Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 90(1): e0164923, 2024 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-38108644

RESUMO

5-Hydroxymethfurural (5-HMF) is naturally found in a variety of foods and beverages and represents a main inhibitor in the lignocellulosic hydrolysates used for fermentation. This study investigated the impact of 5-HMF on the genomic stability and phenotypic plasticity of the yeast Saccharomyces cerevisiae. Using next-generation sequencing technology, we examined the genomic alterations of diploid S. cerevisiae isolates that were subcultured on a medium containing 1.2 g/L 5-HMF. We found that in 5-HMF-treated cells, the rates of chromosome aneuploidy, large deletions/duplications, and loss of heterozygosity were elevated compared with that in untreated cells. 5-HMF exposure had a mild impact on the rate of point mutations but altered the mutation spectrum. Contrary to what was observed in untreated cells, more monosomy than trisomy occurred in 5-HMF-treated cells. The aneuploidy mutant with monosomic chromosome IX was more resistant to 5-HMF than the diploid parent strain because of the enhanced activity of alcohol dehydrogenase. Finally, we found that overexpression of ADH6 and ZWF1 effectively stabilized the yeast genome under 5-HMF stress. Our findings not only elucidated the global effect of 5-HMF on the genomic integrity of yeast but also provided novel insights into how chromosomal instability drives the environmental adaptability of eukaryotic cells.IMPORTANCESingle-cell microorganisms are exposed to a range of stressors in both natural and industrial settings. This study investigated the effects of 5-hydroxymethfurural (5-HMF), a major inhibitor found in baked foods and lignocellulosic hydrolysates, on the chromosomal instability of yeast. We examined the mechanisms leading to the distinct patterns of 5-HMF-induced genomic alterations and discovered that chromosomal loss, typically viewed as detrimental to cell growth under most conditions, can contribute to yeast tolerance to 5-HMF. Our results increased the understanding of how specific stressors stimulate genomic plasticity and environmental adaptation in yeast.


Assuntos
Instabilidade Genômica , Saccharomyces cerevisiae , Humanos , Saccharomyces cerevisiae/genética , Adaptação Fisiológica , Aneuploidia , Instabilidade Cromossômica
2.
Microbiol Spectr ; 11(4): e0121623, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37395645

RESUMO

Furfural is a major inhibitor found in lignocellulosic hydrolysate, a promising feedstock for the biofermentation industry. In this study, we aimed to investigate the potential impact of this furan-derived chemical on yeast genome integrity and phenotypic evolution by using genetic screening systems and high-throughput analyses. Our results showed that the rates of aneuploidy, chromosomal rearrangements (including large deletions and duplications), and loss of heterozygosity (LOH) increased by 50-fold, 23-fold, and 4-fold, respectively, when yeast cells were cultured in medium containing a nonlethal dose of furfural (0.6 g/L). We observed significantly different ratios of genetic events between untreated and furfural-exposed cells, indicating that furfural exposure induced a unique pattern of genomic instability. Furfural exposure also increased the proportion of CG-to-TA and CG-to-AT base substitutions among point mutations, which was correlated with DNA oxidative damage. Interestingly, although monosomy of chromosomes often results in the slower growth of yeast under spontaneous conditions, we found that monosomic chromosome IX contributed to the enhanced furfural tolerance. Additionally, terminal LOH events on the right arm of chromosome IV, which led to homozygosity of the SSD1 allele, were associated with furfural resistance. This study sheds light on the mechanisms underlying the influence of furfural on yeast genome integrity and adaptability evolution. IMPORTANCE Industrial microorganisms are often exposed to multiple environmental stressors and inhibitors during their application. This study demonstrates that nonlethal concentrations of furfural in the culture medium can significantly induce genome instability in the yeast Saccharomyces cerevisiae. Notably, furfural-exposed yeast cells displayed frequent chromosome aberrations, indicating the potent teratogenicity of this inhibitor. We identified specific genomic alterations, including monosomic chromosome IX and loss of heterozygosity of the right arm of chromosome IV, that confer furfural tolerance to a diploid S. cerevisiae strain. These findings enhance our understanding of how microorganisms evolve and adapt to stressful environments and offer insights for developing strategies to improve their performance in industrial applications.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Humanos , Saccharomyces cerevisiae/genética , Furaldeído/toxicidade , Proteínas de Saccharomyces cerevisiae/genética , Instabilidade Genômica , Genômica
3.
Environ Pollut ; 318: 120843, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36509348

RESUMO

Microcystins (MCs) produced by some cyanobacteria can cause toxicity in animals and humans. In recent years, growing evidence suggests that MCs can act as endocrine disruptors. This research systematically investigated effects of microcystin-LR (MC-LR) on endocrine organs, biosynthesis of hormones and positive/negative feedback of the endocrine system in rats. Male, Sprague-Dawley rats were acutely administrated MC-LR by a single intraperitoneal injection at doses of 45, 67.5 or 90 µg MC-LR/kg body mass (bm), and then euthanized 24 h after exposure. In exposed rats, histological damage of hypothalamus, pituitary, adrenal, testis and thyroid were observed. Serum concentrations of corticotropin-releasing hormone (CRH), adrenocorticotropic hormone (ACTH) and corticosterone (CORT), expressions of genes and proteins for biosynthesis of hormones were lesser, which indicated an overall suppression of the hypothalamus-pituitary-adrenal (HPA) axis. Along the hypothalamus-pituitary-gonadal (HPG) axis, lesser concentrations of gonadotropin-releasing hormone (GnRH) and testosterone (T), but greater concentrations of luteinizing hormone (LH), follicle-stimulating hormone (FSH) and estradiol (E2) were observed. Except for greater transcription of cyp19a1 in testes, transcriptions of genes and proteins for T and E2 biosynthesis along the HPG axis were lesser. As for the hypothalamus-pituitary-thyroid (HPT) axis, after MCs treatment, greater concentrations of thyroid-stimulating hormone (TSH), but lesser concentrations of free tri-iodothyronine (fT3) were observed in serum. Concentrations of free tetra-iodothyronine (fT4) were greater in rats dosed with 45 µg MCs/kg, bm, but lesser in rats dosed with 67.5 or 90 µg MCs/kg, bm. Transcripts of genes for biosynthesis of hormones and receptors along the HPT axis and expressions of proteins for biosynthesis of tetra-iodothyronine (T4) and tri-iodothyronine (T3) in thyroid were significantly altered. Cross-talk among the HPA, HPG and HPT axes probably occurred. It was concluded that MCs caused an imbalance of positive and negative feedback of hormonal regulatory axes, blocked biosynthesis of key hormones and exhibited endocrine-disrupting effects.


Assuntos
Microcistinas , Peixe-Zebra , Humanos , Masculino , Ratos , Animais , Microcistinas/toxicidade , Microcistinas/metabolismo , Peixe-Zebra/metabolismo , Ratos Sprague-Dawley , Sistema Endócrino , Testosterona
4.
Sci Total Environ ; 778: 145196, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34030373

RESUMO

Microcystins (MCs) are common, well-known cyanobacterial toxins that can affect health of humans. Recently, it has been reported that MCs affect endocrine functions. In the present study, for the first time, histopathology, concentrations of hormones and transcription of genes along the hypothalamic-pituitary-adrenal (HPA), hypothalamic-pituitary-gonad (HPG) and hypothalamic-pituitary-thyroid (HPT) axes were examined in rats exposed to microcystin-LR (MC-LR). Female, Sprague-Dawley (SD) rats were exposed acutely to MC-LR by a single intraperitoneal (i.p.) injection at doses of 0.5, 0.75, or 1 median lethal dose (LD50), i.e. 36.5, 54.75, or 73 µg MC-LR/kg body mass (bm) then euthanized 24 hours after exposure. Acute exposure to MC-LR significantly increased relative mass of adrenal in a dose-dependent manner, but relative mass of hypothalamus, pituitary, ovary and thyroid were not significantly different from respective mass in controls. However, damage to all these tissues was observed by histology. Along the HPA axis, lesser concentrations of corticotropin-releasing hormone (CRH), adrenocorticotropic hormone (ACTH) and corticosterone (CORT) were observed in blood serum of exposed individuals, relative to controls. For the HPG axis, concentrations of gonadotropin-releasing hormone (GnRH) and estradiol (E2) were significantly less in rats treated with MC-LR, but greater concentrations of luteinizing hormone (LH), follicle-stimulating hormone (FSH) and testosterone (T) were observed. Along the HPT axis, MC-LR caused greater concentrations of thyroid-stimulating hormone (TSH), but lesser concentrations of thyrotropin-releasing hormone (TRH), free tetra-iodothyronine (fT4) and tri-iodothyronine (fT3). Significant positive/negative correlations of concentrations of hormones were observed among the HPA, HPG and HPT axes. In addition, profiles of transcription of genes for synthesis of hormones along the endocrine axes and nuclear hormone receptors in adrenal, ovary and thyroid were significantly altered. Therefore, these results suggested that MC-LR affected HPA, HPG and HPT axes and exerted endocrine-disrupting effects. Effects of MC-LR on crosstalk among these three axes need further studies.


Assuntos
Microcistinas , Glândula Tireoide , Animais , Feminino , Gônadas , Sistema Hipotálamo-Hipofisário , Hipotálamo , Microcistinas/toxicidade , Sistema Hipófise-Suprarrenal , Ratos , Ratos Sprague-Dawley , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA