TMB) and H2O2 because of its peroxidase-like activity. Therefore, the visual detection of NSE was realized, making the results more intuitive. Meanwhile, the above biological process could also be used as part of the split-type PEC sensing platform. Oxidized TMB and Fe3+ were consumptive agents of the electron donor, which both realized the double quenching of PEC signal generated by the SnO2/MgIn2S4/Zn0.1Cd0.9S composites. Owing to the waterfall band structure, SnO2/MgIn2S4/Zn0.1Cd0.9S composites partially absorb visible light and effectively inhibit the electron-hole recombination, thereby providing significantly enhanced and stable initial signal. On the basis of the multiple signal amplification strategy and the split-type mode, NSE could be sensitively detected with a low detection limit of 14.0 fg·mL-1 (S/N = 3) and a wide linear range from 50.0 fg·mL-1 to 50.0 ng·mL-1.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Ouro/química , Técnicas Eletroquímicas/métodos , Cádmio , Nanopartículas Metálicas/química , Técnicas Biossensoriais/métodos , Limite de Detecção , Peróxido de Hidrogênio/química , Imunoensaio/métodos , Fosfopiruvato Hidratase , Zinco
15.
Nanoscale Adv ; 4(4): 1151-1157, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36131759

RESUMO

Glass transition temperature (T g) always deteriorates while improving the strength of epoxy resins which inherently suffer from brittleness. Herein, novel linear polyhedral oligomeric silsesquioxane (POSS)-epoxy nano-modifiers are synthesized with variable contents of POSS. The thermomechanical properties and chemical structure study of the POSS-epoxy indicates significant differences of the rigid POSS content in the linear nano-modifiers. By taking advantage of the synergistic effect of nanofillers and linear polymers, the modifiers disperse at the molecular level when POSS-epoxy is utilized as a co-curing agent for epoxy resins, allowing the applied force to be transferred into the polymer matrix. A good balance of T g, stiffness, and fracture toughness can be obtained. At 5 wt% of the nano-modifier, the resultant epoxy resins showed 27% enhancement in the Young's modulus relative to the neat epoxy. In addition, the T g and strength of epoxy thermosets are improved due to the increased cross-linking density, rough surface and tortuous path that resulted in good dispersion of energy during crack propagation.

16.
Biosens Bioelectron ; 215: 114605, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-35940004

RESUMO

The preparation of highly efficient electrochemiluminescence (ECL) illuminants is an effective method to improve the sensitivity and repeatability of ECL immunoassay. In this study, we prepared an ECL immunoassay for efficient and sensitive detection of neuron-specific enolase (NSE) by linking carboxylated Ru(bpy)32+ to an iron-based metal-organic framework (NH2-MIL-88 (Fe)) via an amide bond as an ECL signal probe. NH2-MIL-88 (Fe) possesses a large number of amino groups that can catalyze the co-reactant S2O82-, which generates abundant reaction intermediates SO4•- around Ru(dcbpy)32+, reduces the loss of material transport and energy transfer between SO4•- and Ru(dcbpy)32+, and significantly enhances the ECL signal. We used polyaniline-intercalating vanadium oxide (PVO) nanosheets as the substrates to capture NSE owing to the large specific surface area and extraordinary conductivity of the nanosheets. Similarly, PVO nanosheets also possess abundant amino groups, which can act as co-reaction promoters to catalyze the reaction of S2O82- to SO4•-, enhancing the ECL signal of the immunoassay. Therefore, we constructed a dual-enhanced ECL immunoassay with Ru(dcbpy)32+/NH2-MIL-88 (Fe) and PVO as the signal probe and substrate, respectively, which exhibited excellent sensitivity and selectivity for detecting NSE. This study offers an effective strategy for ultrasensitive detection of trace proteins using ECL immunoassays.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Estruturas Metalorgânicas , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Imunoensaio/métodos , Ferro , Limite de Detecção , Medições Luminescentes/métodos , Nanopartículas Metálicas/química , Estruturas Metalorgânicas/química , Fosfopiruvato Hidratase
17.
Anal Chem ; 94(29): 10557-10566, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35839514

RESUMO

The successful application of electrochemiluminescence (ECL) in various fields required continuous exploration of novel ECL signal emitters. In this work, we have proposed a pristine ECL luminophor named NiRu MOFs, which owned extremely high and stable ECL transmission efficiency and was synthesized via a straightforward two-step hydrothermal pathway. The foundation framework of pure Ni-MOFs with the initial structure was layered-pillared constructed by the coordinated octahedrally divalent between nickel and terephthalic acid (BDC). The terephthalates were coordinated and pillared directly to the nickel hydroxide layers and the three-dimensional framework was formed, which had a weak ECL response strength. Then, the ruthenium pyridine complex was recombined with pure Ni-MOFs to produce NiRu MOFs and part of the introduced ruthenium was atomically dispersed in the layered-pillared structure through an ion-exchange method, which led to the ECL luminous efficiency being significantly boosted more than pure Ni-MOFs. In order to verify the superiority of this newly synthesized illuminant, an ECL immunoassay model has been designed, and the results demonstrated that it had extremely strong and steady signal output in practical application. This study realized an efficient platform in ECL immunoassay application with the limit of detection of 0.32 pg mL-1 for neuron-specific enolase (NSE). Therefore, the approach which combined the pristine pure Ni-MOFs and the star-illuminant ruthenium pyridine complex would provide a convenient and meaningful solution for exploring the next-generation ECL emitters.


Assuntos
Técnicas Biossensoriais , Estruturas Metalorgânicas , Rutênio , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Limite de Detecção , Medições Luminescentes/métodos , Estruturas Metalorgânicas/química , Níquel , Piridinas , Rutênio/química
18.
Biosensors (Basel) ; 12(2)2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-35200309

RESUMO

The metabolic process of the human body produces a large number of gaseous biomarkers. The tracking and monitoring of certain diseases can be achieved through the detection of these markers. Due to the superior specific surface area, large functional groups, good optical transparency, conductivity and interlayer spacing, graphene, and its derivatives are widely used in gas sensing. Herein, the development of graphene and its derivatives in gas-phase biomarker detection was reviewed in terms of the detection principle and the latest detection methods and applications in several common gases, etc. Finally, we summarized the commonly used materials, preparation methods, response mechanisms for NO, NH3, H2S, and volatile organic gas VOCs, and other gas detection, and proposed the challenges and prospective applications in this field.


Assuntos
Grafite , Compostos Orgânicos Voláteis , Amônia/análise , Biomarcadores/análise , Testes Respiratórios/métodos , Expiração , Humanos , Óxido Nítrico/análise , Ácidos Sulfúricos/análise , Compostos Orgânicos Voláteis/análise
19.
J Colloid Interface Sci ; 606(Pt 1): 510-517, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34403860

RESUMO

Gold modified thiol graphene (Au@HS-rGO) was prepared and applied as sensing platform for constructing the electrochemical aptasensor. While gold-palladium modified zirconium metal-organic frameworks (AuPd@UiO-67) nanozyme was employed as signal enhancer for detecting mercury ions (Hg2+) sensitively. Herein, gold nanoparticles (Au NPs) were modified on HS-rGO to form the thin Au@HS-rGO layer. Then the substrate strand (Apt1) was modified on the platform through Au-S bond. The signal strand (Apt2) was further decorated on the platform in the presence of Hg2+. Herein, the Apt2 was labeled with AuPd@UiO-67 nanozyme, which exhibited catalase-like properties to catalyze H2O2, thereby generating the electrical signal. With the concentration of Hg2+ increased, the amount of modified Apt2-AuPd@UiO-67 increased, leading to the rise of current response. Since the current responses were linear with concentration of Hg2+, the detection of Hg2+ can be achieved. Under the optimum conditions, the prepared electrochemical aptasensor exhibited wide linear range from 1.0 nmol/L to 1.0 mmol/L, along with a low detection limit of 0.16 nmol/L. Moreover, the electrochemical aptasensor showed excellent selectivity, reproducibility and stability, together with superior performance in actual water sample analysis. Therefore, this proposed electrochemical aptasensor may have promising applications and provide references for environmental monitoring and management.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Grafite , Mercúrio , Nanopartículas Metálicas , Estruturas Metalorgânicas , Técnicas Eletroquímicas , Ouro , Peróxido de Hidrogênio , Limite de Detecção , Paládio , Reprodutibilidade dos Testes , Compostos de Sulfidrila , Zircônio
20.
Biosensors (Basel) ; 11(11)2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34821637

RESUMO

Based on the necessity and urgency of detecting infectious disease marker procalcitonin (PCT), a novel unlabeled photoelectrochemical (PEC) immunosensor was prepared for the rapid and sensitive detection of PCT. Firstly, SnO2 porous nanoflowers with good photocatalytic performance were prepared by combining hydrothermal synthesis and calcining. BiOI nanoflowers were synthesized by facile ultrasonic mixed reaction. Ag2S quantum dots were deposited on SnO2/BiOI composites by in situ growth method. The SnO2/BiOI/Ag2S composites with excellent photoelectric properties were employed as substrate material, which could provide significantly enhanced and stable signal because of the energy level matching of SnO2, BiOI and Ag2S and the good light absorption performance. Accordingly, a PEC immunosensor based on SnO2/BiOI/Ag2S was constructed by using the layered modification method to achieve high sensitivity analysis of PCT. The linear dynamic range of the detection method was 0.50 pg·mL-1~100 ng·mL-1, and the detection limit was 0.14 pg·mL-1. In addition, the designed PEC immunosensor exhibited satisfactory sensitivity, selectivity, stability and repeatability, which opened up a new avenue for the analyzation of PCT and further provided guidance for antibiotic therapy.


Assuntos
Técnicas Biossensoriais , Técnicas Eletroquímicas , Imunoensaio , Pró-Calcitonina/análise , Limite de Detecção , Prata , Compostos de Estanho
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA