Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Sens ; 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38847105

RESUMO

Programmed death ligand-1 (PD-L1)-expressing exosomes are considered a potential marker for diagnosis and classification of lung adenocarcinoma (LUAD). There is an urgent need to develop highly sensitive and accurate chemiluminescence (CL) immunosensors for the detection of PD-L1-expressing exosomes. Herein, N-(4-aminobutyl)-N-ethylisopropanol-functionalized nickel-cobalt hydroxide (NiCo-DH-AA) with a hollow nanoflower structure as a highly efficient CL nanoprobe was synthesized using gold nanoparticles as a "bridge". The resulting NiCo-DH-AA exhibited a strong and stable CL emission, which was ascribed to the exceptional catalytic capability and large specific surface area of NiCo-DH, along with the capacity of AuNPs to facilitate free radical generation. On this basis, an ultrasensitive sandwich CL immunosensor for the detection of PD-L1-expressing exosomes was constructed by using PD-L1 antibody-modified NiCo-DH-AA as an effective signal probe and rabbit anti-CD63 protein polyclonal antibody-modified carboxylated magnetic bead as a capture platform. The immunosensor demonstrated outstanding analytical performance with a wide detection range of 4.75 × 103-4.75 × 108 particles/mL and a low detection limit of 7.76 × 102 particles/mL, which was over 2 orders of magnitude lower than the reported CL method for detecting PD-L1-expressing exosomes. Importantly, it was able to differentiate well not only between healthy persons and LUAD patients (100% specificity and 87.5% sensitivity) but also between patients with minimally invasive adenocarcinoma and invasive adenocarcinoma (92.3% specificity and 52.6% sensitivity). Therefore, this study not only presents an ultrasensitive and accurate diagnostic method for LUAD but also offers a novel, simple, and noninvasive approach for the classification of LUAD.

2.
Angew Chem Int Ed Engl ; 63(24): e202402827, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38602019

RESUMO

Lithium-ion batteries have found extensive applications due to their high energy density and low self-discharge rates, spanning from compact consumer electronics to large-scale energy storage facilities. Despite their widespread use, challenges such as inherent capacity degradation and the potential for thermal runaway hinder sustainable development. In this study, we introduce a unique approach to synthesize anode materials for lithium-ion batteries, specifically imidazole-intercalated cobalt hydroxide. This innovative material significantly enhances the Li+ desolvation/diffusion reaction and flame-retardant dynamics through complexing and catalytic synergetic effects. The lithium-ion batteries incorporating these materials demonstrate exceptional performance, boasting an impressive capacity retention of 997.91 mAh g-1 after 500 cycles. This achievement can be attributed to the optimization of the solid electrolyte interphase (SEI) interface engineering, effectively mitigating anode degradation and minimizing electrolyte consumption. Experimental and theoretical calculations validate these improvements. Importantly, imidazole intercalated Co(OH)2 (MI-Co(OH)2) exhibits a remarkable catalytic effect on electrolyte carbonization and the conversion of CO to CO2. This dual action suppresses smoke and reduces toxicity significantly. The presented work introduces a novel approach to realizing high-performance and safe lithium-ion batteries, addressing key challenges in the pursuit of sustainable energy solutions.

3.
NPJ Vaccines ; 8(1): 169, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37919316

RESUMO

With the large-scale vaccination of lipid nanoparticles (LNP)-based COVID-19 mRNA vaccines, elucidating the potential polyethylene glycol (PEG)-associated immune responses triggered by clinically relevant LNP has become imminent. However, inconsistent findings were observed across very limited population-based studies. Herein we initiated a study using LNP carrier of Comirnaty® as a representative, and simulated real-world clinical practice covering a series of time points and various doses correlated with approved LNP-delivered drugs in a rat model. We demonstrated the time- and dose-dependency of LNP-induced anti-PEG antibodies in rats. As a thymus-independent antigen, LNP unexpectedly induced isotype switch and immune memory, leading to rapid enhancement and longer lasting time of anti-PEG IgM and IgG upon re-injection in rats. Importantly, initial LNP injection accelerated the blood clearance of subsequent dosing in rats. These findings refine our understandings on LNP and possibly other PEG derivatives, and may promote optimization of related premarket guidelines and clinical protocols.

4.
Anal Chem ; 95(34): 12982-12991, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37587428

RESUMO

Recently, magnetic beads (MBs) are moving toward chemiluminescence (CL) functional magnetic nanomaterials with a great potential for constructing label-free immunosensors. However, most of the CL-functionalized MBs suffer from scarce binding sites, easy aggregation, and leakage of CL reagents, which will ultimately affect the analytical performance of immunosensors. Herein, by using core-shell Fe3O4@Au/Ag magnetic nanomaterials as a nanoplatform, a novel N-(4-aminobutyl)-N-ethylisopropanol (ABEI) and Co2+ dual-functionalized magnetic nanomaterial, namely, Fe3O4@Au/Ag/ABEI/Co2+, with strong and stable CL emission was successfully synthesized. Its CL intensity was 36 and 3.5 times higher than that of MB@ABEI-Au/Co2+ and ABEI and Co2+ dual-functionalized chemiluminescent MBs previously reported by our group, respectively. It was found that the excellent CL performance of Fe3O4@Au/Ag/ABEI/Co2+ could be attributed to the enrichment effect of the Au/Ag shell and the synergistic enhance effect of the Au/Ag shell and Co2+. A related CL mechanism has been proposed. Afterward, based on the intense and stable CL emission of Fe3O4@Au/Ag/ABEI/Co2+, a sensitive and effective label-free CL immunosensor for exosome detection was established. It exhibited excellent analytical performance with a wide detection range of 3.1 × 103 to 3.1 × 108 particles/mL and a low detection limit of 2.1 × 103 particles/mL, which were better than the vast majority of the reported CL immunosensors. Moreover, the proposed label-free CL immunosensor was successfully used to detect exosomes in human serum samples and enabled us to distinguish healthy persons and lung cancer patients. It has the potential to be a powerful tool for exosome study and early cancer diagnosis.


Assuntos
Técnicas Biossensoriais , Exossomos , Nanoestruturas , Humanos , Imunoensaio , Luminescência
5.
Anal Chem ; 95(20): 7914-7923, 2023 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-37167195

RESUMO

Chemiluminescence (CL) with intensive emission has been pursued for decades. It is still challenging to find a new mechanism to enhance CL. In this work, confinement-enhanced CL was developed for the first time by the coembedding of N-(aminobutyl)-N-(ethylisoluminol) (ABEI) and Co2+ into gold nanoparticle-modified covalent-organic frameworks (COFs). For the consideration of improving the hydrophilicity of COFs and facilitating subsequent biological modification, gold nanoparticles were first reduced on the COF surface (Au-COF) in situ without other reducing reagents. By virtue of the abundant imine bond and π backbones, ABEI and Co2+ were embedded in Au-COF synergistically through π-π stacking and coordination. The confinement of ABEI and Co2+ into Au-COF brought an over 20-fold enhancement of CL intensity compared to that of adding them to a liquid phase, which benefitted from the three aspects of the confinement effect, including the molecular enrichment effect, the physical constraint effect, and the molecular preorganization effect. As proof of concept, a lipid-protein dual-recognition sandwich strategy based on this CL-functionalized COF was developed for the detection of breast cancer cell line-derived extracellular vesicles (EVs) with four orders of magnitude improvement in the detection limit compared to ELISA. The successful distinction of human epidermal growth factor receptor 2 (HER2)-positive patients from HER2-negative patients indicated the great application potential of the proposed bioassay in HER2-positive breast cancer diagnosis. This work proposed a novel enhancement mechanism for CL based on crystalline porous materials, which provides a new perspective for the development of CL-functionalized materials for biosensors and bioassays.


Assuntos
Nanopartículas Metálicas , Estruturas Metalorgânicas , Neoplasias , Humanos , Biomarcadores Tumorais , Ouro , Luminescência , Nanopartículas Metálicas/química , Luminol/química , Neoplasias/diagnóstico
6.
Cancers (Basel) ; 14(23)2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36497233

RESUMO

CRC is one of the leading causes of cancer mortality worldwide. Chemotherapy is widely used for the treatment of CRC, but its efficacy remains unsatisfactory, mainly due to drug resistance. Therefore, it is urgent to develop new strategies to overcome drug resistance. Combination therapy that aims to achieve additive or synergistic therapeutic effects is an effective approach to tackle the development of drug resistance. Given its established roles in tumor development, progression and metastasis, IGF-1R is a promising drug target for combination therapy against CRC. In this study, we revealed that the novel IGF-1R inhibitor PB-020 can act synergistically with mebendazole (MBZ) to reduce the viability of CRC cells and block xenograft CRC progression. Moreover, the PB-020/anti-PD-1 combination synergistically blocked CRC propagation in the MC38 murine colon carcinoma model. Both combination therapies potently suppressed the PI3K/AKT signaling pathway genes in CRC that may be associated with the development of drug resistance. Our findings establish a preclinical proof-of-concept for combating CRC using combined multi-target treatment with PB-020 and clinical anticancer drugs, which may provide useful clues for clinical trials to evaluate the efficacy and safety of these drug combinations in CRC patients.

7.
Chemistry ; 28(40): e202200789, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35522478

RESUMO

Realizing the synergy between active site regulation and rational structural engineering is essential in the electrocatalysis community but still challenging. Here, a matrix-confined co-pyrolysis strategy based on molecular bridging is demonstrated to realize highly dispersed Fe atoms on stereoassembled carbon framework. Both polyacrylonitrile matrix and organic linker from metal-organic frameworks (MOFs) provide sufficient N-anchoring sites for the generation of Fe-N4 moieties. A high Fe loading of 2.9 wt.% is readily achieved based on the scalable approach without post-treatment. Owing to the presence of highly exposed Fe-N-C sites and well-tuned pore structures, isolated Fe atoms on porous carbon nanofiber framework (Fe-SA/NCF) exhibits decent oxygen reduction activity and stability in alkaline conditions via a near four-electron path, demonstrating superior performance as air cathode for zinc-air batteries (ZABs) to commercial Pt/C catalyst.

8.
iScience ; 25(1): 103645, 2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35005567

RESUMO

Deciphering the regulatory network for human naive and primed pluripotency is of fundamental theoretical and applicable significance. Here, by combining quantitative proteomics, phosphoproteomics, and acetylproteomics analyses, we revealed RNA processing and translation as the most differentially regulated processes between naive and primed human embryonic stem cells (hESCs). Although glycolytic primed hESCs rely predominantly on the eukaryotic initiation factor 4E (eIF4E)-mediated cap-dependent pathway for protein translation, naive hESCs with reduced mammalian target of rapamycin complex (mTORC1) activity are more tolerant to eIF4E inhibition, and their bivalent metabolism allows for translating selective mRNAs via both eIF4E-dependent and eIF4E-independent/eIF4A2-dependent pathways to form a more compact naive proteome. Globally up-regulated proteostasis and down-regulated post-translational modifications help to further refine the naive proteome that is compatible with the more rapid cycling of naive hESCs, where CDK1 plays an indispensable coordinative role. These findings may assist in better understanding the unrestricted lineage potential of naive hESCs and in further optimizing conditions for future clinical applications.

9.
ACS Appl Mater Interfaces ; 14(2): 3156-3164, 2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-34982526

RESUMO

Two-dimensional (2D) porphyrin-based metal-organic frameworks (MOFs) hold great promise in a variety of areas with the merits of large lateral size and abundant functional groups. The chemiluminescent 2D MOF has rarely been reported. In this work, a chemiluminescence (CL) reagent and noble metal nanoparticle dual-functionalized 2D MOF (ABEI/AuNPs/CuTCPP) was developed through the surfactant-assisted and in situ synthetic growth method, exhibiting strong and stable CL property and outstanding peroxidase-mimicking activity. The special nanostructure of ABEI/AuNPs/CuTCPP endowed it with multi-catalytic routes in the CL reaction, which showed a unique pH-regulated and time-resolved CL kinetic curve. A CL mechanism with multi-catalytic centers has been proposed. AuNPs participated in the fast catalytic process and CuTCPP in the slow and strong catalytic reaction. Owing to the impressive structural features and intrinsic enzymatic tandem reaction from natural enzyme to artificial enzyme, a model biosensor was designed for the detection of small metabolic molecules. Employing choline as a model target, the proposed biosensor showed a highly sensitive response to choline in the linear range from 0.3 to 300 µM with a detection limit of 82.6 nM. Significantly, the strategy may be generalized to the monitoring of other biologically important compounds involved in the production of H2O2.

10.
Zhejiang Da Xue Xue Bao Yi Xue Ban ; 51(4): 438-453, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37202098

RESUMO

OBJECTIVE: To explore the characteristics of intestinal microecology in hepatocellular carcinoma (HCC) model mice. METHODS: C57BL/6 male mice aged 2 weeks were divided into normal control group and HCC model group. Mice in HCC model group were exposed to a single intraperitoneal injection of diethylnitrosamine (DEN) 2 weeks after birth; the surviving mice were intraperitoneally injected with 1,4-bis[2-(3,5-dichloropyridyloxy)]benzene (TCPOBOP), once every 2 weeks for 8 times starting from the 4 th week after birth. Mice in each group were randomly selected and sacrificed at 10 th, 18 th and 32 nd weeks after birth, respectively, the liver tissue samples were obtained for histopathological examination. At the 32 nd week, all mice in both groups were sacrificed and the feces samples were collected under sterile conditions right before the sacrifice. The feces samples were sequenced for the V3-V4 hypervariable regions of the 16S rRNA gene, and the species abundance, flora diversity and phenotype, as well as flora correlation and functional prediction were analyzed. RESULTS: Alpha diversity analysis showed that all Good's coverage reached the maximum value of 1.00, and the differences in the Observed features, Chao1 index, Shannon index and Simpson index of the intestinal flora of mice between normal control group and HCC model group were all statistically significant (all P<0.05). Beta diversity analysis showed that PCoA based on weighted or unweighted Unifrac distances all yielded R>0, confirming that the intra-group differences of the samples were less than the inter-group differences; the trend of separation between the two groups was significant ( P<0.05). Bacteroidetes, Firmicutes, Actinobacteria and Patescibacteria were the dominant taxa at the phylum level in both normal control group and HCC model group. However, compared with normal control group, the abundance of Bacteroidetes in HCC model group was significantly decreased ( P<0.01), while the abundance of Patescibacteria was significantly increased ( P<0.05). Moreover, the dominant taxa at the genus level in normal control group mainly included Muribaculaceae_unclassified, Paramuribaculum, Muribaculum, Lachnospiraceae_NK4A 136 group, Olsenella. The dominant taxa at the genus level in HCC model group mainly included Akkermansia, Dubosiella, Muribaculaceae_unclassified, Lachnospiraceae_NK4A 136 group, Coriobacteriaceae_UCG-002. There were 30 genera with statistically significant differences in relative abundance at the genus level between the two groups (all P<0.05). LEfSe analysis of the intestinal flora of mice in the two groups revealed a total of 14 multi-level differential taxa (all P<0.05, LDA score>4.0), which were mainly enriched in Bacteroidetes. The enrichment of 10 differential taxa including Bacteroidetes, Bacteroidia, Bacteroidales, Muribaculaceae, etc. were found in normal control group, and the enrichment of 4 differential taxa including Dubosiella, Peptostreptococus, etc. were found in HCC model group. There were both positive and negative correlations between the dominant intestinal genera in normal control group (|rho|>0.5, P<0.05), while the correlations of the dominant intestinal genera in HCC model group, being less complex than that in normal control group, were all positive. The relative abundance of gram positive and mobile element containing in the intestinal flora of mice in HCC model group was significantly up-regulated compared with normal control group (both P<0.05), while that of gram negative ( P<0.05) and pathogenic potential ( P<0.05) was significantly down-regulated. The metabolic pathways of the intestinal flora in the two groups were significantly different. For instance, 18 metabolic pathways were enriched in normal control group (all P<0.005), including those related to energy metabolism, cell division, nucleotide metabolism, etc., while 12 metabolic pathways were enriched in HCC model group (all P<0.005), including those related to energy metabolism, amino acid metabolism, carbohydrate metabolism, etc. Conclusions: The amount of intestinal flora in DEN-induced primary HCC model mice decreased, and the composition, correlation, phenotype and function of the intestinal flora in mice were significantly altered. Bacteroidetes at the phylum level, as well as several microbial taxa at the genus level such as Muribaculaceae_unclassified, Muribaculum, Peptostreptococus and Dubosiella could be closely associated with DEN-induced primary HCC in mice.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Masculino , Animais , Camundongos , Carcinoma Hepatocelular/induzido quimicamente , Dietilnitrosamina , RNA Ribossômico 16S , Camundongos Endogâmicos C57BL , Neoplasias Hepáticas/induzido quimicamente , Bactérias
11.
Med Sci Monit ; 26: e922726, 2020 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-32900987

RESUMO

BACKGROUND This study analyzed the epidemiological characteristics and trends of trauma injuries in Ruijin Hospital North, Shanghai, China, and the feasibility of methods to prevent trauma. MATERIAL AND METHODS In this retrospective cross-sectional study, the electronic databases of Ruijin Hospital North were searched for patients who experienced severe trauma from 2013 to 2016. Characteristics of severe trauma were analyzed, including trauma mechanism, gender, reasons for injury, and injury-associated causes of death. RESULTS Of the 17,093 patients who experienced trauma during the study period, 11,165 (65.3%) were male and 5,928 (34.7%) were female. Analysis by age showed that the highest incidence of traumatic injuries was in subjects aged 25-34 years, whereas analysis by occupation showed the highest incidence of injury in migrant workers without higher education. Classification by Injury Severity Score (ISS) showed that 12,563 (73.5%) subjects had minor injuries, 4,273 (25.0%) had serious injuries, and 256 (1.5%) had severe injuries. In addition, 256 (1.5%) subjects died, with traffic accidents and falling injuries being the main causes of death. The incidence of injury peaked at 9-11 am and 2-4 pm and was significantly higher in autumn and winter than in spring and summer. CONCLUSIONS Most trauma patients were young adults. Injuries due to traffic accidents and falling were the main causes of death, with disregard of driving regulations and other health and safety regulations being the main cause of trauma. Trauma injuries may be prevented by strengthening education and by obeying traffic laws and construction site safety regulations.


Assuntos
Serviço Hospitalar de Emergência/estatística & dados numéricos , Serviço Hospitalar de Emergência/tendências , Ferimentos e Lesões/epidemiologia , Ferimentos e Lesões/etiologia , Adolescente , Adulto , Idoso , China/epidemiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Adulto Jovem
12.
Yonsei Med J ; 55(4): 1101-5, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24954343

RESUMO

PURPOSE: The aim of this study was to evaluate the effects of perioperative psychological and music interventions in elderly patients undergoing elective surgery on anxiety, post-operative pain, and changes in heart rate variability (HRV) to ascertain if perioperative psychological and music interventions can affect overall anxiety levels. MATERIALS AND METHODS: Fourty elderly patients undergoing elective surgery were randomized to two groups; one group received psychological and music intervention, and the other was the control. The intervention group underwent psychological intervention and listening to music for 30 min before surgery. RESULTS: The mean change in HRV as determined by low frequency (LF) power measurements. After the intervention, the ratio of mean LF to high frequency (HF) power decreased significantly in the intervention group compared to before the intervention (p<0.05). In the control group, mean LF measurements and the ratio of LF:HF did not change significantly. In the intervention group, mean HF power was significantly higher after the procedure than before (p<0.01). Moreover, the mean self-rating anxiety score of the intervention group decreased after the procedure compared to before (p<0.05). The mean visual analogue score of the intervention group 6 hours after surgery was significantly lower than that of the control group (p<0.01). CONCLUSION: Perioperative psychological and music interventions can reduce anxiety and postoperative pain in elderly patients.


Assuntos
Raquianestesia/métodos , Raquianestesia/psicologia , Ansiedade/terapia , Frequência Cardíaca/fisiologia , Musicoterapia/métodos , Dor Pós-Operatória/terapia , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Terapia de Relaxamento/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA