Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
1.
CNS Neurosci Ther ; 30(10): e70070, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39354865

RESUMO

BACKGROUND: Parkinson's disease (PD) is a neurodegenerative disease caused by a combination of aging, environmental, and genetic factors. Previous research has implicated both causative and susceptibility genes in PD development. Nogo-A, a neurite outgrowth inhibitor, has been shown to impact axon growth through ligand-receptor interactions negatively, thereby involved in the deterioration of dopaminergic neurons. However, rare genetic studies have identified the relationship between neurite outgrowth inhibitor (Nogo)-associated genes and PD from a signaling pathway perspective. METHODS: We enrolled 3959 PD patients and 2931 healthy controls, categorized into two cohorts based on their family history and age at onset: sporadic early Parkinson's disease & familial Parkinson's disease (sEOPD & FPD) cohort and sporadic late Parkinson's disease (sLOPD) cohort. We selected 17 Nogo-associated genes and stratified them into three groups via their function, respectively, ligand, receptors, and signaling pathway groups. Additionally, we conducted the burden analysis in rare variants, the logistic regression analysis in common variants, and the genotype-phenotype association analysis. Last, bioinformatics analysis and functional experiments were conducted to identify the role of the MTOR gene in PD. RESULTS: Our findings demonstrated that the missense variants in the MTOR gene might increase PD risk, while the deleterious variants in the receptor subtype of Nogo-associated genes might mitigate PD risk. However, common variants of Nogo-associated genes showed no association with PD development in two cohorts. Furthermore, genotype-phenotype association analysis suggested that PD patients with MTOR gene variants exhibited relatively milder motor symptoms but were more susceptible developing dyskinesia. Additionally, bioinformatics analysis results showed MTOR gene was significantly decreased in PD, indicating a potential negative role of the mTOR in PD pathogenesis. Experimental data further demonstrated that MHY1485, a mTOR agonist, could rescue MPP+-induced axon inhibition, further implicating the involvement of mTOR protein in PD by regulating cell growth and axon growth. CONCLUSIONS: Our preliminary investigation highlights the association of Nogo-associated genes with PD onset in the Chinese mainland population and hints at the potential role of the MTOR gene in PD. Further research is warranted to elucidate the mechanistic pathways underlying these associations and their therapeutic implications.


Assuntos
Proteínas Nogo , Doença de Parkinson , Humanos , Doença de Parkinson/genética , Masculino , Feminino , Idoso , Pessoa de Meia-Idade , Estudos de Coortes , Estudos Transversais , Proteínas Nogo/genética , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Estudos de Associação Genética/métodos , Predisposição Genética para Doença/genética
2.
J Crohns Colitis ; 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39279209

RESUMO

BACKGROUND AND AIMS: Human studies suggest that a high intake of polyunsaturated fatty acid (PUFA) is associated with an increased risk of inflammatory bowel disease (IBD). PUFA is highly prone to oxidation. To date, it is unclear whether unoxidized or oxidized PUFA is involved in the development of IBD. Here, we aim to compare the effects of unoxidized PUFA vs. oxidized PUFA on the development of IBD and associated colorectal cancer. METHODS: We evaluated the effects of unoxidized and oxidized PUFA on dextran sodium sulfate (DSS)- and IL-10 knockout-induced colitis, and azoxymethane (AOM)/DSS-induced colon tumorigenesis in mice. Additionally, we studied the roles of gut microbiota and Toll-like receptor 4 (TLR4) signaling involved. RESULTS: Administration of a diet containing oxidized PUFA, at human consumption-relevant levels, increases the severity of colitis and exacerbates the development of colitis-associated colon tumorigenesis in mice. Conversely, a diet rich in unoxidized PUFA doesn't promote colitis. Furthermore, oxidized PUFA worsens colitis-associated intestinal barrier dysfunction and leads to increased bacterial translocation, and it fails to promote colitis in Toll-like receptor 4 (TLR4) knockout mice. Finally, oxidized PUFA alters the diversity and composition of gut microbiota, and it fails to promote colitis in mice lacking the microbiota. CONCLUSIONS: These results support that oxidized PUFA promotes the development of colitis and associated tumorigenesis in mouse models via TLR4- and gut microbiota-dependent mechanisms. Our findings highlight the potential need to update regulation policies and industrial standards for oxidized PUFA levels in food.

3.
Chem Sci ; 15(33): 13306-13312, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39183904

RESUMO

Photo-responsive luminescent materials capable of responding to light stimuli are crucial in the realm of sophisticated encryption, anti-counterfeiting, and optical data storage. Yet, the development of such materials that also feature self-healing capabilities, swift reaction times, light weight, fatigue resistance, dynamic display abilities, and enhanced security measures is exceedingly rare and presents considerable challenges. Herein, a novel family of self-healing and photo-stimuli-responsive photoluminescent polymers are reported, which is achieved by interlinking terpyridine- and spiropyran-functionalized polymers through N-Ln coordination bonds and hydrogen bonding among the polymer chains. The resulting polymers exhibit good processability, superior tensile strength, fast self-healing ability, and photo-stimuli-responsive performance. The photo-stimuli-responsive properties include unique color shifts (colorless and purple) and light-controlled time-dependent fluorescence modulation (green-, red-, and yellow-emission), which stem from fine-tuning the isomerization of spiropyran and leveraging the fluorescence resonance energy transfer (FRET) from Ln-Tpy donors to spiropyran acceptors, respectively. Besides, these polymers have been successfully applied in dynamic multi-level information encryption applications. We are convinced that these smart materials, crafted through our innovative approach, hold vast potential for applications in information storage, cutting-edge anti-counterfeiting encryption, UV-sensing, and light-writing technologies, marking a novel strategy in the design of photosensitive luminescent smart materials.

4.
ACS Appl Mater Interfaces ; 16(33): 44018-44025, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39120879

RESUMO

Photoluminescent materials are widely used for information storage and anticounterfeiting, while most of them have the disadvantages of static information performance and weak processability, which is still a challenging task in developing dynamic anticounterfeiting materials with high security levels. Herein, we fabricated a novel photostimuli-responsive dual-emitting luminescent material UPTES-SPn-Tb-hfa, which was obtained by introducing the photochromic molecule spiropyran (SP) and lanthanide complex (Tb-hfa) into a siloxane-polyether matrix using the sol-gel process. Due to the conformation-dependent photochromic fluorescence resonance energy transfer between the Tb-hfa donor and SP acceptor, the ring-closing (SP)/ring-opening (MC) isomerization of the SP unit leads to a reversible luminescence switching in UPTES-SPn-Tb-hfa. This composite material has great potential for advanced anticounterfeiting because of the advantage of rapidly repeatable encryption/decryption for at least 8 times and dynamic luminescent colors within 15 s. In addition, due to its two luminescent centers (Tb3+ and MC), the luminescent color of this material can be regulated by 254 and 365 nm UV-light irradiation, which facilitates the design of multicolored anticounterfeiting labels. Our work presents a novel design methodology to fabricate dynamic anticounterfeiting materials, significantly enhancing the security of anticounterfeiting applications.

5.
Mech Ageing Dev ; 219: 111940, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38750970

RESUMO

To clarify the genetic role of phospholipase A2 (PLA2) genes in Parkinson's disease (PD), we performed a genetic association study in large Chinese population cohorts using next-generation sequencing. In this study, we analyzed both rare and common variants of 38 phospholipase A2 genes in two large cohorts. We detected 1558 and 1115 rare variants in these two cohorts, respectively. In both cohorts, we observed suggestive associations between specific subgroups and the risk of PD. At the single-gene level, several genes (PLA2G2D, PLA2G12A, PLA2G12B, PLA2G4F, PNPLA1, PNPLA3, PNPLA7, PLA2G7, PLA2G15, PLAAT5, and ABHD12) are suggestively associated with PD. Meanwhile, 364 and 2261 common variants were identified in two cohorts, respectively. Our study has expanded the genetic spectrum of the PLA2 family genes and suggested potential pathogenetic roles of PLA2 superfamily in PD.


Assuntos
Doença de Parkinson , Fosfolipases A2 , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Povo Asiático/genética , China/epidemiologia , Estudos de Coortes , População do Leste Asiático , Predisposição Genética para Doença , Doença de Parkinson/genética , Fosfolipases A2/genética
6.
Plants (Basel) ; 13(5)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38475551

RESUMO

Streetlamp light is inevitable in the night landscape of a city and may affect the phenology of newly planted ornamental plants, but it has rarely been fully examined. Newly transplanted ornamental plants probably suffer periodic shocks, which mainly result from the inefficient reuse of internal nutrients for new growth. Exponential nutrient loading (ENL) is well known for its ability to overcome transplant shocks by promoting retranslocation for the reuse of strengthened nutrients from internal reserves in precultured seedlings. Transplantation to urbanized lands is distinct from that of montane areas; this is mainly due to a high frequency of exposure to the artificial illumination of night lighting. It is suspected that this lighting modifies vegetative phenology and generates potential risks by increasing reliance on internal nutrient retranslocation. In this study, Podocarpus macrophyllus seedlings were cultured with ENL at low and high rates of nitrogen (N) deliveries (40 and 120 mg N seedling-1, respectively), and the high-rate treatment was identified as being able to trap seedlings within toxic states. A labeled 15N isotope was pulsed to transplanted seedlings exposed to simulated light qualities in red, green, and blue light spectra. The seedlings harvested at one month showed rare responses to the interactive spectra and preculture treatments, but most of them responded to the low-rate N preculture treatment with stronger abilities in terms of the reuse of internal N and the synthesizing of photosynthetic pigments. In conclusion, it was verified that night light enforces the effect on newly transplanted plants; the red light invoked internal N for reuse, and the blue light promoted the uptake of the current N. The internal N reserve established through preculture ENL rarely made a contribution to the night light effect, except for the enhancement of height growth in the red light. The red light spectrum was recommended for the exposure of newly transplanted seedlings due to its effect on the enhancement of the retranslocation of internal N and the induction of a steady state of uptake from the current N input.

7.
Breast Cancer Res ; 26(1): 37, 2024 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-38454442

RESUMO

Increasing evidence shows the oncogenic function of FAM83D in human cancer, but how FAM83D exerts its oncogenic function remains largely unclear. Here, we investigated the importance of FAM83D/FBXW7 interaction in breast cancer (BC). We systematically mapped the FBXW7-binding sites on FAM83D through a comprehensive mutational analysis together with co-immunoprecipitation assay. Mutations at the FBXW7-binding sites on FAM83D led to that FAM83D lost its capability to promote the ubiquitination and proteasomal degradation of FBXW7; cell proliferation, migration, and invasion in vitro; and tumor growth and metastasis in vivo, indicating that the FBXW7-binding sites on FAM83D are essential for its oncogenic functions. A meta-evaluation of FAM83D revealed that the prognostic impact of FAM83D was independent on molecular subtypes. The higher expression of FAM83D has poorer prognosis. Moreover, high expression of FAM83D confers resistance to chemotherapy in BCs, which is experimentally validated in vitro. We conclude that identification of FBXW7-binding sites on FAM83D not only reveals the importance for FAM83D oncogenic function, but also provides valuable insights for drug target.


Assuntos
Neoplasias da Mama , Proteínas de Ciclo Celular , Humanos , Feminino , Proteína 7 com Repetições F-Box-WD/genética , Proteína 7 com Repetições F-Box-WD/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Prognóstico , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo
8.
Eur J Neurol ; 31(2): e16145, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37975799

RESUMO

BACKGROUND AND PURPOSE: The role of GGC repeat expansions within NOTCH2NLC in Parkinson's disease (PD) and the substantia nigra (SN) dopaminergic neuron remains unclear. Here, we profile the NOTCH2NLC GGC repeat expansions in a large cohort of patients with PD. We also investigate the role of GGC repeat expansions within NOTCH2NLC in the dopaminergic neurodegeneration of SN. METHODS: A total of 2,522 patients diagnosed with PD and 1,085 health controls were analyzed for the repeat expansions of NOTCH2NLC by repeat-primed PCR and GC-rich PCR assay. Furthermore, the effects of GGC repeat expansions in NOTCH2NLC on dopaminergic neurons were investigated by using recombinant adeno-associated virus (AAV)-mediated overexpression of NOTCH2NLC with 98 GGC repeats in the SN of mice by stereotactic injection. RESULTS: Four PD pedigrees (4/333, 1.2%) and three sporadic PD patients (3/2189, 0.14%) were identified with pathogenic GGC repeat expansions (larger than 60 GGC repeats) in the NOTCH2NLC gene, while eight PD patients and one healthy control were identified with intermediate GGC repeat expansions ranging from 41 to 60 repeats. No significant difference was observed in the distribution of intermediate NOTCH2NLC GGC repeat expansions between PD cases and controls (Fisher's exact test p-value = 0.29). Skin biopsy showed P62-positive intranuclear NOTCH2NLC-polyGlycine (polyG) inclusions in the skin nerve fibers of patient. Expanded GGC repeats in NOTCH2NLC produced widespread intranuclear and perinuclear polyG inclusions, which led to a severe loss of dopaminergic neurons in the SN. Consistently, polyG inclusions were presented in the SN of EIIa-NOTCH2NLC-(GGC)98 transgenic mice and also led to dopaminergic neuron loss in the SN. CONCLUSIONS: Overall, our findings provide strong evidence that GGC repeat expansions within NOTCH2NLC contribute to the pathogenesis of PD and cause degeneration of nigral dopaminergic neurons.


Assuntos
Doença de Parkinson , Animais , Humanos , Camundongos , Neurônios Dopaminérgicos/patologia , Corpos de Inclusão Intranuclear/genética , Corpos de Inclusão Intranuclear/patologia , Camundongos Transgênicos , Degeneração Neural/patologia , Doença de Parkinson/genética , Doença de Parkinson/patologia , Substância Negra/patologia , Expansão das Repetições de Trinucleotídeos
9.
Chin Med J (Engl) ; 137(4): 450-456, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-37341647

RESUMO

BACKGROUND: Genetic variants of dopaminergic transcription factor-encoding genes are suggested to be Parkinson's disease (PD) risk factors; however, no comprehensive analyses of these genes in patients with PD have been undertaken. Therefore, we aimed to genetically analyze 16 dopaminergic transcription factor genes in Chinese patients with PD. METHODS: Whole-exome sequencing (WES) was performed using a Chinese cohort comprising 1917 unrelated patients with familial or sporadic early-onset PD and 1652 controls. Additionally, whole-genome sequencing (WGS) was performed using another Chinese cohort comprising 1962 unrelated patients with sporadic late-onset PD and 1279 controls. RESULTS: We detected 308 rare and 208 rare protein-altering variants in the WES and WGS cohorts, respectively. Gene-based association analyses of rare variants suggested that MSX1 is enriched in sporadic late-onset PD. However, the significance did not pass the Bonferroni correction. Meanwhile, 72 and 1730 common variants were found in the WES and WGS cohorts, respectively. Unfortunately, single-variant logistic association analyses did not identify significant associations between common variants and PD. CONCLUSIONS: Variants of 16 typical dopaminergic transcription factors might not be major genetic risk factors for PD in Chinese patients. However, we highlight the complexity of PD and the need for extensive research elucidating its etiology.


Assuntos
Doença de Parkinson , Humanos , Doença de Parkinson/genética , Predisposição Genética para Doença/genética , Fatores de Transcrição/genética , Sequenciamento do Exoma , Povo Asiático/genética
10.
Inorg Chem ; 62(44): 18299-18306, 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37883650

RESUMO

Zeolite-confined silver nanoclusters (Ag-zeolite) have aroused vast interest due to their remarkable luminescence. The countercations within a zeolite play critical roles in determining the luminescent properties of the resulting Ag-zeolite. We observed, in this work, that introducing Mg2+ enabled the Ag-13X zeolite a stable and bright yellow emission with a high PLQY of 94.6%, the first report on the luminescence enhancement of the Ag-13X zeolite by Mg2+, to the best of our knowledge. The formation of specific internal electric fields inside 13X and the structural contraction of the zeolite framework due to the high charge density and the small ionic radius of Mg2+ are believed to be responsible for the enhanced stable and bright yellow emission. The stabilization effect of Mg2+ is removed by increasing the heating temperature above 700 °C, which leads to the variation of silver nanoclusters as a result of the framework collapse of the zeolite. The Ag-zeolite synthesized by us, featured with a broad emission band, a high PLQY of 94.6%, and good thermal stability, can be considered a suitable candidate to replace the traditional commercial yellow-emitting phosphor YAG:Ce3+ for light-based applications. This work contributes to a valuable reference for the rational design of silver nanoclusters confined in zeolites with promising new functionalities and stimulates potential applications as novel phosphors for near-ultraviolet light-emitting diodes (NUV-LEDs).

11.
NPJ Parkinsons Dis ; 9(1): 129, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37658046

RESUMO

GBA1 variants are important risk factors for Parkinson's disease (PD). Most studies assessing GBA1-related PD risk have been performed in European-derived populations. Although the coding region of the GBA1 gene in the Chinese population has been analyzed, the sample sizes were not adequate. In this study, we aimed to investigate GBA1 variants in a large Chinese cohort of patients with PD and healthy control and explore the associated clinical characteristics. GBA1 variants in 4034 patients and 2931 control participants were investigated using whole-exome and whole-genome sequencing. The clinical features of patients were evaluated using several scales. Regression analysis, chi-square, and Fisher exact tests were used to analyze GBA1 variants and the clinical symptoms of different groups. We identified 104 variants, including 8 novel variants, expanding the spectrum of GBA1 variants. The frequency of GBA1 variants in patients with PD was 7.46%, higher than that in the control (1.81%) (P < 0.001, odds ratio [OR] = 4.38, 95% confidence interval [CI]: 3.26-5.89). Among patients, 176 (4.36%) had severe variants, 34 (0.84%) carried mild variants, three (0.07%) had risk variants, and 88 (2.18%) carried unknown variants. Our study, for the first time, found that p.G241R (P = 0.007, OR = 15.3, 95% CI: 1.25-261.1) and p.S310G (P = 0.005, OR = 4.86, 95% CI: 1.52-28.04) variants increased the risk of PD. Patients with GBA1 variants exhibited an earlier onset age and higher risk of probable rapid-eye-movement sleep behavior disorder, olfactory dysfunction, depression, and autonomic dysfunction than patients without GBA1 variants.

12.
Ann Clin Transl Neurol ; 10(9): 1590-1602, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37475517

RESUMO

OBJECTIVES: Hereditary spastic paraplegia (HSP) is a genetically heterogeneous disease caused by over 70 genes, with a significant number of patients still genetically unsolved. In this study, we recruited a suspected HSP family characterized by spasticity, developmental delay, ataxia and hypomyelination, and intended to reveal its molecular etiology by whole exome sequencing (WES) and long-read sequencing (LRS) analyses. METHODS: WES was performed on 13 individuals of the family to identify the causative mutations, including analyses of SNVs (single-nucleotide variants) and CNVs (copy number variants). Accurate circular consensus (CCS) long-read sequencing (LRS) was used to verify the findings of CNV analysis from WES. RESULTS: SNVs analysis identified a missense variant c.195G>T (p.E65D) of MORF4L2 at Xq22.2 co-segregating in this family from WES data. Further CNVs analysis revealed a microdeletion, which was adjacent to the MORF4L2 gene, also co-segregating in this family. LRS verified this microdeletion and confirmed the deletion range (chrX: 103,690,507-103,715,018, hg38) with high resolution at nucleotide level accuracy. INTERPRETATIONS: In this study, we identified an Xq22.2 microdeletion (about 24.5 kb), which contains distal enhancers of the PLP1 gene, as a likely cause of SPG2 in this family. The lack of distal enhancers may result in transcriptional repression of PLP1 in oligodendrocytes, potentially affecting its role in the maintenance of myelin, and causing SPG2 phenotype. This study has highlighted the importance of noncoding genomic alterations in the genetic etiology of SPG2.


Assuntos
Paraplegia Espástica Hereditária , Humanos , Paraplegia Espástica Hereditária/genética , Proteína Proteolipídica de Mielina/genética , Mutação , Mutação de Sentido Incorreto , Fenótipo , Fatores de Transcrição/genética
13.
Front Aging Neurosci ; 15: 1207114, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37304079

RESUMO

Objective: Parkinson's disease (PD) and dystonia are two closely related movement disorders with overlaps in clinical phenotype. Variants in several dystonia-related genes were demonstrated to be associated with PD; however, genetic evidence for the involvement of dystonia-related genes in PD has not been fully studied. Here, we comprehensively investigated the association between rare variants in dystonia-related genes and PD in a large Chinese cohort. Methods: We comprehensively analyzed the rare variants of 47 known dystonia-related genes by mining the whole-exome sequencing (WES) and whole-genome sequencing (WGS) data from 3,959 PD patients and 2,931 healthy controls. We initially identified potentially pathogenic variants of dystonia-related genes in patients with PD based on different inheritance models. Sequence kernel association tests were conducted in the next step to detect the association between the burden of rare variants and the risk for PD. Results: We found that five patients with PD carried potentially pathogenic biallelic variants in recessive dystonia-related genes including COL6A3 and TH. Additionally, we identified 180 deleterious variants in dominant dystonia-related genes based on computational pathogenicity predictions and four of which were considered as potentially pathogenic variants (p.W591X and p.G820S in ANO3, p.R678H in ADCY5, and p.R458Q in SLC2A1). A gene-based burden analysis revealed the increased burden of variant subgroups of TH, SQSTM1, THAP1, and ADCY5 in sporadic early-onset PD, whereas COL6A3 was associated with sporadic late-onset PD. However, none of them reached statistical significance after the Bonferroni correction. Conclusion: Our findings indicated that rare variants in several dystonia-related genes are suggestively associated with PD, and taken together, the role of COL6A3 and TH genes in PD is highlighted.

14.
FASEB J ; 37(7): e23009, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37273180

RESUMO

Human and animal studies support that consuming a high level of linoleic acid (LA, 18:2ω-6), an essential fatty acid and key component of the human diet, increases the risk of colon cancer. However, results from human studies have been inconsistent, making it challenging to establish dietary recommendations for optimal LA intake. Given the importance of LA in the human diet, it is crucial to better understand the molecular mechanisms underlying its potential colon cancer-promoting effects. Using LC-MS/MS-based targeted lipidomics, we find that the cytochrome P450 (CYP) monooxygenase pathway is a major pathway for LA metabolism in vivo. Furthermore, CYP monooxygenase is required for the colon cancer-promoting effects of LA, since the LA-rich diet fails to exacerbate colon cancer in CYP monooxygenase-deficient mice. Finally, CYP monooxygenase mediates the pro-cancer effects of LA by converting LA to epoxy octadecenoic acids (EpOMEs), which have potent effects on promoting colon tumorigenesis via gut microbiota-dependent mechanisms. Overall, these results support that CYP monooxygenase-mediated conversion of LA to EpOMEs plays a crucial role in the health effects of LA, establishing a unique mechanistic link between dietary fatty acid intake and cancer risk. These results could help in developing more effective dietary guidelines for optimal LA intake and identifying subpopulations that may be especially vulnerable to LA's negative effects.


Assuntos
Neoplasias do Colo , Ácido Linoleico , Humanos , Camundongos , Animais , Ácido Linoleico/farmacologia , Ácido Linoleico/metabolismo , Cromatografia Líquida , Espectrometria de Massas em Tandem , Eicosanoides , Sistema Enzimático do Citocromo P-450/metabolismo , Dieta , Neoplasias do Colo/etiologia
15.
Chemistry ; 29(31): e202300407, 2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-37032546

RESUMO

Lithium-sulfur batteries (LSBs) have been considered as one of the most promising energy storage systems owing to their high theoretical energy density and abundant sulfuric resources. However, their commercial application is limited by rapid capacity decline and low Coulombic efficiency. Metal-organic frameworks (MOFs) made of metallic nodes and organic ligands can suppress polysulfide shuttling and promote redox kinetics. In this paper, the effects of crystallographic dimensions and metallic categories on chemical performance of LSBs have been meticulously explored electrochemical performance. As a result, exposed Ni active sites in a lamellar Ni-MOF was found to deliver a superior electrochemical performance. The as-assembled LSBs with 2D-Ni-MOF/CNTs cathode deliver a much superior initial discharge capacity, (820 mAh g-1 at 0.5 C), and exhibit excellent cycling stability over 550 cycles than those analogues of 3D stereoscopic Ni-MOF and 2D lamellar Co-MOF. This work proposed a perspective in elevating LSBs performance through synergistic optimization of the MOFs dimensions and the metallic nuclei in the cathodes.

16.
Front Neurol ; 14: 1133449, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36908591

RESUMO

Introduction: Parkinson's disease (PD) is a progressive movement disorder caused by a loss of dopaminergic neurons. Previous studies have highlighted the importance of mitochondria dynamics in the pathogenesis of PD. Dynamin-1-like (DNM1L) is a gene that encodes dynamin-related protein 1 (DRP1), a GTPase essential for proper mitochondria fission. In the present study, we evaluated the relationship between DNM1L variants and PD in the Chinese population. Methods: A total of 3,879 patients with PD and 2,931 healthy controls were recruited and burden genetic analysis combined with high-throughput sequencing was applied. Results: We identified 23 rare variants in the coding region of DNM1L, while no difference in variant burden was shown between the cases and controls. We also identified 201 common variants in the coding and flanking regions and found two significant SNPs, namely, rs10844308 and rs143794289 [odds ratio (OR) = 1.220 and 0.718, p = 0.025 and 0.036, respectively]. We also performed a meta-analysis to correlate the two SNPs with PD risk. However, none of the common variants was significant using logistic regression. Conclusion: Despite the critical role of DRP1, our study did not support the relationship between DNM1L variants and PD risk in the Chinese population.

17.
Molecules ; 28(5)2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36903464

RESUMO

Playing a significant role in electrochemical energy conversion and storage systems, heteroatom-doped transition metal oxides are key materials for oxygen-involving reactions. Herein, mesoporous surface-sulfurized Fe-Co3O4 nanosheets integrated with N/S co-doped graphene (Fe-Co3O4-S/NSG) were designed as composite bifunctional electrocatalysts for the oxygen evolution reaction (OER) and the oxygen reduction reaction (ORR). Compared with the Co3O4-S/NSG catalyst, it exhibited superior activity in the alkaline electrolytes by delivering an OER overpotential of 289 mV at 10 mA cm-2 and an ORR half-wave potential of 0.77 V vs. RHE. Additionally, Fe-Co3O4-S/NSG kept stable at 4.2 mA cm-2 for 12 h without significant attenuation to render robust durability. This work not only demonstrates the satisfactory effect of the transition-metal cationic modification represented by iron doping on the electrocatalytic performance of Co3O4, but it also provides a new insight on the design of OER/ORR bifunctional electrocatalysts for efficient energy conversion.

18.
Front Aging Neurosci ; 15: 1120615, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36998320

RESUMO

Introduction: Although the relationship between psychiatric disorders and Parkinson's disease (PD) has attracted continuous research attention, the causal linkage between them has not reached a definite conclusion. Methods: To identify the causal relationship between psychiatric disorders and PD, we used public summary-level data from the most recent and largest genome-wide association studies (GWASs) on psychiatric disorders and PD to conduct a bidirectional two-sample Mendelian randomization (MR). We applied stringent control steps in instrumental variable selection using the Mendelian randomization pleiotropy residual sum and outlier (MR-PRESSO) method to rule out pleiotropy. The inverse-variance weighted (IVW) method was used to identify the causal relationship between psychiatric disorders and PD. Multiple MR analysis methods, including MR-Egger, weighted-median, and leave-one-out analyses, were used for sensitivity analysis, followed by heterogeneity tests. Further validation and reverse MR analyses were conducted to strengthen the results of the forward MR analysis. Results: The lack of sufficient estimation results could suggest a causal relationship between psychiatric disorders and PD in the forward MR analysis. However, the subsequent reverse MR analysis detected a causal relationship between PD and bipolar disorder (IVW: odds ratios [OR] =1.053, 95% confidence interval [CI] =1.02-1.09, p = 0.001). Further analysis demonstrated a causal relationship between genetically predicted PD and the risk of bipolar disorder subtype. No pleiotropy or heterogeneity was detected in the analyses. Discussion: Our study suggested that while psychiatric disorders and traits might play various roles in the risk of developing PD, PD might also be involved in the risk of developing psychiatric disorders.

19.
NPJ Parkinsons Dis ; 9(1): 22, 2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36759515

RESUMO

Genome-wide association studies (GWASs) have identified numerous susceptibility loci for Parkinson's disease (PD), but its genetic architecture remains underexplored in populations of non-European ancestry. To identify genetic variants associated with PD in the Chinese population, we performed a GWAS using whole-genome sequencing (WGS) in 1,972 cases and 2,478 controls, and a replication study in a total of 8209 cases and 9454 controls. We identified one new risk variant rs61204179 (Pcombined = 1.47 × 10-9) with low allele frequency, four previously reported risk variants (NUCKS1/RAB29-rs11557080, SNCA-rs356182, FYN-rs997368, and VPS13C-rs2251086), as well as three risk variants in LRRK2 coding region (A419V, R1628P, and G2385R) with genome-wide significance (P < 5 × 10-8) for PD in Chinese population. Moreover, of the reported genome-wide significant risk variants found mostly in European ancestry populations, the correlation coefficient (rb) of effect size accounting for sampling errors was 0.91 between datasets and 63.6% attained P < 0.05 in Chinese population. Accordingly, we estimated a heritability of 0.14-0.18 for PD, and a moderate genetic correlation between European ancestry and Chinese populations (rg = 0.47, se = 0.21). Polygenic risk score (PRS) analysis revealed that individuals with PRS values in the highest quartile had a 3.9-fold higher risk of developing PD than the lowest quartile. In conclusion, the present GWAS identified PD-associated variants in Chinese population, as well as genetic factors shared among distant populations. Our findings shed light on the genetic homogeneity and heterogeneity of PD in different ethnic groups and suggested WGS might continue to improve our understanding of the genetic architecture of PD.

20.
Mol Neurobiol ; 60(5): 2729-2736, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36717479

RESUMO

Increasing evidence suggests that circadian dysfunction is related to Parkinson's disease (PD). However, the role of circadian clock genes in PD is still poorly understood. This study aimed to illustrate the association between genetic variants of circadian clock genes and PD in a large Chinese population cohort. Ten circadian clock genes were included in this study. Whole-exome sequencing (WES) was conducted in 1997 early-onset or familial PD patients and 1652 controls (WES cohort), and whole-genome sequencing (WGS) was conducted in 1962 sporadic late-onset PD patients and 1279 controls (WGS cohort). Analyses were completed using the optimized sequence kernel association test and regression analyses. In the burden analysis of the circadian clock gene set, we found suggestive significant associations between the circadian clock genes and PD in the WES cohort when considering missense, damaging missense (Dmis), and deleterious variants. Moreover, the burden analysis of single genes revealed suggestive significant associations between PD and the loss-of-function variants of the CRY1 gene, missense, Dmis, and deleterious variants of the PER1 gene, and Dmis and deleterious variants of the PER2 gene in the WES cohort. Rare variants in the WGS cohort and all common variants in the WGS and WES cohorts were unrelated to PD. Phenotypic analysis indicated that deleterious variants of the PER1 gene were associated with dyskinesia in the WES cohort. Our study provides evidence of a potential link between circadian clock genes and PD from a genetic perspective.


Assuntos
Relógios Circadianos , Doença de Parkinson , Humanos , Doença de Parkinson/genética , Relógios Circadianos/genética , Sequenciamento do Exoma , Povo Asiático
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA