Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
1.
J Environ Manage ; 370: 122594, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39303594

RESUMO

Spatially differentiated conservation effort for natural resources is critical to achieving a balance between protection and development in national parks. However, the extent of priority conservation areas for plants that integrate multispecies and multifaceted values is unclear. Here, we selected fine-resolution environmental variables with stronger impacts on wild plant survival to spatialize the distribution of all modeling-eligible species using species distribution models in Three-River-Source National Park, China. These were then combined with in situ conservation results for insufficient data species to identify priority conservation areas (PCAs) in terms of diversity, ecological and economic values, respectively. We analyzed the spatial characteristics of the priority conservation areas and searched for conservation gaps not covered by national nature reserves. The results showed that this study obtained more precise results on the spatial distribution of species by improving environmental variables and upgrading the spatial resolution. In Three-River-Source National Park, the species richness of wild plants showed a decreasing trend from southeast to northwest. There were significant differences in the spatial distribution of the priority conservation areas identified based on the three values, which was the basis for the spatially differentiated conservation and development of wild plant resources. In addition, the priority conservation areas obtained based on ecological value found Top17% priority conservation areas in the Hoh Xil Natural Reserve, which could not be revealed based on diversity or economic value. These results highlight the urgency of implementing multispecies and multifaceted values studies in national parks. In the future, studying conflicts between wildlife priority conservation areas and human activities, and expanding to national parks on a global scale, will be the focus that this study will continue to explore.

2.
Genes (Basel) ; 15(9)2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39336754

RESUMO

Chloride channels (ClCs) have received global interest due to their significant role in the regulation of ion homeostasis, fluid transport, and electrical excitability of tissues and organs in different mammals and contributing to various functions, such as neuronal signaling, muscle contraction, and regulating the electrolytes' balance in kidneys and other organs. In order to define the chloride voltage-gated channel (CLCN) gene family in buffalo, this study used in silico analyses to examine physicochemical properties, evolutionary patterns, and genome-wide identification. We identified eight CLCN genes in buffalo. The ProtParam tool analysis identified a number of important physicochemical properties of these proteins, including hydrophilicity, thermostability, in vitro instability, and basic nature. Based on their evolutionary relationships, a phylogenetic analysis divided the eight discovered genes into three subfamilies. Furthermore, a gene structure analysis, motif patterns, and conserved domains using TBtool demonstrated the significant conservation of this gene family among selected species over the course of evolution. A comparative amino acid analysis using ClustalW revealed similarities and differences between buffalo and cattle CLCN proteins. Three duplicated gene pairs were identified, all of which were segmental duplications except for CLCN4-CLCN5, which was a tandem duplication in buffalo. For each gene pair, the Ka/Ks test ratio findings showed that none of the ratios was more than one, indicating that these proteins were likely subject to positive selection. A synteny analysis confirmed a conserved pattern of genomic blocks between buffalo and cattle. Transcriptional control in cells relies on the binding of transcription factors to specific sites in the genome. The number of transcription factor binding sites (TFBSs) was higher in cattle compared to buffalo. Five main recombination breakpoints were identified at various places in the recombination analysis. The outcomes of our study provide new knowledge about the CLCN gene family in buffalo and open the door for further research on candidate genes in vertebrates through genome-wide studies.


Assuntos
Búfalos , Canais de Cloreto , Evolução Molecular , Filogenia , Animais , Búfalos/genética , Canais de Cloreto/genética , Canais de Cloreto/química , Canais de Cloreto/metabolismo , Família Multigênica , Simulação por Computador , Bovinos/genética , Sequência de Aminoácidos
3.
Eur J Pharmacol ; 982: 176944, 2024 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-39187041

RESUMO

Pulmonary hypertension (PH) is a serious pulmonary vascular disease characterized by vascular remodeling. Circular RNAs (CircRNAs) play important roles in pulmonary hypertension, but the mechanism of PH is not fully understood, particularly the roles of circRNAs located in the nucleus. Circ-calmodulin 4 (circ-calm4) is expressed in both the cytoplasm and the nucleus of pulmonary arterial smooth muscle cells (PASMCs). This study aimed to investigate the role of endonuclear circ-calm4 in PH and elucidate its underlying signaling pathway in ferroptosis. Immunoblotting, quantitative real-time polymerase chain reaction (PCR), malondialdehyde (MDA) assay, immunofluorescence, iron assay, dot blot, and chromatin immunoprecipitation (ChIP) were performed to investigate the role of endonuclear circ-calm4 in PASMC ferroptosis. Increased endonuclear circ-calm4 facilitated ferroptosis in PASMCs under hypoxic conditions. We further identified the cartilage oligomeric matrix protein (COMP) as a downstream effector of circ-calm4 that contributed to the occurrence of hypoxia-induced ferroptosis in PASMCs. Importantly, we confirmed that endonuclear circ-calm4 formed circR-loops with the promoter region of the COMP gene and negatively regulated its expression. Inhibition of COMP restored the phenotypes related to ferroptosis under hypoxia stimulation combined with antisense oligonucleotide (ASO)-circ-calm4 treatment. We conclude that the circ-calm4/COMP axis contributed to hypoxia-induced ferroptosis in PASMCs and that circ-calm4 formed circR-loops with the COMP promoter in the nucleus and negatively regulated its expression. The circ-calm4/COMP axis may be useful for the design of therapeutic strategies for protecting cellular functionality against ferroptosis and pulmonary hypertension.


Assuntos
Ferroptose , Miócitos de Músculo Liso , Artéria Pulmonar , RNA Circular , Animais , Masculino , Camundongos , Proteína de Matriz Oligomérica de Cartilagem/genética , Proteína de Matriz Oligomérica de Cartilagem/metabolismo , Hipóxia Celular/genética , Núcleo Celular/metabolismo , Células Cultivadas , Ferroptose/genética , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/patologia , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/metabolismo , Artéria Pulmonar/citologia , Artéria Pulmonar/metabolismo , RNA Circular/genética , RNA Circular/metabolismo , Transdução de Sinais
4.
Sci Data ; 11(1): 896, 2024 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-39154027

RESUMO

Well-documented sleep datasets from healthy adults are important for sleep pattern analysis and comparison with a wide range of neuropsychiatric disorders. Currently, available sleep datasets from healthy adults are acquired using low-density arrays with a minimum of four electrodes in a typical sleep montage. The low spatial resolution is thus prohibitive for the analysis of the spatial structure of sleep. Here we introduce an open-access sleep dataset from 29 healthy adults (13 female, aged 32.17 ± 6.30 years) acquired at the Montreal Neurological Institute. The dataset includes overnight polysomnograms with high-density scalp electroencephalograms incorporating 83 electrodes, electrocardiogram, electromyogram, electrooculogram, and an average of electrode positions using manual co-registrations and sleep scoring annotations. Data characteristics and group-level analysis of sleep properties were assessed. The database can be accessed through ( https://doi.org/10.17605/OSF.IO/R26FH ). This is the first high-density electroencephalogram open sleep database from healthy adults, allowing researchers to investigate sleep physiology at high spatial resolution. We expect that this database will serve as a valuable resource for studying sleep physiology and for benchmarking sleep pathology.


Assuntos
Eletroencefalografia , Polissonografia , Couro Cabeludo , Sono , Humanos , Adulto , Feminino , Masculino , Bases de Dados Factuais
5.
ACS Appl Mater Interfaces ; 16(33): 44202-44209, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39134470

RESUMO

Radiation detectors based on metal halide perovskite (MHP) single crystals (SCs) have exhibited exceptional sensitivity, low detection limit, and remarkable energy resolution. However, the operational stability issue still dramatically impedes their commercialization due to degradation induced by high-energy irradiation and large bias. Here, we propose an innovative infrared healing strategy to restore the devices that have undergone severe damage from both long-term biasing and X-ray irradiation. Compared to the slow and inefficient intrinsic self-healing process of MHPs, the infrared healing method demonstrates the capacity to achieve rapid recovery of the detection performance of the degraded devices within just 1 h. We reveal that the healing mechanism is mainly related to the reduction of the ion-migration activation energy in MHP SCs under infrared illumination, which promotes the back diffusion of the displaced ions to their original lattice positions and remedies defects. Finally, the healing effect is further confirmed through the gamma-ray spectroscopy acquisition with degraded MHP SCs, whose energy resolution at 59.5 keV of 241Am source is improved from 36% to 12% following infrared illumination. These results present infrared healing as a simple and economic method to extend the service life of MHP SC-based detectors.

6.
Adv Mater ; 36(36): e2405718, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39014920

RESUMO

As-cast organic solar cells (OSCs) possess tremendous potential for low-cost commercial applications. Herein, five small-molecule acceptors (A1-A5) are designed and synthesized by selectively and elaborately extending the alkyl inner side chain flanking on the pyrrole motif to prepare efficient as-cast devices. As the extension of the alkyl chain, the absorption spectra of the films are gradually blue-shifted from A1 to A5 along with slightly uplifted lowest unoccupied molecular orbital energy levels, which is conducive for optimizing the trade-off between short-circuit current density and open-circuit voltage of the devices. Moreover, a longer alkyl chain improves compatibility between the acceptor and donor. The in situ technique clarifies that good compatibility will prolong molecular assembly time and assist in the preferential formation of the donor phase, where the acceptor precipitates in the framework formed by the donor. The corresponding film-formation dynamics facilitate the realization of favorable film morphology with a suitable fibrillar structure, molecular stacking, and vertical phase separation, resulting in an incremental fill factor from A1 to A5-based devices. Consequently, the A3-based as-cast OSCs achieve a top-ranked efficiency of 18.29%. This work proposes an ingenious strategy to manipulate intermolecular interactions and control the film-formation process for constructing high-performance as-cast devices.

7.
Int J Chron Obstruct Pulmon Dis ; 19: 1591-1601, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39005647

RESUMO

Background: Exercise is an indispensable component of pulmonary rehabilitation with strong anti-inflammatory effects. However, the mechanisms by which exercise prevents diaphragmatic atrophy in COPD (chronic obstructive pulmonary disease) remain unclear. Methods: Forty male C57BL/6 mice were assigned to the control (n=16) and smoke (n=24) groups. Mice in the smoke group were exposed to the cigarette smoke (CS) for six months. They were then divided into model and exercise training groups for 2 months. Histological changes were observed in lung and diaphragms. Subsequently, agonist U46639 and antagonist Y27632 of RhoA/ROCK were subjected to mechanical stretching in LPS-treated C2C12 myoblasts. The expression levels of Atrogin-1, MuRF-1, MyoD, Myf5, IL-1ß, TNF-α, and RhoA/ROCK were determined by Western blotting. Results: Diaphragmatic atrophy and increased RhoA/ROCK expression were observed in COPD mice. Exercise training attenuated diaphragmatic atrophy, decreased the expression of MuRF-1, and increased MyoD expression in COPD diaphragms. Exercise also affects the upregulation of RhoA/ROCK and inflammation-related proteins. In in vitro experiments with C2C12 myoblasts, LPS remarkably increased the level of inflammation and protein degradation, whereas Y27632 or combined with mechanical stretching prevented this phenomenon considerably. Conclusion: RhoA/ROCK plays an important role in the prevention of diaphragmatic atrophy in COPD.


Assuntos
Diafragma , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Atrofia Muscular , Doença Pulmonar Obstrutiva Crônica , Transdução de Sinais , Quinases Associadas a rho , Proteína rhoA de Ligação ao GTP , Animais , Doença Pulmonar Obstrutiva Crônica/metabolismo , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Quinases Associadas a rho/metabolismo , Masculino , Atrofia Muscular/prevenção & controle , Atrofia Muscular/metabolismo , Atrofia Muscular/patologia , Atrofia Muscular/fisiopatologia , Atrofia Muscular/etiologia , Proteína rhoA de Ligação ao GTP/metabolismo , Diafragma/metabolismo , Diafragma/fisiopatologia , Diafragma/patologia , Linhagem Celular , Proteínas rho de Ligação ao GTP/metabolismo , Terapia por Exercício/métodos , Camundongos , Pulmão/patologia , Pulmão/metabolismo , Pulmão/fisiopatologia , Mediadores da Inflamação/metabolismo , Condicionamento Físico Animal
8.
bioRxiv ; 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38948716

RESUMO

Distinct basolateral amygdala (BLA) cell populations influence emotional responses in manners thought important for anxiety and anxiety disorders. The BLA contains numerous cell types which can broadcast information into structures that may elicit changes in emotional states and behaviors. BLA excitatory neurons can be divided into two main classes, one of which expresses Ppp1r1b (encoding protein phosphatase 1 regulatory inhibitor subunit 1B) which is downstream of the genes encoding the D1 and D2 dopamine receptors (drd1 and drd2 respectively). The role of drd1+ or drd2+ BLA neurons in learned and unlearned emotional responses is unknown. Here, we identified that the drd1+ and drd2+ BLA neuron populations form two parallel pathways for communication with the ventral striatum. These neurons arise from the basal nucleus of the BLA, innervate the entire space of the ventral striatum, and are capable of exciting ventral striatum neurons. Further, through three separate behavioral assays, we found that the drd1+ and drd2+ parallel pathways bidirectionally influence both learned and unlearned emotional states when they are activated or suppressed, and do so depending upon where they synapse in the ventral striatum - with unique contributions of drd1+ and drd2+ circuitry on negative emotional states. Overall, these results contribute to a model whereby parallel, genetically-distinct BLA to ventral striatum circuits inform emotional states in a projection-specific manner.

9.
J Cardiothorac Surg ; 19(1): 324, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849859

RESUMO

BACKGROUND: Postoperative delirium (POD) and cognitive dysfunction (POCD) are common complications following thoracic surgery, particularly in patients aged 65 years and above. These complications can significantly affect recovery and increase healthcare costs. This study investigates the effects of low-dose S-ketamine on reducing POD and POCD in this patient demographic. METHODS: In this retrospective cohort study, medical records of patients aged ≥ 65 years who underwent elective thoracic surgery from January 2019 to August 2023 were reviewed. Patients were categorized into S-ketamine and Control groups based on intraoperative S-ketamine exposure. POD was assessed using the Confusion Assessment Method (CAM), while cognitive function was evaluated using the Montreal Cognitive Assessment (MoCA) at baseline, 1 week, 1 month, and 6 months post-surgery. Intraoperative and postoperative parameters, including hemodynamic stability, blood loss, pain scores, and ICU stay length, were also recorded. RESULTS: The study comprised 140 participants, with 70 in each group. The S-ketamine group demonstrated a significantly lower incidence of POD at 7 days post-surgery (12.0% vs. 26.7%, P < 0.001), and reduced POCD at 1 month (18.7% vs. 36.0%, P < 0.05) and 6 months (10.7% vs. 21.3%, P < 0.05). The Ketamine group had a significantly higher median MoCA score compared to the Control group both at 1 month (P = 0.021) and 6 months (P = 0.007). Adverse events, such as infection, bleeding, and respiratory failure, showed no significant differences between the groups, suggesting a safe profile for S-ketamine. CONCLUSION: Administering low-dose S-ketamine during thoracic surgery in patients aged 65 years and above significantly reduces the incidence of POD and POCD, highlighting its neuroprotective potential. These findings advocate for the inclusion of S-ketamine in anesthetic protocols to improve postoperative outcomes and reduce healthcare costs in this patient population.


Assuntos
Delírio , Ketamina , Complicações Pós-Operatórias , Procedimentos Cirúrgicos Torácicos , Humanos , Ketamina/administração & dosagem , Ketamina/uso terapêutico , Idoso , Feminino , Masculino , Estudos Retrospectivos , Procedimentos Cirúrgicos Torácicos/efeitos adversos , Complicações Pós-Operatórias/prevenção & controle , Delírio/prevenção & controle , Cognição/efeitos dos fármacos , Disfunção Cognitiva/prevenção & controle , Idoso de 80 Anos ou mais
10.
Biochem Biophys Res Commun ; 720: 150076, 2024 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-38772224

RESUMO

Chronic morphine withdrawal memory formation is a complex process influenced by various molecular mechanisms. In this study, we aimed to investigate the contributions of the basolateral amygdala (BLA) and complement component 1, q subcomponent-like 3 (C1QL3), a secreted and presynaptically targeted protein, to the formation of chronic morphine (repeat dosing of morphine) withdrawal memory using conditioned place aversion (CPA) and chemogenetic methods. We conducted experiments involving the inhibition of the BLA during naloxone-induced withdrawal to assess its impact on CPA scores, providing insights into the significance of the BLA in the chronic morphine memory formation process. We also examined changes in C1ql3/C1QL3 expression within the BLA following conditioning. Immunofluorescence analysis revealed the colocalization of C1QL3 and the G protein-coupled receptor, brain-specific angiogenesis inhibitor 3 (BAI3) in the BLA, supporting their involvement in synaptic development. Moreover, we downregulated C1QL3 expression in the BLA to investigate its role in chronic morphine withdrawal memory formation. Our findings revealed that BLA inhibition during naloxone-induced withdrawal led to a significant reduction in CPA scores, confirming the critical role of the BLA in this memory process. Additionally, the upregulation of C1ql3 expression within the BLA postconditioning suggested its participation in withdrawal memory formation. The colocalization of C1QL3 and BAI3 in the BLA further supported their involvement in synaptic development. Furthermore, downregulation of C1QL3 in the BLA effectively hindered chronic morphine withdrawal memory formation, emphasizing its pivotal role in this process. Notably, we identified postsynaptic density protein 95 (PSD95) as a potential downstream effector of C1QL3 during chronic morphine withdrawal memory formation. Blocking PSD95 led to a significant reduction in the CPA score, and it appeared that C1QL3 modulated the ubiquitination-mediated degradation of PSD95, resulting in decreased PSD95 protein levels. This study underscores the importance of the BLA, C1QL3 and PSD95 in chronic morphine withdrawal memory formation. It provides valuable insights into the underlying molecular mechanisms, emphasizing their significance in this intricate process.


Assuntos
Complexo Nuclear Basolateral da Amígdala , Proteína 4 Homóloga a Disks-Large , Memória , Morfina , Síndrome de Abstinência a Substâncias , Animais , Morfina/farmacologia , Síndrome de Abstinência a Substâncias/metabolismo , Masculino , Camundongos , Memória/efeitos dos fármacos , Proteína 4 Homóloga a Disks-Large/metabolismo , Complexo Nuclear Basolateral da Amígdala/metabolismo , Complexo Nuclear Basolateral da Amígdala/efeitos dos fármacos , Complemento C1q/metabolismo , Camundongos Endogâmicos C57BL , Naloxona/farmacologia
11.
BMC Pulm Med ; 24(1): 236, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38745304

RESUMO

BACKGROUND: We studied whether the exercise improves cigarette smoke (CS) induced chronic obstructive pulmonary disease (COPD) in mice through inhibition of inflammation mediated by Wnt/ß-catenin-peroxisome proliferator-activated receptor (PPAR) γ signaling. METHODS: Firstly, we observed the effect of exercise on pulmonary inflammation, lung function, and Wnt/ß-catenin-PPARγ. A total of 30 male C57BL/6J mice were divided into the control group (CG), smoke group (SG), low-intensity exercise group (LEG), moderate-intensity exercise group (MEG), and high-intensity exercise group (HEG). All the groups, except for CG, underwent whole-body progressive exposure to CS for 25 weeks. Then, we assessed the maximal exercise capacity of mice from the LEG, MEG, and HEG, and performed an 8-week treadmill exercise intervention. Then, we used LiCl (Wnt/ß-catenin agonist) and XAV939 (Wnt/ß-catenin antagonist) to investigate whether Wnt/ß-catenin-PPARγ pathway played a role in the improvement of COPD via exercise. Male C57BL/6J mice were randomly divided into six groups (n = 6 per group): CG, SG, LiCl group, LiCl and exercise group, XAV939 group, and XAV939 and exercise group. Mice except those in the CG were exposed to CS, and those in the exercise groups were subjected to moderate-intensity exercise training. All the mice were subjected to lung function test, lung histological assessment, and analysis of inflammatory markers in the bronchoalveolar lavage fluid, as well as detection of Wnt1, ß-catenin and PPARγ proteins in the lung tissue. RESULTS: Exercise of various intensities alleviated lung structural changes, pulmonary function and inflammation in COPD, with moderate-intensity exercise exhibiting significant and comprehensive effects on the alleviation of pulmonary inflammation and improvement of lung function. Low-, moderate-, and high-intensity exercise decreased ß-catenin levels and increased those of PPARγ significantly, and only moderate-intensity exercise reduced the level of Wnt1 protein. Moderate-intensity exercise relieved the inflammation aggravated by Wnt agonist. Wnt antagonist combined with moderate-intensity exercise increased the levels of PPARγ, which may explain the highest improvement of pulmonary function observed in this group. CONCLUSIONS: Exercise effectively decreases COPD pulmonary inflammation and improves pulmonary function. The beneficial role of exercise may be exerted through Wnt/ß-catenin-PPARγ pathway.


Assuntos
Camundongos Endogâmicos C57BL , PPAR gama , Condicionamento Físico Animal , Doença Pulmonar Obstrutiva Crônica , Via de Sinalização Wnt , Animais , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Doença Pulmonar Obstrutiva Crônica/metabolismo , Masculino , Via de Sinalização Wnt/fisiologia , Camundongos , Condicionamento Físico Animal/fisiologia , PPAR gama/metabolismo , Modelos Animais de Doenças , Pulmão/metabolismo , Pulmão/fisiopatologia , Inflamação/metabolismo
12.
Pacing Clin Electrophysiol ; 47(10): 1384-1386, 2024 10.
Artigo em Inglês | MEDLINE | ID: mdl-38683872

RESUMO

Although ventricular capture during the atrial threshold test is possible, there are rare reports on the insulation defect and inactive leads thereof. In this case, we present a pacemaker-dependent patient with a history of pacemaker generator replacements. The patient experienced ventricular capture induced by atrial pacing due to adhesion of the atrial and ventricular leads with an insulation defect. The atrial lead was abandoned and a new lead was implanted. However, there was a significant decrease in ventricular impedance detected shortly after the new lead was implanted. When observing the phenomenon of atrial pacing-induced ventricular depolarization, one uncommon reason to consider is lead adhesive wear. It is important to pay attention to the contact and bending sites of the leads.


Assuntos
Falha de Equipamento , Marca-Passo Artificial , Humanos , Marca-Passo Artificial/efeitos adversos , Eletrodos Implantados/efeitos adversos , Masculino , Estimulação Cardíaca Artificial/métodos , Idoso , Átrios do Coração/fisiopatologia
13.
Am J Physiol Lung Cell Mol Physiol ; 326(6): L754-L769, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38625125

RESUMO

Chronic exposure to environmental hazards causes airway epithelial dysfunction, primarily impaired physical barriers, immune dysfunction, and repair or regeneration. Impairment of airway epithelial function subsequently leads to exaggerated airway inflammation and remodeling, the main features of chronic obstructive pulmonary disease (COPD). Mitochondrial damage has been identified as one of the mechanisms of airway abnormalities in COPD, which is closely related to airway inflammation and airflow limitation. In this review, we evaluate updated evidence for airway epithelial mitochondrial damage in COPD and focus on the role of mitochondrial damage in airway epithelial dysfunction. In addition, the possible mechanism of airway epithelial dysfunction mediated by mitochondrial damage is discussed in detail, and recent strategies related to airway epithelial-targeted mitochondrial therapy are summarized. Results have shown that dysregulation of mitochondrial quality and oxidative stress may lead to airway epithelial dysfunction in COPD. This may result from mitochondrial damage as a central organelle mediating abnormalities in cellular metabolism. Mitochondrial damage mediates procellular senescence effects due to mitochondrial reactive oxygen species, which effectively exacerbate different types of programmed cell death, participate in lipid metabolism abnormalities, and ultimately promote airway epithelial dysfunction and trigger COPD airway abnormalities. These can be prevented by targeting mitochondrial damage factors and mitochondrial transfer. Thus, because mitochondrial damage is involved in COPD progression as a central factor of homeostatic imbalance in airway epithelial cells, it may be a novel target for therapeutic intervention to restore airway epithelial integrity and function in COPD.


Assuntos
Mitocôndrias , Estresse Oxidativo , Doença Pulmonar Obstrutiva Crônica , Humanos , Doença Pulmonar Obstrutiva Crônica/patologia , Doença Pulmonar Obstrutiva Crônica/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Animais , Mucosa Respiratória/patologia , Mucosa Respiratória/metabolismo , Células Epiteliais/patologia , Células Epiteliais/metabolismo , Espécies Reativas de Oxigênio/metabolismo
14.
Res Sq ; 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38559267

RESUMO

Sleep disturbances are prevalent in children with autism spectrum disorder (ASD) and have a major impact on the quality of life. Strikingly, sleep problems are positively correlated with the severity of ASD symptoms, such as memory impairment. However, the neural mechanisms underlying sleep disturbances and cognitive deficits in ASD are largely unexplored. Here, we show that non-rapid eye movement sleep (NREMs) is highly fragmented in the 16p11.2 deletion mouse model of ASD. The degree of sleep fragmentation is reflected in an increased number of calcium transients in the activity of locus coeruleus noradrenergic (LC-NE) neurons during NREMs. Exposure to a novel environment further exacerbates sleep disturbances in 16p11.2 deletion mice by fragmenting NREMs and decreasing rapid eye movement sleep (REMs). In contrast, optogenetic inhibition of LC-NE neurons and pharmacological blockade of noradrenergic transmission using clonidine reverse sleep fragmentation. Furthermore, inhibiting LC-NE neurons restores memory. Rabies-mediated unbiased screening of presynaptic neurons reveals altered connectivity of LC-NE neurons with sleep- and memory regulatory brain regions in 16p11.2 deletion mice. Our findings demonstrate that heightened activity of LC-NE neurons and altered brain-wide connectivity underlies sleep fragmentation in 16p11.2 deletion mice and identify a crucial role of the LC-NE system in regulating sleep stability and memory in ASD.

15.
J Neurosci ; 44(16)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38471781

RESUMO

As an intrinsic component of sleep architecture, sleep arousals represent an intermediate state between sleep and wakefulness and are important for sleep-wake regulation. They are defined in an all-or-none manner, whereas they actually present a wide range of scalp-electroencephalography (EEG) activity patterns. It is poorly understood how these arousals differ in their mechanisms. Stereo-EEG (SEEG) provides the unique opportunity to record intracranial activities in superficial and deep structures in humans. Using combined polysomnography and SEEG, we quantitatively categorized arousals during nonrapid eye movement sleep into slow wave (SW) and non-SW arousals based on whether they co-occurred with a scalp-EEG SW event. We then investigated their intracranial correlates in up to 26 brain regions from 26 patients (12 females). Across both arousal types, intracranial theta, alpha, sigma, and beta activities increased in up to 25 regions (p < 0.05; d = 0.06-0.63), while gamma and high-frequency (HF) activities decreased in up to 18 regions across the five brain lobes (p < 0.05; d = 0.06-0.44). Intracranial delta power widely increased across five lobes during SW arousals (p < 0.05 in 22 regions; d = 0.10-0.39), while it widely decreased during non-SW arousals (p < 0.05 in 19 regions; d = 0.10-0.30). Despite these main patterns, unique activities were observed locally in some regions such as the hippocampus and middle cingulate cortex, indicating spatial heterogeneity of arousal responses. Our results suggest that non-SW arousals correspond to a higher level of brain activation than SW arousals. The decrease in HF activities could potentially explain the absence of awareness and recollection during arousals.


Assuntos
Eletrocorticografia , Couro Cabeludo , Feminino , Humanos , Sono/fisiologia , Nível de Alerta/fisiologia , Vigília/fisiologia , Eletroencefalografia/métodos
16.
J Org Chem ; 89(7): 4336-4348, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38465834

RESUMO

The chiral 4,5,6,7-tetrahydropyrazolo[1,5-a]pyrimidine is the key core skeleton of potent Bruton's tyrosine kinase (BTK) inhibitor Zanubrutinib, and the catalyst-controlled asymmetric hydrogenation of planar multinuclear pyrimidine heteroarenes with multiple N atoms could provide an efficient route toward its synthesis. Owing to the strong aromaticity and poisoning effect toward chiral transition metal catalyst, asymmetric hydrogenation of pyrazolo[1,5-a]pyrimidines with multiple nitrogen atoms is still a challenge for synthesizing the chiral 4,5,6,7-tetrahydropyrazolo[1,5-a]-pyrimidine. Herein, an efficient iridium-catalyzed asymmetric hydrogenation of pyrazolo[1,5-a]pyrimidines has been developed using substrate activation strategy, with up to 99% ee. The decagram scale synthesis further demonstrated the potential and promise of this procedure in the synthesis of Zanubrutinib. In addition, a mechanistic study indicated that the hydrogenation starts with 1,2-hydrogenation.

17.
bioRxiv ; 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38496540

RESUMO

Glioblastoma (GBM), a universally fatal brain cancer, infiltrates the brain and can be synaptically innervated by neurons, which drives tumor progression 1-6 . Synaptic inputs onto GBM cells identified so far are largely short-range and glutamatergic 7-9 . The extent of integration of GBM cells into brain-wide neuronal circuitry is not well understood. Here we applied a rabies virus-mediated retrograde monosynaptic tracing approach 10-12 to systematically investigate circuit integration of human GBM organoids transplanted into adult mice. We found that GBM cells from multiple patients rapidly integrated into brain-wide neuronal circuits and exhibited diverse local and long-range connectivity. Beyond glutamatergic inputs, we identified a variety of neuromodulatory inputs across the brain, including cholinergic inputs from the basal forebrain. Acute acetylcholine stimulation induced sustained calcium oscillations and long-lasting transcriptional reprogramming of GBM cells into a more invasive state via the metabotropic CHRM3 receptor. CHRM3 downregulation suppressed GBM cell invasion, proliferation, and survival in vitro and in vivo. Together, these results reveal the capacity of human GBM cells to rapidly and robustly integrate into anatomically and molecularly diverse neuronal circuitry in the adult brain and support a model wherein rapid synapse formation onto GBM cells and transient activation of upstream neurons may lead to a long-lasting increase in fitness to promote tumor infiltration and progression.

18.
Mol Psychiatry ; 29(5): 1453-1464, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38321120

RESUMO

Smell deficits and neurobiological changes in the olfactory bulb (OB) and olfactory epithelium (OE) have been observed in schizophrenia and related disorders. The OE is the most peripheral olfactory system located outside the cranium, and is connected with the brain via direct neuronal projections to the OB. Nevertheless, it is unknown whether and how a disturbance of the OE affects the OB in schizophrenia and related disorders. Addressing this gap would be the first step in studying the impact of OE pathology in the disease pathophysiology in the brain. In this cross-species study, we observed that chronic, local OE inflammation with a set of upregulated genes in an inducible olfactory inflammation (IOI) mouse model led to a volume reduction, layer structure changes, and alterations of neuron functionality in the OB. Furthermore, IOI model also displayed behavioral deficits relevant to negative symptoms (avolition) in parallel to smell deficits. In first episode psychosis (FEP) patients, we observed a significant alteration in immune/inflammation-related molecular signatures in olfactory neuronal cells (ONCs) enriched from biopsied OE and a significant reduction in the OB volume, compared with those of healthy controls (HC). The increased expression of immune/inflammation-related molecules in ONCs was significantly correlated to the OB volume reduction in FEP patients, but no correlation was found in HCs. Moreover, the increased expression of human orthologues of the IOI genes in ONCs was significantly correlated with the OB volume reduction in FEP, but not in HCs. Together, our study implies a potential mechanism of the OE-OB pathology in patients with psychotic disorders (schizophrenia and related disorders). We hope that this mechanism may have a cross-disease implication, including COVID-19-elicited mental conditions that include smell deficits.


Assuntos
Modelos Animais de Doenças , Inflamação , Bulbo Olfatório , Mucosa Olfatória , Transtornos Psicóticos , Esquizofrenia , Animais , Mucosa Olfatória/patologia , Mucosa Olfatória/metabolismo , Transtornos Psicóticos/patologia , Camundongos , Humanos , Masculino , Inflamação/metabolismo , Inflamação/patologia , Bulbo Olfatório/patologia , Bulbo Olfatório/metabolismo , Feminino , Esquizofrenia/patologia , Esquizofrenia/metabolismo , Esquizofrenia/fisiopatologia , Esquizofrenia/genética , Transtornos do Olfato/etiologia , Transtornos do Olfato/fisiopatologia , Olfato/fisiologia , Adulto , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Neurônios/patologia
19.
Luminescence ; 39(2): e4689, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38361140

RESUMO

A new type of polyethyleneimine-protected copper nanoclusters (PEI-CuNCs) is favorably developed by a one-pot method under mild conditions. The obtained PEI-CuNCs is characterized by X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy, Fourier-transform infrared (FTIR) spectroscopy and other techniques. It is worth noting that the proposed PEI-CuNCs demonstrate a selective response to chromium(VI) over other competitive species. Fluorescence quenching of PEI-CuNCs is determined to be chromium(VI) concentrations dependence with a low limit of detection of 8.9 nM. What is more, the as-developed PEI-CuNCs is further employed in building a detection platform for portable recognition of chromium(VI) in real samples with good accuracy. These findings may offer a distinctive strategy for the development of methods for analyzing and monitoring chromium(VI) and expand their application in real sample monitoring.


Assuntos
Cromo , Nanopartículas Metálicas , Polietilenoimina , Polietilenoimina/química , Cobre/química , Espectrometria de Fluorescência/métodos , Corantes , Corantes Fluorescentes/química , Limite de Detecção , Nanopartículas Metálicas/química
20.
Eur Arch Otorhinolaryngol ; 281(4): 1819-1825, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38189968

RESUMO

BACKGROUND: Gastroesophageal reflux disease (GERD) and chronic rhinosinusitis (CRS) have been shown to be potentially closely related, but the relationship between these conditions, particularly the possibility of a causal link, is not fully understood. This study used Mendelian randomization (MR) to assess the causal relationship between these two disorders. METHODS: We extracted genome-wide association study data sets for GERD and CRS from publicly available gene summaries, and used MR to conduct a causal inference analysis. The main robustness test used in this study included MR-Egger regression, a leave-one-out sensitivity test, and multivariate MR (MVMR). RESULTS: GERD increased the risk of developing CRS by 36%, based on the inverse-variance weighted method, a statistically significant association (odds ratio [OR] 1.360, 95% confidence interval [CI] 1.179-1.568, P < 0.001). Other MR assessment methods, such as weighted median, simple mode, and weighted mode, similarly observed a significant increase in the risk of CRS occurrence (OR 1.434, 95% CI 1.186-1.734, P < 0.001; OR 1.927, 95% CI 1.166-3.184, P = 0.013; and OR 1.910, 95% CI 1.222-2.983, P = 0.006, respectively). No significant bias was found in the heterogeneity or pleiotropy tests (P = 0.071 and P = 0.700, respectively). Even after excluding possible mediators using MVMR, GERD appeared to significantly increase the risk of developing CRS (OR 1.013, 95% CI 1.008-1.023, P = 0.002). CONCLUSIONS: This study provides new, significant evidence that GERD is genetically associated with a higher incidence rate of CRS. However, further research is needed to elucidate the potential underlying biological mechanisms of this relationship.


Assuntos
Refluxo Gastroesofágico , Rinossinusite , Sinusite , Humanos , Estudo de Associação Genômica Ampla , Refluxo Gastroesofágico/complicações , Refluxo Gastroesofágico/epidemiologia , Causalidade , Cetirizina , Doença Crônica , Sinusite/epidemiologia , Sinusite/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA