Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Cell Commun Signal ; 22(1): 102, 2024 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-38326807

RESUMO

Protein arginine methyltransferase 1 (PRMT1), the predominant type I protein arginine methyltransferase, plays a crucial role in normal biological functions by catalyzing the methylation of arginine side chains, specifically monomethylarginine (MMA) and asymmetric dimethylarginine (ADMA), within proteins. Recent investigations have unveiled an association between dysregulated PRMT1 expression and the initiation and progression of tumors, significantly impacting patient prognosis, attributed to PRMT1's involvement in regulating various facets of tumor cell biology, including DNA damage repair, transcriptional and translational regulation, as well as signal transduction. In this review, we present an overview of recent advancements in PRMT1 research across different tumor types, with a specific focus on its contributions to tumor cell proliferation, metastasis, invasion, and drug resistance. Additionally, we expound on the dynamic functions of PRMT1 during distinct stages of cancer progression, elucidating its unique regulatory mechanisms within the same signaling pathway and distinguishing between its promotive and inhibitory effects. Importantly, we sought to provide a comprehensive summary and analysis of recent research progress on PRMT1 in tumors, contributing to a deeper understanding of its role in tumorigenesis, development, and potential treatment strategies.


Assuntos
Neoplasias , Processamento de Proteína Pós-Traducional , Humanos , Metilação , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo , Biologia , Proteínas Repressoras/metabolismo
2.
J Alzheimers Dis ; 96(3): 1059-1070, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37955088

RESUMO

BACKGROUND: The coronavirus disease 2019 (COVID-19) has been a major challenge to global health and a financial burden. Little is known regarding the possible causal effects of COVID-19 on the macro- and micro-structures of the human brain. OBJECTIVE: To determine the causal links between susceptibility, hospitalization, and the severity of COVID-19 and brain imaging-derived phenotypes (IDPs). METHODS: Mendelian randomization (MR) analyses were performed to investigate the causal effect of three COVID-19 exposures (SARS-CoV-2 infection, hospitalized COVID-19, and critical COVID-19) on brain structure employing summary datasets of genome-wide association studies. RESULTS: In terms of cortical phenotypes, hospitalization due to COVID-19 was associated with a global decrease in the surface area (SA) of the cortex structure (ß= -624.77, 95% CI: -1227.88 to -21.66, p = 0.042). At the regional level, SARS-CoV-2 infection was found to have a nominally causal effect on the thickness (TH) of the postcentral region (ß= -0.004, 95% CI: -0.007 to -0.001, p = 0.01), as well as eight other IDPs. Hospitalized COVID-19 has a nominally causal relationship with TH of postcentral (ß= -0.004, 95% CI: -0.007 to -0.001, p = 0.01) and other 6 IDPs. The nominally causal effects of critical COVID-19 on TH of medial orbitofrontal (ß=0.004, 95% CI: 0.001to 0.007, p = 0.004) and other 7 IDPs were revealed. CONCLUSIONS: Our study provides compelling genetic evidence supporting causal relationships between three COVID-19 traits and brain IDPs. This discovery holds promise for enhancing predictions and interventions in brain imaging.


Assuntos
COVID-19 , Estudo de Associação Genômica Ampla , Humanos , Análise da Randomização Mendeliana , COVID-19/genética , SARS-CoV-2 , Encéfalo/diagnóstico por imagem , Fenótipo , Neuroimagem
3.
Aging (Albany NY) ; 15(19): 10146-10167, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37837549

RESUMO

BACKGROUND: Gliomas are the most frequently diagnosed primary brain tumors, and are associated with multiple molecular aberrations during their development and progression. GPR37 is an orphan G protein-coupled receptor (GPCR) that is implicated in different physiological pathways in the brain, and has been linked to various malignancies. The aim of this study was to explore the relationship between GPR37 gene expression and the clinicopathological factors, patient prognosis, tumor-infiltrating immune cell signature GSEA and methylation levels in glioma. METHODS: We explored the diagnostic value, clinical relevance, and molecular function of GPR37 in glioma using TCGA, STRING, cBioPortal, Tumor Immunity Estimation Resource (TIMER) database and MethSurv databases. Besides, the "ssGSEA" algorithm was conducted to estimate immune cells infiltration abundance, with 'ggplot2' package visualizing the results. Immunohistochemical staining of clinical samples were used to verify the speculations of bioinformatics analysis. RESULTS: GPR37 expression was significantly higher in the glioma tissues compared to the normal brain tissues, and was linked to poor prognosis. Functional annotation of GPR37 showed enrichment of ether lipid metabolism, fat digestion and absorption, and histidine metabolism. In addition, GSEA showed that GPR37 was positively correlated to the positive regulation of macrophage derived foam cell differentiation, negative regulation of T cell receptor signaling pathway, neuroactive ligand receptor interaction, calcium signaling pathway, and negatively associated with immunoglobulin complex, immunoglobulin complex circulating, ribosome and spliceosome mediated by circulating immunoglobulin etc. TIMER2.0 and ssGSEA showed that GPR37 expression was significantly associated with the infiltration of T cells, CD8 T cell, eosinophils, macrophages, neutrophils, NK CD56dim cells, NK cells, plasmacytoid DCs (pDCs), T helper cells and T effector memory (Tem) cells. In addition, high GPR37 expression was positively correlated with increased infiltration of M2 macrophages, which in turn was associated with poor prognosis. Furthermore, GPR37 was positively correlated with various immune checkpoints (ICPs). Finally, hypomethylation of the GPR37 promoter was associated with its high expression levels and poor prognosis in glioma. CONCLUSION: GPR37 had diagnostic and prognostic value in glioma. The possible biological mechanisms of GPR37 provide novel insights into the clinical diagnosis and treatment of glioma.


Assuntos
Glioma , Humanos , Prognóstico , Glioma/genética , Algoritmos , Biologia Computacional , Imunoglobulinas
4.
Brain Behav ; 13(11): e3225, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37654024

RESUMO

BACKGROUND: Parkinson's disease (PD) is a common degenerative nervous system disease. At present, there are certain limitations in various treatment options aimed at preventing or delaying the progression of PD. Therefore, the exploration of new drugs for PD is beneficial. Mendelian randomization (MR) analysis can be used to explore the association between drugs and diseases. In this study, MR analysis was adopted to investigate the causal relationship between 23 drugs and PD. These drugs have been approved for the treatment of different diseases, such as salicylic acid and derivatives (collectively called salicylates, e.g., aspirin, used for fever and pain relief), antithrombotic agents (e.g., warfarin, aspirin, used for preventing thrombotic events). METHODS: The GWAS data for the 23 drugs were obtained from the UK Biobank (UKB) project, while the GWAS data for PD were sourced from FinnGen. Single-Nucleotide Polymorphisms (SNPs) were selected as instrumental variables (IVs). We first performed a series of quality control steps (including MR-PRESSO) to select the appropriate SNPs. Two-sample MR analysis was performed using five different methods, including inverse variance weighting (IVW) with random-effects model, weighted median, MR-Egger, simple model, and weighted model. At the same time, sensitivity analysis was carried out using the MR-Egger and Cochran's Q test to ensure the authenticity and reliability of the results. RESULTS: In MR-PRESSO, salicylates and antithrombotic agents showed statistically significant associations with PD, respectively. In the main MR analysis (IVW), there was a negative causal relationship between salicylates and PD (OR = 0.73, 95% CI = 0.54-0.98, p = .039). Similarly, there was a negative causal relationship between antithrombotic agents and PD (OR = 0.70, 95%CI = 0.52-0.96, p = .027). No statistically significant association was found between the remaining 21 drugs and PD. CONCLUSION: This MR study demonstrated that salicylates and antithrombotic agents can reduce the risk of PD, thus providing a novel avenue for future drug exploration in PD.


Assuntos
Doença de Parkinson , Humanos , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/genética , Fibrinolíticos , Análise da Randomização Mendeliana , Reprodutibilidade dos Testes , Aspirina/efeitos adversos , Ácido Salicílico , Estudo de Associação Genômica Ampla
5.
Aging (Albany NY) ; 15(12): 5798-5825, 2023 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-37367937

RESUMO

BACKGROUND: TRIM family molecules have been identified as being involved in the tumor progression of various cancer types. Increasingly, experimental evidence indicates that some of TRIM family molecules are implicated in glioma tumorigenesis. However, the diverse genomic changes, prognostic values and immunological landscapes of TRIM family of molecules have yet to be fully determined in glioma. METHODS: In our study, employing the comprehensive bioinformatics tools, we evaluated the unique functions of 8 TRIM members including TRIM5/17/21/22/24/28/34/47 in gliomas. RESULTS: The expression levels of 7 TRIM members (TRIM5/21/22/24/28/34/47) were higher in glioma as well as its diverse cancer subtypes than in normal tissues, whereas the expression level of TRIM17 was the opposite, lower in the former than in the latter. In addition, survival analysis revealed that the high expression profiles of TRIM5/21/22/24/28/34/47 were associated with poor overall survival (OS), disease-specific survival (DSS) and progress-free interval (PFI) in glioma patients, whereas TRIM17 displayed adverse outcomes. Moreover, the 8 TRIM molecules expression as well as methylation profiles remarkably correlated with different WHO grades. And genetic alterations, including mutations and copy number alterations (CNAs), in the TRIM family were correlated with longer OS, DSS and progress-free survival (PFS) in glioma patients. Furthermore, through Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis results of these 8 molecules and their related genes, we found that these molecules may change the immune infiltration of the tumor microenvironment and regulate the expression of immune checkpoint molecules (ICMs), affecting the occurrence and development of gliomas. The correlation analyses between the 8 TRIM molecules and TMB (tumor mutational burden)/MSI (microsatellite instability)/ICMs discovered that as the expression level of TRIM5/21/22/24/28/34/47 increased, the TMB score also increased significantly, while TRIM17 showed an opposite outcome. Further, a 6-gene signature (TRIM 5/17/21/28/34/47) for predicting overall survival (OS) in gliomas was built by using the least absolute shrinkage and selection operator (LASSO) regression, and the survival and time-dependent ROC analyses all were found to perform well in testing and validation cohorts. Results of multivariate COX regression analysis showed that TRIM5/28 are both expected to become independent risk predictors to guide clinical treatment. CONCLUSION: In general, the results indicate that TRIM5/17/21/22/24/28/34/47 might exert a crucial influence on gliomas tumorigenesis and might be putative prognostic markers and therapeutic targets for glioma patients.


Assuntos
Glioma , Humanos , Prognóstico , Glioma/genética , Carcinogênese , Transformação Celular Neoplásica , Biologia Computacional , Proteínas de Checkpoint Imunológico , Instabilidade de Microssatélites , Microambiente Tumoral , Proteínas com Motivo Tripartido/genética , Ubiquitina-Proteína Ligases/genética
6.
BMC Cancer ; 23(1): 403, 2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37142967

RESUMO

BACKGROUND: Leukocyte immunoglobulin-like receptor subfamily B1 (LILRB1) is regarded as an inhibitory molecule. However, the importance of LILRB1 expression in glioma has not yet been determined. This investigation examined the immunological signature, clinicopathological importance and prognostic value of LILRB1 expression in glioma. METHODS: We used data from the UCSC XENA database, the Cancer Genome Atlas (TCGA) database, the Chinese Glioma Genome Atlas (CGGA) database, the STRING database, the MEXPRESS database and our clinical glioma samples to perform bioinformatic analysis and used vitro experiments to examine the predictive value and potential biological roles of LILRB1 in glioma. RESULTS: Higher LILRB1 expression was considerably present in the higher WHO grade glioma group and was linked to a poorer prognosis in patients with glioma. Gene set enrichment analysis (GSEA) revealed that LILRB1 was positively correlated with the JAK/STAT signaling pathway. LILRB1 combined with tumor mutational burden (TMB) and microsatellite instability (MSI) may be a promising indicator for the effectiveness of immunotherapy in patients with glioma. Increased LILRB1 expression was positively linked with the hypomethylation, M2 macrophage infiltration, immune checkpoints (ICPs) and M2 macrophage makers. Univariate and multivariate Cox regression analyses determined that increased LILRB1 expression was a standalone causal factor for glioma. Vitro experiments determined that LILRB1 positively enhanced the proliferation, migration and invasion in glioma cells. MRI images demonstrated that higher LILRB1 expression was related with larger tumor volume in patients with glioma. CONCLUSION: Dysregulation of LILRB1 in glioma is correlated with immune infiltration and is a standalone causal factor for glioma.


Assuntos
Glioma , Receptor B1 de Leucócitos Semelhante a Imunoglobulina , Humanos , Antígenos CD/genética , Biologia Computacional , Glioma/genética , Receptor B1 de Leucócitos Semelhante a Imunoglobulina/genética , Pacientes , Prognóstico
7.
Neurosurg Rev ; 46(1): 94, 2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37074539

RESUMO

OBJECTIVE: This study aims to evaluate the prognostic value of blood-based biomarkers and their combinations, in particular the glucose-albumin ratio (GAR), in patients with spontaneous intracerebral hemorrhage (ICH). METHODS: A retrospective observational study on 2481 patients from one hospital was conducted and validated with 602 patients from another. We assessed 15 biomarkers and focused on GAR to elucidate its prognostic and predictive value for outcomes in both cohorts. The primary outcome was mortality at 90 days. RESULTS: The ratio of glucose-to-albumin, defined as GAR, was superior to other biomarkers for predicting mortality at 90 days in patients with ICH (AUC = 0.72). High GAR (using the best cutoff value of 0.19) was associated with increased mortality at 90 days (odds ratios of 1.90, 95% CI 1.54-2.34) and all-cause mortality in the first 3 years after admission (hazard ratio of 1.62, 95% CI 1.42-1.86). All aforementioned findings for GAR were successfully validated in an external independent cohort. CONCLUSIONS: GAR may be a valuable biomarker for predicting the mortality of patients with ICH.


Assuntos
Hemorragia Cerebral , Glucose , Humanos , Biomarcadores , Hemorragia Cerebral/diagnóstico , Prognóstico , Estudos Retrospectivos , Albuminas
8.
Neurobiol Dis ; 179: 106042, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36804284

RESUMO

Mild hypothermia has been proven to inhibit microglia activation after TBI. Exosomal microRNA derived from microglia played a critical role in promoting neurite outgrowth and synapse recovery. Here, we aimed to investigate the role of microRNAs in microglial exosomes after hypothermia treatment on neuronal regeneration after TBI. For in vitro study, stretch-injured neurons were co-cultured with microglial exosomes. For in vivo study, C57BL/6 mice were under controlled cortical impact and injected with microglial exosomes. The results showed that MG-LPS-EXOHT increased the number of dendrite branches and total length of dendrites both in vitro and in vivo, elevated the expression levels of PSD-95 and GluR1 in stretch-injured neurons, and increased spine density in the pericontusion region. Moreover, MG-LPS-EXOHT improved motor function and motor coordination. A high-throughput sequencing showed that miR-20b-5p was upregulated in MG-LPS-EXOHT. Elevating miR-20b-5p promoted neurite outgrowth and synapse recovery of injured neurons both in vitro and in vivo. Following mechanistic study demonstrated that miR-20b-5p might promote neurite outgrowth and synapse recovery by directly targeting PTEN and activating PI3K-AKT pathway. In conclusion, mild hypothermia could modify the microRNA prolife of exosomes derived from LPS activated BV2 cells. Furthermore, high level of microglial exosomal miR-20b-5p induced by mild hypothermia could transfer into injured neurons and promote neurite outgrowth and synapse recovery after TBI via activating the PI3K-AKT pathway by suppressing PTEN expression.


Assuntos
Lesões Encefálicas Traumáticas , Hipotermia , MicroRNAs , Camundongos , Animais , Microglia/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Hipotermia/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Lipopolissacarídeos/metabolismo , Camundongos Endogâmicos C57BL , Lesões Encefálicas Traumáticas/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Crescimento Neuronal/fisiologia , Sinapses/metabolismo
9.
Oncogene ; 42(14): 1088-1100, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36792756

RESUMO

PRMT6, a type I arginine methyltransferase, di-methylates the arginine residues of both histones and non-histones asymmetrically. Increasing evidence indicates that PRMT6 plays a tumor mediator involved in human malignancies. Here, we aim to uncover the essential role and underlying mechanisms of PRMT6 in promoting glioblastoma (GBM) proliferation. Investigation of PRMT6 expression in glioma tissues demonstrated that PRMT6 is overexpressed, and elevated expression of PRMT6 is negatively correlated with poor prognosis in glioma/GBM patients. Silencing PRMT6 inhibited GBM cell proliferation and induced cell cycle arrest at the G0/G1 phase, while overexpressing PRMT6 had opposite results. Further, we found that PRMT6 attenuates the protein stability of CDKN1B by promoting its degradation. Subsequent mechanistic investigations showed that PRMT6 maintains the transcription of CDC20 by activating histone methylation mark (H3R2me2a), and CDC20 interacts with and destabilizes CDKN1B. Rescue experimental results confirmed that PRMT6 promotes the ubiquitinated degradation of CDKN1B and cell proliferation via CDC20. We also verified that the PRMT6 inhibitor (EPZ020411) could attenuate the proliferative effect of GBM cells. Our findings illustrate that PRMT6, an epigenetic mediator, promotes CDC20 transcription via H3R2me2a to mediate the degradation of CDKN1B to facilitate GBM progression. Targeting PRMT6-CDC20-CDKN1B axis might be a promising therapeutic strategy for GBM.


Assuntos
Glioblastoma , Proteínas Nucleares , Humanos , Proteínas Nucleares/metabolismo , Glioblastoma/genética , Histonas/genética , Histonas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Metilação , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Proteínas Cdc20/genética , Proteínas Cdc20/metabolismo
10.
Br J Neurosurg ; 37(5): 1010-1015, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33095082

RESUMO

INTRODUCTION: Primary intracranial angioleiomyoma (ALM) is quite rare and ALM of the adolescent is even rarer. To date, only three cases of adolescents have been reported. MATERIAL AND METHODS: We carefully introduced a new location of intracranial ALM in an adolescent. The clinical, pathological and imaging features of intracranial ALM were described in detail and published literature was reviewed. RESULTS: To our best knowledge, we presented the fourth primary intracranial ALM of adolescent and the first ALM of the right frontal cranial base with intracranial and extracranial communication. We not only summarize the generalities of ALM but also illustrate the difference between adult and adolescent ALM in the aspects of gender and age predominance, etiology, common location and pathologic subtype. CONCLUSIONS: We reported the first ALM of the right frontal cranial base with intracranial and extracranial communication of an adolescent with a good prognosis. We also summarize the generalities of ALM and illustrate the difference between adult and adolescent ALM. Future investigation of control study with large patient cohorts is needed for both adult and adolescent ALM to compare the difference between them.


Assuntos
Angiomioma , Adulto , Adolescente , Humanos , Angiomioma/diagnóstico por imagem , Angiomioma/cirurgia , Base do Crânio
11.
Int J Oncol ; 61(4)2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35929514

RESUMO

Currently, exosomes (EXOs) are being explored as novel drug delivery carriers with greater advantages, including crossing the blood­brain­barrier and loading drugs. The present study utilized EXOs derived from neural stem cells (NSCs) for the delivery of molecular drugs to treat gliomas. miR­124­3p was selected according to previous studies by the authors, and the effects of the delivery of miR­124­3p to glioma cells by NSC­EXOs in vitro and in vivo were evaluated. It was found that NSC­EXOs successfully delivered miR­124­3p into glioma cells, and NSC­EXOs loaded with miR­124­3p significantly inhibited glioma cell proliferation, invasion and migration. Furthermore, the delivery of miR­124­3p by NSC­EXOs suppressed flotillin 2 (FLOT2) expression by specifically binding to the 3' untranslated region of the FLOT2 gene in gliomas; subsequently, AKT1 was found to be associated with the EXO­miR­124­3p/FLOT2 pathway. Moreover, the therapeutic effects of the delivery of miR­124­3p by NSC­EXOs were confirmed in a mouse tumor xenograft model of glioma. Thus, bio­carrier NSC­EXOs loaded with miR­124­3p suppressed glioma growth via the EXO­miR­124­3p/FLOT2/AKT1 pathway. On the whole, the present study provides insight into stem cell­free molecular­targeted therapy based on bio­carrier NSC­EXOs and provides a potential strategy for the treatment of glioma.


Assuntos
Neoplasias Encefálicas , Exossomos , Glioma , MicroRNAs , Células-Tronco Neurais , Regiões 3' não Traduzidas , Animais , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Proliferação de Células , Exossomos/metabolismo , Glioma/tratamento farmacológico , Glioma/genética , Glioma/metabolismo , Humanos , Proteínas de Membrana , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Células-Tronco Neurais/metabolismo
12.
Front Oncol ; 12: 785345, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35957872

RESUMO

Epithelial-to-mesenchymal transition (EMT) and angiogenesis have emerged as two pivotal events in cancer progression. Paeoniflorin has been widely studied in experimental models and clinical trials for cancer treatment because of its anti-cancer property. However, the underlying mechanisms of paeoniflorin in EMT and angiogenesis in glioblastoma was not fully elucidated. The present study aimed to investigate whether paeoniflorin inhibits EMT and angiogenesis, which involving c-Met suppression, while exploring the potential ways of c-Met degradation. In our study, we found that paeoniflorin inhibited EMT via downregulating c-Met signaling in glioblastoma cells. Furthermore, overexpressing c-Met in glioblastoma cells abolished the effects of paeoniflorin on EMT. Moreover, paeoniflorin showed anti-angiogenic effects by suppressing cell proliferation, migration, invasion and tube formation through downregulating c-Met in human umbilical vein endothelial cells (HUVECs). And c-Met overexpression in HUVECs offset the effects of paeoniflorin on angiogenesis. Additionally, paeoniflorin induced autophagy activation involving mTOR/P70S6K/S6 signaling and promoted c-Met autophagic degradation, a process dependent on K63-linked c-Met polyubiquitination. Finally, paeoniflorin suppressed mesenchymal makers (snail, vimentin, N-cadherin) and inhibited angiogenesis via the identical mechanism in an orthotopic xenograft mouse model. The in vitro and in vivo experiments showed that paeoniflorin treatment inhibited EMT, angiogenesis and activated autophagy. What's more, for the first time, we identified c-Met may be a potential target of paeoniflorin and demonstrated paeoniflorin downregulated c-Met via K63-linked c-Met polyubiquitination-dependent autophagic degradation. Collectively, these findings indicated that paeoniflorin inhibits EMT and angiogenesis via K63-linked c-Met polyubiquitination-dependent autophagic degradation in human glioblastoma.

13.
Front Genet ; 13: 842975, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35656324

RESUMO

Despite emerging evidence revealing the remarkable roles of protein phosphatase 1 regulatory inhibitor subunit 14A (PPP1R14A) in cancer tumorigenesis and progression, no pan-cancer analysis is available. A comprehensive investigation of the potential carcinogenic mechanism of PPP1R14A across 33 tumors using bioinformatic techniques is reported for the first time. PPP1R14A is downregulated in major malignancies, and there is a significant correlation between the PPP1R14A expression and the prognosis of patients. The high expression of PPP1R14A in most cases was associated with poor overall survival (OS), disease-specific survival (DSS), and progress-free interval (PFI) across patients with various malignant tumors, including adrenocortical carcinoma (ACC) and bladder urothelial carcinoma (BLCA), indicated through pan-cancer survival analysis. Receiver operating characteristic (ROC) analysis subsequently exhibited that the molecule has high reference significance in diagnosing a variety of cancers. The frequency of PPP1R14A genetic changes including genetic mutations and copy number alterations (CNAs) in uterine carcinosarcoma reached 16.07%, and these alterations brought misfortune to the survival and prognosis of cancer patients. In addition, methylation within the promoter region of PPP1R14A DNA was enhanced in a majority of cancers. Downregulated phosphorylation levels of phosphorylation sites including S26, T38, and others in most cases took place in several tumors, such as breast cancer and colon cancer. PPP1R14A remarkably correlated with the levels of infiltrating cells and immune checkpoint genes. Our research on the carcinogenic effect of PPP1R14A in different tumors is comprehensively summarized and analyzed and provides a theoretical basis for future therapeutic and immunotherapy strategies.

14.
J Cancer ; 13(4): 1203-1213, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35281871

RESUMO

Background: Glioblastoma (GBM) is a tumor of the central nervous system with an extremely poor prognosis. Stemness and EMT play important roles in GBM progression. 3-benzyl-5-((2-nitrophenoxy) methyl) dihydrofuran-2(3H)-one (3BDO), an autophagy inhibitor, has been reported to exert anti-cancer activities on lung carcinoma. However, the effects of 3BDO on GBM remain unknown. Therefore, the purpose of this study was to explore the effects of 3BDO on GBM and to investigate the underlying molecular mechanisms. Method: CCK-8 experiments and clone formation assays were conducted to determine the level of cell proliferation. Transwell assay was conducted to examine cell migration and invasion abilities. Western blotting and immunofluorescence staining were used to analyze protein expression levels. A xenograft mouse model was used to evaluate the effect of 3BDO in vivo. Results: We found that 3BDO inhibited U87 and U251 cell proliferation in a dose-dependent manner. Additionally, 3BDO decreased the degree of sphere formation and levels of stemness markers (sox2, nestin, and CD133) in GSCs. 3BDO also inhibited migration and invasion abilities and suppressed EMT markers (N-cadherin, vimentin, and snail) in GBM cells. Moreover, we found that 3BDO downregulated the expression of survivin in both GBM cells (U87, U251) and GSCs. Furthermore, overexpression of survivin decreased the therapeutic effect of 3BDO on EMT, invasion, migration, and proliferation of GBM cells, as well as decreased the stemness of GSCs. Finally, we demonstrated that 3BDO could inhibit tumor growth in a tumor xenograft mouse model constructed using U87 cells. Similar to the in vitro findings, 3BDO decreased the expression of survivin, EMT makers, and the degree of stemness in vivo. Conclusions: Our results demonstrate that 3BDO can repress GBM both in vitro and in vivo via downregulating survivin-mediated stemness and EMT.

15.
Front Pharmacol ; 13: 819470, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35300299

RESUMO

Cocaine use disorder (CUD) is a major public health challenge with a high relapse rate and lack of effective pharmacotherapies; therefore, there is a substantial need to identify novel medications to treat this epidemic. Since the advent of glucagon-like peptide-1 (GLP-1) receptors (GLP-1Rs) agonists (GLP-1RAs), their potential has been extensively explored and expanded. In this review, we first summarized the biological effects of GLP-1, GLP-1Rs, and GLP-1RAs. Subsequently, the recent literature examining the behavioral effects and the possible pharmacological mechanisms of GLP-1RAs on CUD was reviewed. Increasing preclinical evidence suggests that GLP-1RAs are promising in regulating dopamine release, dopamine transporter (DAT) surface expression and function, mesolimbic reward system and GABAergic neurons, and maladaptive behaviors in animal models of self-administration and conditioned place preference. In addition, the emerging role of GLP-1RAs in inhibiting inflammatory cytokines was reported. These findings indicate that GLP-1RAs perform essential functions in the modulation of cocaine-seeking and cocaine-taking behaviors likely through multifaceted mechanisms. Although the current preclinical evidence provides convincing evidence to support GLP-1RA as a promising pharmacotherapy for CUD, other questions concerning clinical availability, impact and specific mechanisms remain to be addressed in further studies.

16.
Biosci Rep ; 42(1)2022 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-34981809

RESUMO

Alzheimer's disease (AD) is a form of neurodegenerative disease in the elderly with no cure at present. In a previous study, we found that the scaffold protein, disrupted in Schizophrenia 1 (DISC1) is down-regulated in the AD brains, and ectopic expression of DISC1 can delay the progression of AD by protecting synaptic plasticity and down-regulating BACE1. However, the underlying mechanisms remain not to be elucidated. In the present study, we compared the proteomes of normal and DISC1high AD cells expressing the amyloid precursor protein (APP) using isobaric tag for relative and absolute quantitation (iTRAQ) and mass spectrometry (MS). The differentially expressed proteins (DEPs) were identified, and the protein-protein interaction (PPI) network was constructed to identify the interacting partners of DISC1. Based on the interaction scores, NDE1, GRM3, PTGER3 and KATNA1 were identified as functionally or physically related to DISC1, and may therefore regulate AD development. The DEPs were functionally annotated by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases with the DAVID software, and the Non-supervised Orthologous Groups (eggNOG) database was used to determine their evolutionary relationships. The DEPs were significantly enriched in microtubules and mitochondria-related pathways. Gene set enrichment analysis (GSEA) was performed to identify genes and pathways that are activated when DISC1 is overexpressed. Our findings provide novel insights into the regulatory mechanisms underlying DISC1 function in AD.


Assuntos
Doença de Alzheimer/metabolismo , Encéfalo/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteoma , Proteômica , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Encéfalo/patologia , Predisposição Genética para Doença , Células HEK293 , Humanos , Katanina/genética , Katanina/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas do Tecido Nervoso/genética , Fenótipo , Mapas de Interação de Proteínas , Receptores de Glutamato Metabotrópico/genética , Receptores de Glutamato Metabotrópico/metabolismo , Receptores de Prostaglandina E Subtipo EP3/genética , Receptores de Prostaglandina E Subtipo EP3/metabolismo , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem
17.
Biosci Rep ; 42(1)2022 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-34931668

RESUMO

The function of circular RNAs (circRNAs) in gliomas is as yet unknown. The present study explored role of hsa_circ_0076931 in glioma. circRNA expression profiles were identified via RNA-seq followed by qRT-PCR validation in three pairs of glioma and normal brain tissues (NBT). The function of hsa_circ_0076931 was investigated in vitro using cell lines as well as in vivo using a xenograft tumor. Hsa_circ_0076931 was up-regulated by overexpression and an mRNA profile compared with wild-type was identified by RNA-seq. The relationship between miR-6760-3p and hsa_circ_0076931 or CCBE1 was confirmed via luciferase reporter or AGO2-RIP assays. A total of 507 circRNAs were identified in glioma tissues that were differentially expressed compared with that in NBT, and the sequencing data were deposited in BioProject (ID: PRJNA746438). Hsa_circ_0007694 and hsa_circ_0008016 were memorably increased whereas hsa_circ_0076931 and hsa_circ_0076948 decreased in glioma compared with those in NBT. Additionally, hsa_circ_0076931 expression was negatively correlated with histological grade. Overexpression of hsa_circ_0076931 inhibited proliferation, migration, and invasion while promoting apoptosis of glioma cells. A total of 4383 and 537 aberrantly expressed genes were identified between the hsa_circ_0076931-overexpressed and control groups in H4 and U118-MG cells, respectively; the sequencing data were deposited in BioProject (ID: PRJNA746438). These differentially expressed genes were mainly enriched in cancer-related pathways. In addition, elevated hsa_circ_0076931 levels induced the expression of CCBE1 while suppressing miR-6760-3p expression. miR-6760-3p can bind to hsa_circ_0076931. The experimental evidence supports using hsa_circ_0076931 as a marker for glioma and to help prevent malignant progression. The mechanism might be relevant to miR-6760-3p and CCBE1.


Assuntos
Neoplasias Encefálicas/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Glioma/metabolismo , MicroRNAs/metabolismo , RNA Circular/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Adulto , Animais , Apoptose , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Proteínas de Ligação ao Cálcio/genética , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Feminino , Regulação Neoplásica da Expressão Gênica , Glioma/genética , Glioma/patologia , Humanos , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , MicroRNAs/genética , Pessoa de Meia-Idade , Invasividade Neoplásica , RNA Circular/genética , Transdução de Sinais , Transcriptoma , Carga Tumoral , Proteínas Supressoras de Tumor/genética , Regulação para Cima
18.
World J Stem Cells ; 13(7): 877-893, 2021 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-34367482

RESUMO

Glioblastoma multiforme (GBM), the most frequently occurring malignant brain tumor in adults, remains mostly untreatable. Because of the heterogeneity of invasive gliomas and drug resistance associated with the tumor microenvironment, the prognosis is poor, and the survival rate of patients is low. Communication between GBMs and non-glioma cells in the tumor microenvironment plays a vital role in tumor growth and recurrence. Emerging data have suggested that neural stem cells (NSCs) in the subventricular zone (SVZ) are the cells-of-origin of gliomas, and SVZ NSC involvement is associated with the progression and recurrence of GBM. This review highlights the interaction between SVZ NSCs and gliomas, summarizes current findings on the crosstalk between gliomas and other non-glioma cells, and describes the links between SVZ NSCs and gliomas. We also discuss the role and mechanism of SVZ NSCs in glioblastoma, as well as the interventions targeting the SVZ and their therapeutic implications in glioblastoma. Taken together, understanding the biological mechanism of glioma-NSC interactions can lead to new therapeutic strategies for GBM.

19.
BMC Cancer ; 21(1): 723, 2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34162355

RESUMO

BACKGROUND: Tyrosine protein tyrosine kinase binding protein (TYROBP) binds non-covalently to activated receptors on the surface of various immune cells, and mediates signal transduction and cellular activation. It is dysregulated in various malignancies, although little is known regarding its role in low-grade glioma. The aim of this study is to explore the clinicopathological significance, prognostic value and immune signature of TYROBP expression in low-grade glioma (LGG). METHODS: The differentially expressed genes (DEGs) between glioma samples and normal tissues were identified from two GEO microarray datasets using the limma package. The DEGs overlapping across both datasets were functionally annotated by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. STRING database was used to establish the protein-protein interaction (PPI) of the DEGs. The PPI network was visualized by Cytoscape and cytoHubba, and the core module and hub genes were identified. The expression profile of TYROBP and patient survival were validated in the Oncomine, GEPIA2 and CGGA databases. The correlation between TYROBP expression and the clinicopathologic characteristics were evaluated. Gene Set Enrichment Analysis (GSEA) and single-sample GSEA (ssGSEA) were performed by R based on the LGG data from TCGA. The TIMER2.0 database was used to determine the correlation between TYROBP expression and tumor immune infiltrating cells in the LGG patients. Univariate and multivariate Cox regression analyses were performed to determine the prognostic impact of clinicopathological factors via TCGA database. RESULTS: Sixty-two overlapping DEGs were identified in the 2 datasets, and were mainly enriched in the response to wounding, focal adhesion, GTPase activity and Parkinson disease pathways. TYROBP was identified through the PPI network and cytoHubba. TYROBP expression levels were significantly higher in the LGG tissues compared to the normal tissues, and was associated with worse prognosis and poor clinicopathological parameters. In addition, GSEA showed that TYROBP was positively correlated to neutrophil chemotaxis, macrophage activation, chemokine signaling pathway, JAK-STAT signaling pathway, and negatively associated with gamma aminobutyric acid signaling pathway, neurotransmitter transport, neuroactive ligand receptor intersection etc. TIMER2.0 and ssGSEA showed that TYROBP expression was significantly associated with the infiltration of neutrophils, macrophages, myeloid dendritic cells and monocytes. The infiltration of the M2 phenotype macrophages, cancer-associated fibroblasts and myeloid dendritic cells correlated to worse prognosis in LGG patients. Finally, multivariate analysis showed that elevated TYROBP expression is an independent risk factor for LGG. CONCLUSION: TYROBP is dysregulated in LGG and correlates with immune infiltration. It is a potential therapeutic target and prognostic marker for LGG.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Neoplasias Encefálicas/genética , Glioma/genética , Proteínas de Membrana/metabolismo , Adulto , Neoplasias Encefálicas/mortalidade , Neoplasias Encefálicas/patologia , Glioma/mortalidade , Glioma/patologia , Humanos , Pessoa de Meia-Idade , Gradação de Tumores , Prognóstico , Análise de Sobrevida
20.
Int J Med Sci ; 18(3): 639-645, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33437198

RESUMO

Intracerebral hemorrhage (ICH) represents a common acute cerebrovascular event that imparts high rates of disability. The microglia-mediated inflammatory response is a critical factor in determining cerebral damage post-ICH. Clemastine (CLM) is a histamine receptor H1 (HRH1) antagonist that has been shown to modulate the inflammatory response. However, the effects of CLM on ICH and the underlying mechanism remain to be determined. This investigation reveals that CLM resulted in reduction of cerebral hematoma volume, decreased cerebral edema and lower rates of neuronal apoptosis as well as improved behavioral scores in an acute ICH murine model. CLM treatment was noted to decrease pro-inflammatory effectors and increased anti-inflammatory effectors post-ICH. In addition, CLM reduced the deleterious effects of activated microglia on neurons in a transwell co-culture system. Our findings show that CLM likely mediates its therapeutic effect through inhibition of microglia-induced inflammatory response and apoptosis, thereby enhancing restoration of neuronal function.


Assuntos
Edema Encefálico/tratamento farmacológico , Hemorragia Cerebral/tratamento farmacológico , Clemastina/farmacologia , Mediadores da Inflamação/metabolismo , Fármacos Neuroprotetores/farmacologia , Animais , Apoptose/efeitos dos fármacos , Apoptose/imunologia , Edema Encefálico/imunologia , Edema Encefálico/patologia , Células Cultivadas , Hemorragia Cerebral/complicações , Hemorragia Cerebral/imunologia , Hemorragia Cerebral/patologia , Clemastina/uso terapêutico , Técnicas de Cocultura , Modelos Animais de Doenças , Masculino , Camundongos , Microglia/efeitos dos fármacos , Microglia/imunologia , Microglia/patologia , Neurônios/efeitos dos fármacos , Neurônios/imunologia , Neurônios/patologia , Fármacos Neuroprotetores/uso terapêutico , Cultura Primária de Células , Técnicas Estereotáxicas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA