Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 391
Filtrar
1.
RSC Adv ; 14(22): 15413-15418, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38741962

RESUMO

The urgent need to develop biocompatible, non-resistant antibacterial agents to effectively combat Gram-negative bacterial infections, particularly for the treatment of peritonitis, presents a significant challenge. In this study, we introduce our water-soluble Cu30 nanoclusters (NCs) as a potent and versatile antibacterial agent tailored for addressing peritonitis. The as-synthesized atomically precise Cu30 NCs demonstrate exceptional broad-spectrum antibacterial performance, and especially outstanding bactericidal activity of 100% against Gram-negative Escherichia coli (E. coli). Our in vivo experimental findings indicate that the Cu30 NCs exhibit remarkable therapeutic efficacy against primary peritonitis caused by E. coli infection. Specifically, the treatment leads to a profound reduction of drug-resistant bacteria in the peritoneal cavity of mice with peritonitis by more than 5 orders of magnitude, along with the resolution of pathological features in the peritoneum and spleen. Additionally, comprehensive in vivo biosafety assessment underscores the remarkable biocompatibility, low biotoxicity, as well as efficient hepatic and renal clearance of Cu30 NCs, emphasizing their potential for in vivo application. This investigation is poised to advance the development of novel Cu NC-based antibacterial agents for in vivo antibacterial treatment and the elimination of abdominal inflammation.

2.
Brain Inj ; : 1-10, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38711413

RESUMO

BACKGROUND: Organophosphorus pesticide poisoning can lead to severe brain damage, but the specific mechanisms involved are not fully understood. Our research aims to elucidate the function of the TRPV4 ion channel in the development of brain injury induced by paraoxon (POX). METHODS: In vivo, we examined the survival rate, behavioral seizures, histopathological alterations, NMDA receptor phosphorylation, as well as the expression of the NLRP3-ASC-caspase-1 complex and downstream inflammatory factors in the POX poisoning model following intervention with the TRPV4 antagonist GSK2193874. In vitro, we investigated the effects of GSK2193874 on NMDA-induced inward current, cell viability, cell death rate, and Ca2+ accumulation in primary hippocampal neurons. RESULTS: The treatment with the TRPV4 antagonist increased the survival rate, suppressed the status epilepticus, improved pathological damage, and reduced the phosphorylation level of NMDA receptors after POX exposure. Additionally, it inhibited the upregulation of NLRP3 inflammasome and inflammatory cytokines expression after POX exposure. Moreover, the TRPV4 antagonist corrected the NMDA-induced increase in inward current and cell death rate, decrease in cell viability, and Ca2+ accumulation. CONCLUSION: TRPV4 participates in the mechanisms of brain injury induced by POX exposure through NMDA-mediated excitotoxicity and NLRP3-mediated inflammatory response.

3.
Chemistry ; : e202401178, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38705854

RESUMO

Some nanomaterials with intrinsic protease-like activity have the advantages of good stability, biosafety, low price, large-scale preparation and unique property of nanomaterials, which are promising alternatives for natural proteases in various applications. An especial term, "nanoprotease", has been coined to stress the intrinsic proteolytic property of these nanomaterials. As a new generation of artificial proteases, they have become a burgeoning field, attracting many researchers to design and synthesize high performance nanoproteases. In this review, we summarize recent progress on all types of nanoproteases with regard of their activity, mechanism and application and introduce a new and effective strategy for engineering high-performance nanoproteases. In addition, we discuss the challenges and opportunities of nanoprotease research in the future.

4.
Int J Mol Sci ; 25(8)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38673993

RESUMO

Cucumber (Cucumis sativus L.) is a globally prevalent and extensively cultivated vegetable whose yield is significantly influenced by various abiotic stresses, including drought, heat, and salinity. Transcription factors, such as zinc finger-homeodomain proteins (ZHDs), a plant-specific subgroup of Homeobox, play a crucial regulatory role in stress resistance. In this study, we identified 13 CsZHDs distributed across all six cucumber chromosomes except chromosome 7. Phylogenetic analysis classified these genes into five clades (ZHDI-IV and MIF) with different gene structures but similar conserved motifs. Collinearity analysis revealed that members of clades ZHD III, IV, and MIF experienced amplification through segmental duplication events. Additionally, a closer evolutionary relationship was observed between the ZHDs in Cucumis sativus (C. sativus) and Arabidopsis thaliana (A. thaliana) compared to Oryza sativa (O. sativa). Quantitative real-time PCR (qRT-PCR) analysis demonstrated the general expression of CsZHD genes across all tissues, with notable expression in leaf and flower buds. Moreover, most of the CsZHDs, particularly CsZHD9-11, exhibited varying responses to drought, heat, and salt stresses. Virus-induced gene silencing (VIGS) experiments highlighted the potential functions of CsZHD9 and CsZHD10, suggesting their positive regulation of stomatal movement and responsiveness to drought stress. In summary, these findings provide a valuable resource for future analysis of potential mechanisms underlying CsZHD genes in response to stresses.


Assuntos
Cucumis sativus , Evolução Molecular , Regulação da Expressão Gênica de Plantas , Filogenia , Proteínas de Plantas , Estresse Fisiológico , Cucumis sativus/genética , Cucumis sativus/metabolismo , Estresse Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Dedos de Zinco/genética , Secas , Cromossomos de Plantas/genética , Perfilação da Expressão Gênica
5.
World J Gastrointest Oncol ; 16(4): 1647-1659, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38660668

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) is one of the leading causes of death due to its complexity, heterogeneity, rapid metastasis and easy recurrence after surgical resection. We demonstrated that combination therapy with transcatheter arterial chemoembolization (TACE), hepatic arterial infusion chemotherapy (HAIC), Epclusa, Lenvatinib and Sintilimab is useful for patients with advanced HCC. CASE SUMMARY: A 69-year-old man who was infected with hepatitis C virus (HCV) 30 years previously was admitted to the hospital with abdominal pain. Enhanced computed tomography (CT) revealed a low-density mass in the right lobe of the liver, with a volume of 12.9 cm × 9.4 cm × 15 cm, and the mass exhibited a "fast-in/fast-out" pattern, with extensive filling defect areas in the right branch of the portal vein and an alpha-fetoprotein level as high as 657 ng/mL. Therefore, he was judged to have advanced HCC. During treatment, the patient received three months of Epclusa, three TACE treatments, two HAIC treatments, three courses of sintilimab, and twenty-one months of lenvatinib. In the third month of treatment, the patient developed severe side effects and had to stop immunotherapy, and the Lenvatinib dose had to be halved. Postoperative pathological diagnosis indicated a complete response. The patient recovered well after the operation, and no tumor recurrence was found. CONCLUSION: Multidisciplinary conversion therapy for advanced enormous HCC caused by HCV infection has a significant effect. Individualized drug adjustments should be made during any treatment according to the patient's tolerance to treatment.

6.
Cancer Med ; 13(7): e7043, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38572921

RESUMO

BACKGROUND: As an indicator of tumor invasiveness, microvascular invasion (MVI) is a crucial risk factor for postoperative relapse, metastasis, and unfavorable prognosis in hepatocellular carcinoma (HCC). Nevertheless, the genetic mechanisms underlying MVI, particularly for Chinese patients, remain mostly uncharted. METHODS: We applied deep targeted sequencing on 66 Chinese HCC samples. Focusing on the telomerase reverse transcriptase (TERT) promoter (TERTp) and TP53 co-mutation (TERTp+/TP53+) group, gene set enrichment analysis (GSEA) was used to explore the potential molecular mechanisms of the TERTp+/TP53+ group on tumor progression and metastasis. Additionally, we evaluated the tumor immune microenvironment of the TERTp+/TP53+ group in HCC using multiplex immunofluorescence (mIF) staining. RESULTS: Among the 66 HCC samples, the mutated genes that mostly appeared were TERT, TP53, and CTNNB1. Of note, we found 10 cases with TERTp+/TP53+, of which nine were MVI-positive and one was MVI-negative, and there was a co-occurrence of TERTp and TP53 (p < 0.05). Survival analysis demonstrated that patients with the TERTp+/TP53+ group had lower the disease-free survival (DFS) (p = 0.028). GSEA results indicated that telomere organization, telomere maintenance, DNA replication, positive regulation of cell cycle, and negative regulation of immune response were significantly enriched in the TERTp+/TP53+ group (all adjusted p-values (p.adj) < 0.05). mIF revealed that the TERTp+/TP53+ group decreased CD8+ T cells infiltration (p = 0.25) and enhanced PDL1 expression (p = 0.55). CONCLUSIONS: TERTp+/TP53+ was significantly enriched in MVI-positive patients, leading to poor prognosis for HCC patients by promoting proliferation of HCC cell and inhibiting infiltration of immune cell surrounding HCC. TERTp+/TP53+ can be utilized as a potential indicator for predicting MVI-positive patients and poor prognosis, laying a preliminary foundation for further exploration of co-mutation in HCC with MVI and clinical treatment.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Linfócitos T CD8-Positivos/patologia , Recidiva Local de Neoplasia/genética , Prognóstico , Invasividade Neoplásica/patologia , Estudos Retrospectivos , Microambiente Tumoral/genética
7.
Microorganisms ; 12(4)2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38674698

RESUMO

Chromium (Cr) contamination, widely present in the environment, poses a significant threat to both ecology and human health. Microbial remediation technology has become a hot topic in the field of heavy metal remediation due to its advantages, such as environmental protection, low cost, and high efficiency. This paper focused on using various characterization and analysis methods to investigate the bioreduction effect and mechanism of microorganisms on Cr(VI) under various influencing factors. The main contents and conclusions were as follows: Shewanella oneidensis MR-1 was selected as the target strain for studying its reduction of Cr(VI) at different inoculation amounts, temperatures, pH values, time intervals, etc. The results indicated that S. oneidensis MR-1 exhibited an optimal reduction effect on Cr(VI) at pH 7 and a temperature of 35 °C. Additionally, electron shuttles (ESs), including humic acid (HA) and 9,10-antraquinone-2,6-disulfonate (AQDS), were introduced into the degradation system to improve the reduction efficiency of S. oneidensis MR-1. Upon adding goethite further, S. oneidensis MR-1 significantly enhanced its reducing ability by converting Fe(III) minerals to Fe(II) and reducing Cr(VI) to Cr(III) during electron transfer.

8.
Health Commun ; : 1-13, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600660

RESUMO

This study employed the model of stigma communication (MSC) to analyze how exposure to COVID-19-related information affected stigma-related information sharing about people who contracted COVID-19 during the pandemic and examined the cognitive process of the MSC in a collectivist culture. Based on a survey of 526 social media users during the COVID-19 pandemic in China, the study found that exposure to contact tracing information and pandemic control information had different impact on stigma-related information sharing through a series of cognitive variables. A dual-path model showed that perceived personal risk influenced stigma-related information sharing through attribution of blame toward the infected (the personal path), while perceived social risk influenced stigma-related information sharing through protection norm conformity (the social path). Compared to the personal path, the social path is more salient in shaping stigmatized attitudes and behaviors. The findings and discussions added to our understanding of the intricate stigma communication process in a collectivist culture.

9.
World J Gastroenterol ; 30(9): 1224-1236, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38577190

RESUMO

BACKGROUND: As a critical early event in hepatocellular carcinogenesis, telomerase activation might be a promising and critical biomarker for hepatocellular carcinoma (HCC) patients, and its function in the genesis and treatment of HCC has gained much attention over the past two decades. AIM: To perform a bibliometric analysis to systematically assess the current state of research on HCC-related telomerase. METHODS: The Web of Science Core Collection and PubMed were systematically searched to retrieve publications pertaining to HCC/telomerase limited to "articles" and "reviews" published in English. A total of 873 relevant publications related to HCC and telomerase were identified. We employed the Bibliometrix package in R to extract and analyze the fundamental information of the publications, such as the trends in the publications, citation counts, most prolific or influential writers, and most popular journals; to screen for keywords occurring at high frequency; and to draw collaboration and cluster analysis charts on the basis of coauthorship and co-occurrences. VOSviewer was utilized to compile and visualize the bibliometric data. RESULTS: A surge of 51 publications on HCC/telomerase research occurred in 2016, the most productive year from 1996 to 2023, accompanied by the peak citation count recorded in 2016. Up to December 2023, 35226 citations were made to all publications, an average of 46.6 citations to each paper. The United States received the most citations (n = 13531), followed by China (n = 7427) and Japan (n = 5754). In terms of national cooperation, China presented the highest centrality, its strongest bonds being to the United States and Japan. Among the 20 academic institutions with the most publications, ten came from China and the rest of Asia, though the University of Paris Cité, Public Assistance-Hospitals of Paris, and the National Institute of Health and Medical Research (INSERM) were the most prolific. As for individual contributions, Hisatomi H, Kaneko S, and Ide T were the three most prolific authors. Kaneko S ranked first by H-index, G-index, and overall publication count, while Zucman-Rossi J ranked first in citation count. The five most popular journals were the World Journal of Gastroenterology, Hepatology, Journal of Hepatology, Oncotarget, and Oncogene, while Nature Genetics, Hepatology, and Nature Reviews Disease Primers had the most citations. We extracted 2293 keywords from the publications, 120 of which appeared more than ten times. The most frequent were HCC, telomerase and human telomerase reverse transcriptase (hTERT). Keywords such as mutational landscape, TERT promoter mutations, landscape, risk, and prognosis were among the most common issues in this field in the last three years and may be topics for research in the coming years. CONCLUSION: Our bibliometric analysis provides a comprehensive overview of HCC/telomerase research and insights into promising upcoming research.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Telomerase , Humanos , Carcinoma Hepatocelular/terapia , Neoplasias Hepáticas/terapia , Oncogenes , Bibliometria
10.
Int Immunopharmacol ; 132: 111906, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38593501

RESUMO

BACKGROUND: Age-related visceral obesity could contribute to the development of cardiometabolic complications. The pathogenesis of visceral fat mass accumulation during the aging process remains complex and largely unknown. Interleukin-6 (IL-6) has emerged as one of the prominent inflammaging markers which are elevated in circulation during aging. However, the precise role of IL-6 in regulating age-related visceral adipose tissue accumulation remains uncertain. RESULTS: A cross-sectional study including 77 older adults (≥65 years of age) was initially conducted. There was a significant positive association between serum IL-6 levels and visceral fat mass. We subsequently validated a modest but significant elevation in serum IL-6 levels in aged mice. Furthermore, we demonstrated that compared to wildtype control, IL-6 deficiency (IL-6 KO) significantly attenuated the accumulation of visceral adipose tissue during aging. Further metabolic characterization suggested that IL-6 deficiency resulted in improved lipid metabolism parameters and energy expenditure in aged mice. Moreover, histological examinations of adipose depots revealed that the absence of IL-6 ameliorated adipocyte hypertrophy in visceral adipose tissue of aged mice. Mechanically, the ablation of IL-6 could promote the PKA-mediated lipolysis and consequently mitigate lipid accumulation in adipose tissue in aged mice. CONCLUSION: Our findings identify a detrimental role of IL-6 during the aging process by promoting visceral adipose tissue accumulation through inhibition of lipolysis. Therefore, strategies aimed at preventing or reducing IL-6 levels may potentially ameliorate age-related obesity and improve metabolism during aging.


Assuntos
Envelhecimento , Interleucina-6 , Gordura Intra-Abdominal , Lipólise , Camundongos Knockout , Animais , Interleucina-6/metabolismo , Gordura Intra-Abdominal/metabolismo , Envelhecimento/metabolismo , Idoso , Masculino , Humanos , Camundongos , Feminino , Camundongos Endogâmicos C57BL , Estudos Transversais , Adipócitos/metabolismo
11.
Environ Pollut ; 348: 123837, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38537793

RESUMO

High Ozone Production Rate (OPR) leads to O3 pollution episodes and adverse human health outcomes. OPR observation (Obs-OPR) and OPR modelling (Mod-OPR) have been obtained from observed and modelled peroxy radicals and nitrogen oxides. However, discrepancies between them remind of an imperfect understanding of O3 photochemistry. Direct measurement of OPR (Mea-OPR) by a twin-chamber system emerges. Herein, we optimized Mea-OPR design, i.e., minimizing the chamber surface area to volume ratio (S/V) to 9.8 m-1 from 18 m-1 and the dark uptake coefficient of O3 to 9.9 × 10-9 from 7.1 × 10-8 in the literature. In addition, control experiments further revealed and quantified a photo-enhanced O3 uptake, and therefore recommended an essential correction of Mea-OPR. We finally characterized a measurement uncertainty of ±38% and a detection limit of 3.2 ppbv h-1 (3SD), which suggested that Mea-OPR would be sensitive enough to measure OPR in urban or suburban environments. Further application of this system in urban Beijing during the Beijing 2022 Olympic Winter Games recorded a noontime OPR of 7.3 (±3.3, 1SD) ppbv h-1. These observational results added up to our confidence in future field application of Mea-OPR, to facilitate pollution control policy evaluation and to shed light on O3 photochemistry puzzle.


Assuntos
Poluentes Atmosféricos , Ozônio , Compostos Orgânicos Voláteis , Humanos , Ozônio/análise , Poluentes Atmosféricos/análise , Monitoramento Ambiental , Poluição Ambiental/análise , Óxidos de Nitrogênio/análise , China , Compostos Orgânicos Voláteis/análise
12.
Proc Natl Acad Sci U S A ; 121(11): e2315550121, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38437556

RESUMO

TAX1BP1, a multifunctional autophagy adaptor, plays critical roles in different autophagy processes. As an autophagy receptor, TAX1BP1 can interact with RB1CC1, NAP1, and mammalian ATG8 family proteins to drive selective autophagy for relevant substrates. However, the mechanistic bases underpinning the specific interactions of TAX1BP1 with RB1CC1 and mammalian ATG8 family proteins remain elusive. Here, we find that there are two distinct binding sites between TAX1BP1 and RB1CC1. In addition to the previously reported TAX1BP1 SKICH (skeletal muscle and kidney enriched inositol phosphatase (SKIP) carboxyl homology)/RB1CC1 coiled-coil interaction, the first coiled-coil domain of TAX1BP1 can directly bind to the extreme C-terminal coiled-coil and Claw region of RB1CC1. We determine the crystal structure of the TAX1BP1 SKICH/RB1CC1 coiled-coil complex and unravel the detailed binding mechanism of TAX1BP1 SKICH with RB1CC1. Moreover, we demonstrate that RB1CC1 and NAP1 are competitive in binding to the TAX1BP1 SKICH domain, but the presence of NAP1's FIP200-interacting region (FIR) motif can stabilize the ternary TAX1BP1/NAP1/RB1CC1 complex formation. Finally, we elucidate the molecular mechanism governing the selective interactions of TAX1BP1 with ATG8 family members by solving the structure of GABARAP in complex with the non-canonical LIR (LC3-interacting region) motif of TAX1BP1, which unveils a unique binding mode between LIR and ATG8 family protein. Collectively, our findings provide mechanistic insights into the interactions of TAX1BP1 with RB1CC1 and mammalian ATG8 family proteins and are valuable for further understanding the working mode and function of TAX1BP1 in autophagy.


Assuntos
Autofagia , Proteínas de Ciclo Celular , Animais , Família da Proteína 8 Relacionada à Autofagia , Sítios de Ligação , Rim , Mamíferos
13.
J Agric Food Chem ; 72(13): 7074-7088, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38525502

RESUMO

Acute kidney injury (AKI) is a common, multicause clinical condition that, if ignored, often progresses to chronic kidney disease (CKD) and end-stage kidney disease, with a mortality rate of 40-50%. However, there is a lack of universal treatment for AKI. Inflammation is the basic pathological change of early kidney injury, and inflammation can exacerbate AKI. Macrophages are the primary immune cells involved in the inflammatory microenvironment of kidney disease. Therefore, regulating the function of macrophages is a crucial breakthrough for the AKI intervention. Our team chemically modified pyxinol, an ocotillol-type ginsenoside, to prepare PJ16 with higher solubility and bioavailability. In vitro, using a model of macrophages stimulated by LPS, it was found that PJ16 could regulate macrophage function, including inhibiting the secretion of inflammatory factors, promoting phagocytosis, inhibiting M1 macrophages, and promoting M1 transition to the M2c macrophage. Further investigation revealed that PJ16 may shield renal tubular epithelial cells (HK-2) damaged by LPS in vitro. Based on this, PJ16 was validated in the animal model of unilateral ureteral obstruction, which showed that it improves renal function and inhibits renal tissue fibrosis by decreasing inflammatory responses, reducing macrophage inflammatory infiltration, and preferentially upregulating M2c macrophages. In conclusion, our study is the first to show that PJ16 resists AKI and fibrosis by mechanistically regulating macrophage function by modulating the phenotypic transition from M1 to M2 macrophages, mainly M2c macrophages.


Assuntos
Injúria Renal Aguda , Lipopolissacarídeos , Animais , Lipopolissacarídeos/efeitos adversos , Rim/patologia , Injúria Renal Aguda/tratamento farmacológico , Macrófagos , Inflamação/patologia , Fibrose
14.
PLoS Biol ; 22(3): e3002330, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38442096

RESUMO

Cilia play critical roles in cell signal transduction and organ development. Defects in cilia function result in a variety of genetic disorders. Cep290 is an evolutionarily conserved ciliopathy protein that bridges the ciliary membrane and axoneme at the basal body (BB) and plays critical roles in the initiation of ciliogenesis and TZ assembly. How Cep290 is maintained at BB and whether axonemal and ciliary membrane localized cues converge to determine the localization of Cep290 remain unknown. Here, we report that the Cep131-Cep162 module near the axoneme and the Cby-Fam92 module close to the membrane synergistically control the BB localization of Cep290 and the subsequent initiation of ciliogenesis in Drosophila. Concurrent deletion of any protein of the Cep131-Cep162 module and of the Cby-Fam92 module leads to a complete loss of Cep290 from BB and blocks ciliogenesis at its initiation stage. Our results reveal that the first step of ciliogenesis strictly depends on cooperative and retroactive interactions between Cep131-Cep162, Cby-Fam92 and Cep290, which may contribute to the complex pathogenesis of Cep290-related ciliopathies.


Assuntos
Corpos Basais , Cognição , Animais , Sinais (Psicologia) , Axonema , Cílios/genética , Drosophila/genética
15.
Talanta ; 274: 125974, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38552476

RESUMO

The development of fast and accurate sensors for nerve agents holds immense significance for homeland security and public health. However, the humidity interference from ambient environments and poor sensitivity for trace nerve agents are largely unsolved problems. To overcome the problems, a humidity-independent two-dimensional photonic crystal (2-D PC) sensor is developed by exploiting UiO-66-NH2 2-D PC with excellent sensitivity coupled to a hydrophobic hydrogen-bonded organic framework (HOFs) for detection sarin simulant dimethyl methyl phosphonate (DMMP). Selective sensing results show that the HOFs@UiO-66-NH2 2-D PC sensor presents the outstanding DMMP specificity, and the limit of detection (LOD) for DMMP response of the sensor can reach 508 ± 68 ppb at room temperature. Water-resistant experiments demonstrate that the HOFs@UiO-66-NH2 2-D PC sensor shows excellent stability even under 80% relative humidity (RH). Moreover, the sensor also exhibits a rapid response/recovery time of 1 s/3 s and can maintain excellent sensing performance under heat-treatment of 200 °C and in the long-term storage (30 days). The adsorption kinetics and the hydrogen bond interaction are conducted to elucidate the mechanism of enhanced sensing DMMP properties. These results indicate the potential application of the sensor in the trace nerve agent's detection, especially in humidity environment.

16.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(1): 138-145, 2024 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-38387912

RESUMO

OBJECTIVE: To investigate the mechanism and clinical value of nicotinamide phosphoribosyltransferase (NAMPT) in multiple myeloma (MM). METHODS: RT-qPCR and Western blot were used to detect the expression of NAMPT in MM cells and normal bone marrow mononuclear cells. The biological function of NAMPT was analyzed by cell proliferation and apoptosis assay, small interfering RNA silencing, overexpression assay and chromatin immunoprecipitation assay. RESULTS: The mRNA and protein expression levels of NAMPT in MM cell lines (MM1R, MM1S, U266 and RPMI-8226) were significantly higher than those in normal bone marrow mononuclear cells (P < 0.001), and were most obvious in U266 cells. Compared with Si-NC group, the proliferation of U266 cells in Si-NAMPT group was significantly inhibited at 24, 48 and 72 h after transfection (P =0.006, P < 0.001, P =0.001), and the apoptosis rate of U266 cells was significantly increased at 48 h after transfection (P < 0.001). Compared with Flag-NC group, U266 cell proliferation in Flag-NAMPT group was significantly increased (P =0.003, P =0.002, P < 0.001), while the apoptosis rate decreased significantly at 48 h after transfection. The expression of NAMPT in U266 cells was regulated by XBP1 at transcriptional level. The proliferation rate of U266 cells with XBP1 or NAMPT stable knockout or MKC3946 pretreated with bortezomib was significantly decreased, the levels of BCL-2 mRNA and protein were also significantly decreased, while the levels of BAX mRNA and protein were significantly increased, moreover, the cleavage degree of caspase-3 significantly decreased, while caspase-3/7 activity increased dramatically (P < 0.05). CONCLUSIONS: The high expression of NAMPT in MM cell line can promote MM cell proliferation and inhibit apoptosis. NAMPT is regulated by IRE1α-XBP1 signaling pathway in U266 cells. Stable knockdown of NAMPT or blocking of IRE1α-XBP1 pathway can significantly increase the sensitivity of U266 cells to bortezomib.


Assuntos
Mieloma Múltiplo , Humanos , Apoptose , Bortezomib/farmacologia , Caspase 3 , Linhagem Celular Tumoral , Proliferação de Células , Relevância Clínica , Endorribonucleases , Mieloma Múltiplo/genética , Nicotinamida Fosforribosiltransferase , Proteínas Serina-Treonina Quinases , RNA Mensageiro/genética
17.
Ecotoxicol Environ Saf ; 272: 116049, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38301584

RESUMO

Global concern exists regarding the contamination of food and animal feed with aflatoxin B1 (AFB1), which poses a threat to the health of both humans and animals. Previously, we found that a laccase from Bacillus subtilis (BsCotA) effectively detoxified AFB1 in a reaction mediated by methyl syringate (MS), although the underlying mechanism has not been determined. Therefore, our primary objective of this study was to explore the detoxification mechanism employed by BsCotA. First, the enzyme and mediator dependence of AFB1 transformation were studied using the BsCotA-MS system, which revealed the importance of MS radical formation during the oxidation process. Aflatoxin Q1 (AFQ1) resulting from the direct oxidation of AFB1 by BsCotA, was identified using ultra-high-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The results of UPLC-MS/MS and density functional theory calculations indicated that the products included AFQ1, AFB1-, and AFD1-MS-coupled products in the BsCotA-MS system. The toxicity evaluations revealed that the substances derived from the transformation of AFB1 through the BsCotA-MS mechanism exhibited markedly reduced toxicity compared to AFB1. Finally, we proposed a set of different AFB1-transformation pathways generated by the BsCotA-MS system based on the identified products. These findings greatly enhance the understanding of the AFB1-transformation mechanism of the laccase-mediator system.


Assuntos
Aflatoxina B1 , Ácido Gálico/análogos & derivados , Lacase , Humanos , Aflatoxina B1/toxicidade , Aflatoxina B1/química , Cromatografia Líquida , Espectrometria de Massas em Tandem
18.
Microorganisms ; 12(2)2024 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-38399812

RESUMO

The Gram-negative marine bacterium GXY010T, which has been isolated from the surface seawater of the western Pacific Ocean, is aerobic, non-motile and non-flagellated. Strain GXY010T exhibits growth across a temperature range of 10-42 °C (optimal at 37 °C), pH tolerance from 7.0 to 11.0 (optimal at 7.5) and a NaCl concentration ranging from 1.0 to 15.0% (w/v, optimal at 5.0%). Ubiquinone-8 (Q-8) was the predominant isoprenoid quinone in strain GXY010T. The dominant fatty acids (>10%) of strain GXY010T were iso-C15:0 (14.65%), summed feature 9 (iso-C17:1ω9c and/or 10-methyl C16:0) (12.41%), iso-C17:0 (10.85%) and summed feature 3 (C16:1ω7c and/or C16:1ω6c) (10.41%). Phosphatidylethanolamine (PE), phosphatidylglycerol (PG), diphosphatidylglycerol (DPG), unidentifiable glycolipid (GL) and four non-identifiable aminolipids (AL1-AL4) were the predominant polar lipids of strain GXY010T. The genomic DNA G+C content was identified as a result of 48.0% for strain GXY010T. The strain GXY010T genome consisted of 2,766,857 bp, with 2664 Open Reading Frames (ORFs), including 2586 Coding sequences (CDSs) and 78 RNAs. Strain GXY010T showed Average Nucleotide Identity (ANI) values of 73.4% and 70.6% and DNA-DNA hybridization (DDH) values of 19.2% and 14.5% with reference species Pseudidiomarina tainanensis MCCC 1A02633T (=PIN1T) and Pseudidiomarina taiwanensis MCCC 1A00163T (=PIT1T). From the results of the polyphasic analysis, a newly named species, Pseudidiomarina fusca sp. nov. within the genus Pseudidiomarina, was proposed. The type strain of Pseudidiomarina fusca is GXY010T (=JCM 35760T = MCCC M28199T = KCTC 92693T).

19.
Plant Cell ; 36(5): 1736-1754, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38315889

RESUMO

Roses are among the most popular ornamental plants cultivated worldwide for their great economic, symbolic, and cultural importance. Nevertheless, rapid petal senescence markedly reduces rose (Rosa hybrida) flower quality and value. Petal senescence is a developmental process tightly regulated by various phytohormones. Ethylene accelerates petal senescence, while gibberellic acid (GA) delays this process. However, the molecular mechanisms underlying the crosstalk between these phytohormones in the regulation of petal senescence remain largely unclear. Here, we identified SENESCENCE-ASSOCIATED F-BOX (RhSAF), an ethylene-induced F-box protein gene encoding a recognition subunit of the SCF-type E3 ligase. We demonstrated that RhSAF promotes degradation of the GA receptor GIBBERELLIN INSENSITIVE DWARF1 (RhGID1) to accelerate petal senescence. Silencing RhSAF expression delays petal senescence, while suppressing RhGID1 expression accelerates petal senescence. RhSAF physically interacts with RhGID1s and targets them for ubiquitin/26S proteasome-mediated degradation. Accordingly, ethylene-induced RhGID1C degradation and RhDELLA3 accumulation are compromised in RhSAF-RNAi lines. Our results demonstrate that ethylene antagonizes GA activity through RhGID1 degradation mediated by the E3 ligase RhSAF. These findings enhance our understanding of the phytohormone crosstalk regulating petal senescence and provide insights for improving flower longevity.


Assuntos
Etilenos , Proteínas F-Box , Flores , Regulação da Expressão Gênica de Plantas , Giberelinas , Proteínas de Plantas , Rosa , Etilenos/metabolismo , Etilenos/farmacologia , Giberelinas/metabolismo , Giberelinas/farmacologia , Proteínas F-Box/metabolismo , Proteínas F-Box/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Rosa/genética , Rosa/efeitos dos fármacos , Rosa/metabolismo , Flores/genética , Flores/efeitos dos fármacos , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Senescência Vegetal/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Receptores de Superfície Celular/metabolismo , Receptores de Superfície Celular/genética
20.
Plant Commun ; 5(4): 100822, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38243598

RESUMO

Plant genetic transformation strategies serve as essential tools for the genetic engineering and advanced molecular breeding of plants. However, the complicated operational protocols and low efficiency of current transformation strategies restrict the genetic modification of most plant species. This paper describes the development of the regenerative activity-dependent in planta injection delivery (RAPID) method based on the active regeneration capacity of plants. In this method, Agrobacterium tumefaciens is delivered to plant meristems via injection to induce transfected nascent tissues. Stable transgenic plants can be obtained by subsequent vegetative propagation of the positive nascent tissues. The method was successfully used for transformation of plants with strong regeneration capacity, including different genotypes of sweet potato (Ipomoea batatas), potato (Solanum tuberosum), and bayhops (Ipomoea pes-caprae). Compared with traditional transformation methods, RAPID has a much higher transformation efficiency and shorter duration, and it does not require tissue culture procedures. The RAPID method therefore overcomes the limitations of traditional methods to enable rapid in planta transformation and can be potentially applied to a wide range of plant species that are capable of active regeneration.


Assuntos
Agrobacterium tumefaciens , Ipomoea batatas , Plantas Geneticamente Modificadas/genética , Agrobacterium tumefaciens/genética , Ipomoea batatas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA