Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 126
Filtrar
1.
Foods ; 13(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38731698

RESUMO

Quinoa (Chenopodium quinoa Willd.) seeds are rich in nutrition, superior to other grains, and have a high market value. However, the biosynthesis mechanisms of protein, starch, and lipid in quinoa grain are still unclear. The objective of this study was to ascertain the nutritional constituents of white, yellow, red, and black quinoa seeds and to employ a multi-omics approach to analyze the synthesis mechanisms of these nutrients. The findings are intended to furnish a theoretical foundation and technical support for the biological breeding of quinoa in China. In this study, the nutritional analysis of white, yellow, red, and black quinoa seeds from the same area showed that the nutritional contents of the quinoa seeds were significantly different, and the protein content increased with the deepening of color. The protein content of black quinoa was the highest (16.1 g/100 g) and the lipid content was the lowest (2.7 g/100 g), among which, linoleic acid was the main fatty acid. A combined transcriptome and metabolome analysis exhibited that differentially expressed genes were enriched in "linoleic acid metabolism", "unsaturated fatty acid biosynthesis", and "amino acid biosynthesis". We mainly identified seven genes involved in starch synthesis (LOC110716805, LOC110722789, LOC110738785, LOC110720405, LOC110730081, LOC110692055, and LOC110732328); five genes involved in lipid synthesis (LOC110701563, LOC110699636, LOC110709273, LOC110715590, and LOC110728838); and nine genes involved in protein synthesis (LOC110710842, LOC110720003, LOC110687170, LOC110716004, LOC110702086, LOC110724454 LOC110724577, LOC110704171, and LOC110686607). The data presented in this study based on nutrient, transcriptome, and metabolome analyses contribute to an enhanced understanding of the genetic regulation of seed quality traits in quinoa, and provide candidate genes for further genetic improvements to improve the nutritional value of quinoa seeds.

3.
Sleep Med ; 115: 66-75, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38335829

RESUMO

OBJECTIVE: To summarize the evidence of various exercise modalities on population with insomnia disorders. METHOD: PubMed, Embase, Cochrane Library, and Web of Science were searched for eligible studies published from inception to October 2022 and updated on September 2023. Systematic reviews with meta-analyses and randomized controlled trials designed to investigate the effect of various exercise modalities on population with insomnia were eligible. RESULTS: A total of 4 SRs with (very) low methodological quality and 1034 participants in 10 network meta-analyses explored the association between different types and intensity exercise modalities with insomnia disorders. Various exercise modalities could significantly improve total sleep time and sleep quality and alleviate insomnia severity. Compared to passive control, moderate aerobic exercise, moderate aerobic exercise combined with light intensity strength and mind-body exercise can improve sleep efficiency and reduce wake after sleep onset by objectively measured. Moderate intensity strength, light intensity strength and mind-body exercise can improve sleep efficiency subjectively measured; mind-body exercise can reduce sleep onset latency and wake time after sleep onset, and increase total sleep time; moderate aerobic exercise can reduce sleep onset latency. Moderate intensity strength, light intensity strength, mind body exercise and moderate aerobic exercise combined with light intensity strength can the severity of insomnia and improv sleep quality. CONCLUSION: Exercise had a positive effect on relief insomnia and improve sleep quality. Moderate aerobic exercise, mind-body exercise and moderate aerobic exercise combined with light intensity strength play an important role in improving the sleep quality in people with insomnia disorders.


Assuntos
Exercício Físico , Distúrbios do Início e da Manutenção do Sono , Humanos , Terapia por Exercício , Metanálise em Rede , Sono , Distúrbios do Início e da Manutenção do Sono/terapia , Revisões Sistemáticas como Assunto
4.
BMC Plant Biol ; 24(1): 9, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38163908

RESUMO

BACKGROUND: Essential micronutrient Boron (B) plays crucial roles in plant survival and reproduction but becomes toxic in higher quantities. Although plant cells have different B transport systems, B homeostasis is mainly maintained by two transporter protein families: B exporters (BOR) and nodulin-26-like intrinsic proteins (NIP). Their diversity and differential expression are responsible for varied B tolerance among plant varieties and species. Longan is a highly admired subtropical fruit with a rising market in China and beyond. In the present study, we cultured Shixia (SX) and Yiduo (YD), two differently characterized Longan cultivars, with foliar B spray. We analyzed their leaf physiology, fruit setting, B content, and boron transporter gene expression of various tissue samples. We also traced some of these genes' subcellular localization and overexpression effects. RESULTS: YD and SX foliage share similar microstructures, except the mesophyll cell wall thickness is double in YD. The B spray differently influenced their cellular constituents and growth regulators. Gene expression analysis showed reduced BOR genes expression and NIP genes differential spatiotemporal expression. Using green fluorescent protein, two high-expressing NIPs, NIP1 and NIP19, were found to translocate in the transformed tobacco leaves' cell membrane. NIPs transformation of SX pollen was confirmed using magnetic beads and quantified using a fluorescence microscope and polymerase chain reaction. An increased seed-setting rate was observed when YD was pollinated using these pollens. Between the DlNIP1 and DlNIP19 transformed SX pollen, the former germinated better with increasing B concentrations and, compared to naturally pollinated plants, had a better seed-setting rate in YD♀ × SX♂. CONCLUSION: SX and YD Longan have different cell wall structures and react differently to foliar B spray, indicating distinct B tolerance and management. Two B transporter NIP genes were traced to localize in the plasma membrane. However, under high B concentrations, their differential expression resulted in differences in Jasmonic acid content, leading to differences in germination rate. Pollination of YD using these NIPs transformed SX pollen also showed NIP1 overexpression might overcome the unilateral cross incompatibility between YD♀ × SX♂ and can be used to increase Longan production.


Assuntos
Boro , Proteínas de Membrana Transportadoras , Boro/metabolismo , Transporte Biológico , Proteínas de Membrana Transportadoras/genética , Plantas/metabolismo , Proteínas de Transporte/metabolismo , Homeostase
5.
Mol Ther ; 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38273655

RESUMO

The last decade has seen rapid development in the field of cellular immunotherapy, particularly in regard to chimeric antigen receptor (CAR)-modified T cells. However, challenges, such as severe treatment-related toxicities and inconsistent quality of autologous products, have hindered the broader use of CAR-T cell therapy, highlighting the need to explore alternative immune cells for cancer targeting. In this regard, natural killer (NK) cells have been extensively studied in cellular immunotherapy and were found to exert cytotoxic effects without being restricted by human leukocyte antigen and have a lower risk of causing graft-versus-host disease; making them favorable for the development of readily available "off-the-shelf" products. Clinical trials utilizing unedited NK cells or reprogrammed NK cells have shown early signs of their effectiveness against tumors. However, limitations, including limited in vivo persistence and expansion potential, remained. To enhance the antitumor function of NK cells, advanced gene-editing technologies and combination approaches have been explored. In this review, we summarize current clinical trials of antitumor NK cell therapy, provide an overview of innovative strategies for reprogramming NK cells, which include improvements in persistence, cytotoxicity, trafficking and the ability to counteract the immunosuppressive tumor microenvironment, and also discuss some potential combination therapies.

6.
Curr Neuropharmacol ; 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38037913

RESUMO

Neurodegenerative diseases encompass a collection of neurological disorders originating from the progressive degeneration of neurons, resulting in the dysfunction of neurons. Unfortunately, effective therapeutic interventions for these diseases are presently lacking. Copper (Cu), a crucial trace element within the human body, assumes a pivotal role in various biological metabolic processes, including energy metabolism, antioxidant defense, and neurotransmission. These processes are vital for the sustenance, growth, and development of organisms. Mounting evidence suggests that disrupted copper homeostasis contributes to numerous age-related neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), amyotrophic lateral sclerosis (ALS), Wilson's disease (WD), Menkes disease (MD), prion diseases, and multiple sclerosis (MS). This comprehensive review investigates the connection between the imbalance of copper homeostasis and neurodegenerative diseases, summarizing pertinent drugs and therapies that ameliorate neuropathological changes, motor deficits, and cognitive impairments in these conditions through the modulation of copper metabolism. These interventions include Metal-Protein Attenuating Compounds (MPACs), copper chelators, copper supplements, and zinc salts. Moreover, this review highlights the potential of active compounds derived from natural plant medicines to enhance neurodegenerative disease outcomes by regulating copper homeostasis. Among these compounds, polyphenols are particularly abundant. Consequently, this review holds significant implications for the future development of innovative drugs targeting the treatment of neurodegenerative diseases.

7.
iScience ; 26(9): 107734, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37680473

RESUMO

Tumor vasculature often exhibits disorder and inefficiency. Vascular normalization offers potential for alleviating hypoxia and optimizing drug delivery in tumors. However, identifying effective agents is hindered by a lack of robust screening. We aimed to establish a comprehensive method using the zebrafish functional xenograft vasculature platform (zFXVP) to visualize and quantify tumor vasculature changes. Employing zFXVP, we systematically screened compounds, identifying PF-502 as a robust vascular normalization agent. Mechanistic studies showed PF-502 induces endothelial cell-cycle arrest, streamlines vasculature, and activates Notch1 signaling, enhancing stability and hemodynamics. In murine models, PF-502 exhibited pronounced vascular normalization and improved drug delivery at a sub-maximum tolerated dose. These findings highlight zFXVP's utility and suggest PF-502 as a promising adjunctive for vascular normalization in clinical settings.

8.
J Exp Clin Cancer Res ; 42(1): 206, 2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37563649

RESUMO

BACKGROUND: The perineural invasion (PNI)-mediated inflammation of the tumor microenvironment (TME) varies among gastric cancer (GC) patients and exhibits a close relationship with prognosis and immunotherapy. Assessing the neuroinflammation of TME is important in predicting the response to immunotherapy in GC patients. METHODS: Fifteen independent cohorts were enrolled in this study. An inflammatory score was developed and validated in GC. Based on PNI-related prognostic inflammatory signatures, patients were divided into Clusters A and B using unsupervised clustering. The characteristics of clusters and the potential regulatory mechanism of key genes were verified by RT-PCR, western-blot, immunohistochemistry and immunofluorescence in cell and tumor tissue samples.The neuroinflammation infiltration (NII) scoring system was developed based on principal component analysis (PCA) and visualized in a nomogram together with other clinical characteristics. RESULTS: Inflammatory scores were higher in GC patients with PNI compared with those without PNI (P < 0.001). NII.clusterB patients with PNI had abundant immune cell infiltration in the TME but worse prognosis compared with patients in the NII.clusterA patients with PNI and non-PNI subgroups. Higher immune checkpoint expression was noted in NII.clusterB-PNI. VCAM1 is a specific signature of NII.clusterB-PNI, which regulates PD-L1 expression by affecting the phosphorylation of STAT3 in GC cells. Patients with PNI and high NII scores may benefit from immunotherapy. Patients with low nomogram scores had a better prognosis than those with high nomogram scores. CONCLUSIONS: Inflammation mediated by PNI is one of the results of tumor-nerve crosstalk, but its impact on the tumor immune microenvironment is complex. Assessing the inflammation features of PNI is a potential method in predicting the response of immunotherapy effectively.


Assuntos
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/terapia , Doenças Neuroinflamatórias , Microambiente Tumoral , Inflamação , Imunoterapia , Prognóstico
9.
Biomed Pharmacother ; 166: 115411, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37651800

RESUMO

Kinesin family member 3 A (KIF3A) decrease have been reported in silicotic patients and rats. However, the detailed mechanisms of KIF3A in silicosis remain unknown. In this study, we demonstrated that KIF3A effectively blocked the expression of ß-catenin and downstream myocardin-related transcription factor (MRTF)-A/serum response factor (SRF) signaling, thus inhibiting silica-induced epithelial-myofibroblast transition (EMyT). Moreover, KIF3A was identified as a downstream mediator of an antifibrotic tetrapeptide N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP). Knockdown of KIF3A expression reactivated ß-catenin/myocardin-related transcription factor (MRTF)-A/serum response factor (SRF) signaling that was attenuated by Ac-SDKP in vitro. Collectively, our findings suggest that Ac-SDKP plays its anti-fibrosis role via KIF3A-mediated ß-catenin suppression, at least in part, in both in vivo model of silicosis and in vitro model of EMyT.


Assuntos
Silicose , beta Catenina , Animais , Ratos , Cinesinas , Miofibroblastos , Fator de Resposta Sérica , Dióxido de Silício/toxicidade , Fatores de Transcrição
10.
Stem Cells Transl Med ; 12(7): 474-484, 2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37261440

RESUMO

Innate mesenchymal stem cells exhibiting multilineage differentiation and tissue (re)generative-or pathogenic-properties reside in perivascular niches. Subsets of these progenitors are committed to either osteo-, adipo-, or fibrogenesis, suggesting the existence of a developmental organization in blood vessel walls. We evaluated herein the activity of aldehyde dehydrogenase, a family of enzymes catalyzing the oxidation of aldehydes into carboxylic acids and a reported biomarker of normal and malignant stem cells, within human adipose tissue perivascular areas. A progression of ALDHLow to ALDHHigh CD34+ cells was identified in the tunica adventitia. Mesenchymal stem cell potential was confined to ALDHHigh cells, as assessed by proliferation and multilineage differentiation in vitro of cells sorted by flow cytometry with a fluorescent ALDH substrate. RNA sequencing confirmed and validated that ALDHHigh cells have a progenitor cell phenotype and provided evidence that the main isoform in this fraction is ALDH1A1, which was confirmed by immunohistochemistry. This demonstrates that ALDH activity, which marks hematopoietic progenitors and stem cells in diverse malignant tumors, also typifies native, blood vessel resident mesenchymal stem cells.


Assuntos
Aldeído Desidrogenase , Células-Tronco Mesenquimais , Humanos , Células-Tronco , Diferenciação Celular , Citometria de Fluxo
11.
Adv Sci (Weinh) ; 10(19): e2206098, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37142882

RESUMO

KMT2C and KMT2D are the most frequently mutated epigenetic genes in human cancers. While KMT2C is identified as a tumor suppressor in acute myeloid leukemia (AML), the role of KMT2D remains unclear in this disease, though its loss promotes B cell lymphoma and various solid cancers. Here, it is reported that KMT2D is downregulated or mutated in AML and its deficiency, through shRNA knockdown or CRISPR/Cas9 editing, accelerates leukemogenesis in mice. Hematopoietic stem and progenitor cells and AML cells with Kmt2d loss have significantly enhanced ribosome biogenesis and consistently, enlarged nucleolus, increased rRNA and protein synthesis rates. Mechanistically, it is found that KMT2D deficiency leads to the activation of the mTOR pathway in both mouse and human AML cells. Kmt2d directly regulates the expression of Ddit4, a negative regulator of the mTOR pathway. Consistent with the abnormal ribosome biogenesis, it is shown that CX-5461, an inhibitor of RNA polymerase I, significantly restrains the growth of AML with Kmt2d loss in vivo and extends the survival of leukemic mice. These studies validate KMT2D as a de facto tumor suppressor in AML and reveal an unprecedented vulnerability to ribosome biogenesis inhibition.


Assuntos
Leucemia Mieloide Aguda , Humanos , Animais , Camundongos , Leucemia Mieloide Aguda/metabolismo , Genes Supressores de Tumor , Serina-Treonina Quinases TOR/metabolismo , RNA Interferente Pequeno/metabolismo , Ribossomos/genética , Ribossomos/metabolismo , Ribossomos/patologia
12.
JCI Insight ; 8(13)2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-37219951

RESUMO

Pericytes are multipotent mesenchymal precursor cells that demonstrate tissue-specific properties. In this study, by comparing human adipose tissue- and periosteum-derived pericyte microarrays, we identified T cell lymphoma invasion and metastasis 1 (TIAM1) as a key regulator of cell morphology and differentiation decisions. TIAM1 represented a tissue-specific determinant between predispositions for adipocytic versus osteoblastic differentiation in human adipose tissue-derived pericytes. TIAM1 overexpression promoted an adipogenic phenotype, whereas its downregulation amplified osteogenic differentiation. These results were replicated in vivo, in which TIAM1 misexpression altered bone or adipose tissue generation in an intramuscular xenograft animal model. Changes in pericyte differentiation potential induced by TIAM1 misexpression correlated with actin organization and altered cytoskeletal morphology. Small molecule inhibitors of either small GTPase Rac1 or RhoA/ROCK signaling reversed TIAM1-induced morphology and differentiation in pericytes. In summary, our results demonstrate that TIAM1 regulates the cellular morphology and differentiation potential of human pericytes, representing a molecular switch between osteogenic and adipogenic cell fates.


Assuntos
Actinas , Pericitos , Animais , Humanos , Fatores de Troca do Nucleotídeo Guanina/genética , Osteogênese , Diferenciação Celular , Tecido Adiposo , Proteína 1 Indutora de Invasão e Metástase de Linfoma de Células T
13.
J Sci Med Sport ; 26(4-5): 232-240, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37076415

RESUMO

OBJECTIVES: To summarize the evidence of associations between Pilates and multiple health outcomes, and evaluate the strength and validity of these associations. DESIGN: Unbrella review. METHODS: PubMed, Embase, Web of Science, and the Cochrane Library were searched from inception to February, 2023. The methodological quality of included studies was assessed using A Measurement Tool to Assess Systematic Reviews, version 2 and the certainty of evidence was graded by the Grading of Recommendation, Assessment, Development and Evaluations. We recalculated each outcome using random-effects models with standardized mean difference. RESULTS: We identified 27 systematic reviews with meta-analyses in this umbrella review. 1 was rated as high quality, 1 as moderate quality, 15 as low quality, and 10 as critically low quality. These studies focused on the populations with diseases of the circulatory system, endocrine, nutritional or metabolic diseases, genitourinary system diseases, mental, behavioral, or neurodevelopmental disorder, musculoskeletal system diseases, neoplasms, nervous system diseases, sleep-wake function disorder and others. Compared with inactive/active intervention, Pilates can reduce body mass index and body fat percentage, relieve pain and disability, and improve sleep quality and balance. The certainty of evidence was very low to moderate for these outcomes. CONCLUSIONS: Pilates showed benefits on several health outcomes related with low back pain, neck pain and scoliosis. However, the certainty of the evidence was mostly low; further high quality randomized controlled trials are needed to elucidate and support these promising findings.


Assuntos
Dor Lombar , Doenças Musculoesqueléticas , Humanos
14.
Sheng Wu Gong Cheng Xue Bao ; 39(3): 858-880, 2023 Mar 25.
Artigo em Chinês | MEDLINE | ID: mdl-36994559

RESUMO

Synthetic electroactive microbial consortia, which include exoelectrogenic and electrotrophic communities, catalyze the exchange of chemical and electrical energy in cascade metabolic reactions among different microbial strains. In comparison to a single strain, a community-based organisation that assigns tasks to multiple strains enables a broader feedstock spectrum, faster bi-directional electron transfer, and greater robustness. Therefore, the electroactive microbial consortia held great promise for a variety of applications such as bioelectricity and biohydrogen production, wastewater treatment, bioremediation, carbon and nitrogen fixation, and synthesis of biofuels, inorganic nanomaterials, and polymers. This review firstly summarized the mechanisms of biotic-abiotic interfacial electron transfer as well as biotic-biotic interspecific electron transfer in synthetic electroactive microbial consortia. This was followed by introducing the network of substance and energy metabolism in a synthetic electroactive microbial consortia designed by using the "division-of-labor" principle. Then, the strategies for engineering synthetic electroactive microbial consortiums were explored, which included intercellular communications optimization and ecological niche optimization. We further discussed the specific applications of synthetic electroactive microbial consortia. For instance, the synthetic exoelectrogenic communities were applied to biomass generation power technology, biophotovoltaics for the generation of renewable energy and the fixation of CO2. Moreover, the synthetic electrotrophic communities were applied to light-driven N2 fixation. Finally, this review prospected future research of the synthetic electroactive microbial consortia.


Assuntos
Consórcios Microbianos , Biologia Sintética , Transporte de Elétrons , Eletricidade , Biodegradação Ambiental
15.
Ecol Lett ; 26(5): 778-788, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36922740

RESUMO

Climate projection requires an accurate understanding for soil organic carbon (SOC) decomposition and its response to warming. An emergent view considers that environmental constraints rather than chemical structure alone control SOC turnover and its temperature sensitivity (i.e., Q10 ), but direct long-term evidence is lacking. Here, using compound-specific radiocarbon analysis of soil profiles along a 3300-km grassland transect, we provide direct evidence for the rapid turnover of lignin-derived phenols compared with slower-cycling molecular components of SOC (i.e., long-chain lipids and black carbon). Furthermore, in contrast to the slow-cycling components whose turnover is strongly modulated by mineral association and exhibits low Q10 , lignin turnover is mainly regulated by temperature and has a high Q10 . Such contrasts resemble those between fast-cycling (i.e., light) and mineral-associated slow-cycling fractions from globally distributed soils. Collectively, our results suggest that warming may greatly accelerate the decomposition of lignin, especially in soils with relatively weak mineral associations.


Assuntos
Carbono , Solo , Solo/química , Temperatura , Lignina , Minerais , Microbiologia do Solo
16.
Br J Nutr ; 130(8): 1329-1337, 2023 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-36756752

RESUMO

This study aimed to explore the mediation effects of one-carbon metabolism (OCM) related nutrients on the association between MTHFR rs1801133 polymorphism and gestational diabetes mellitus (GDM). Folate, vitamin B12 and homocysteine (Hcy) were measured in the serum of 1254 pregnant women. Linear and logistic regressions were used to estimate the associations of OCM nutrients and MTHFR rs1801133 polymorphism with blood glucose levels and GDM risk. Mediation analysis was applied to test the mediation effects of folate, vitamin B12 and Hcy on the association of MTHFR rs1801133 polymorphism with blood glucose concentrations and GDM. Pregnant women with MTHFR rs1801133 CC genotype had higher serum folate (10·75 v. 8·90 and 9·40 ng/ml) and lower serum Hcy (4·84 v. 4·93 and 5·20 µmol/l) than those with CT and TT genotypes. Folate concentrations were positively associated with fasting plasma glucose (FPG), 1-h plasma glucose (1-h PG), 2-h plasma glucose (2-h PG) and GDM risk. Vitamin B12 levels were negatively correlated with FPG and GDM. Although no direct association was found between MTHFR rs1801133 genotypes and GDM, there were significant indirect effects of MTHFR rs1801133 CC genotype on FPG (ß: 0·005; 95 % CI: 0·001, 0·013), 1-h PG (ß: 0·006; 95 % CI: 0·001, 0·014), 2-h PG (ß: 0·007; 95 % CI: 0·001, 0·015) and GDM (ß: 0·006; 95 % CI: 0·001, 0·014) via folate. In conclusion, serum folate mediates the effect of MTHFR rs1801133 on blood glucose levels and GDM. Our findings potentially provide a feasible GDM prevention strategy via individualised folate supplementation according to the MTHFR genotypes.


Assuntos
Diabetes Gestacional , Ácido Fólico , Feminino , Humanos , Gravidez , Glicemia/análise , Diabetes Gestacional/sangue , Diabetes Gestacional/genética , População do Leste Asiático , Ácido Fólico/genética , Genótipo , Homocisteína , Metilenotetra-Hidrofolato Redutase (NADPH2)/genética , Vitamina B 12 , Vitaminas
17.
J Diabetes Res ; 2023: 5919468, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36726740

RESUMO

Background: With the decreasing age of type 2 diabetes mellitus (T2DM) onset, the incidence of diabetic complications is gradually increasing. We evaluated the independent effect of age at diabetes onset on diabetic retinopathy (DR) development. Methods: A total of 7472 patients with T2DM were enrolled in the National Metabolic Management Center from September 2017 to May 2022. Anthropometry data, laboratory reports, and medical history were collected. The independent association of DR with age at diabetes onset was analyzed using multivariable logistic regression models. In addition, a stratified analysis was performed to determine the effect of confounding variables. Results: Of the 7472 patients recruited, 1642 (21.98%) had DR. Patients with DR had considerably younger ages of diabetes onset than those without DR (45 (38-53) years vs. 50 (43-57) years, P < 0.001). The proportion of patients with T2DM onset at a younger age was higher in the DR group than that in the non-DR group. Participants were divided into four groups according to their age at diabetes onset, namely, ≥60, <40, 40-49, and 50-59 years. Compared with patients with diabetes onset at age ≥ 60 years, those with diabetes onset at <40 years (odds ratio (OR): 5.56, 95% confidence interval (CI): 3.731-8.285, P < 0.001), 40-49 years (OR: 2.751, 95% CI: 2.047-3.695, P < 0.001), and 50-59 years (OR: 1.606, 95% CI: 1.263-2.042, P < 0.001) were at an increased risk of DR after adjusting for potential confounding factors. Furthermore, stratification analyses demonstrated that young age at diabetes onset is an independent risk factor for DR. Conclusions: Compared with diabetes onset at an older age, diabetes onset at a younger age is associated with a significantly increased DR risk.


Assuntos
Diabetes Mellitus Tipo 2 , Retinopatia Diabética , Humanos , Pessoa de Meia-Idade , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/epidemiologia , Retinopatia Diabética/epidemiologia , Retinopatia Diabética/etiologia , Estudos Retrospectivos , Fatores de Risco , Modelos Logísticos
18.
Environ Res ; 221: 115331, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36681142

RESUMO

BACKGROUND: Single nucleotide polymorphisms (SNPs) in N6AMT1 and AS3MT are associated with arsenic (As) metabolism, and efficient As methylation capacity has been associated with diabetes. However, little is known about the gene-As interaction on gestational diabetes mellitus (GDM). OBJECTIVE: This study aimed to explore the individual and combined effects of N6AMT1 and AS3MT SNPs with As metabolism on GDM. METHODS: A cross-sectional study was performed among 385 Chinese pregnant women (86 GDM and 299 Non-GDM). Four SNPs in N6AMT1 (rs1997605 and rs1003671) and AS3MT (rs1046778 and rs11191453) were genotyped. Urinary inorganic arsenic (iAs), monomethylarsonic acid (MMA), and dimethylarsinic acid (DMA) were determined, and the percentages of As species (iAs%, MMA%, and DMA%) were calculated to assess the efficiency of As metabolism. RESULTS: Pregnant women with N6AMT1 rs1997605 AA genotype had lower iAs% (B: 2.11; 95% CI: 4.08, -0.13) and MMA% (B: 0.21; 95% CI: 0.39, -0.04) than pregnant women with GG genotype. The AS3MT rs1046778 and rs11191453 C alleles were negatively associated with iAs% and MMA% but positively associated with DMA%. Higher urinary MMA% was significantly associated with a lower risk of GDM (OR: 0.54; 95% CI: 0.30, 0.97). The A allele in N6AMT1 rs1997605 (OR: 0.46; 95% CI: 0.26, 0.79) was associated with a decreased risk of GDM. The additive interactions between N6AMT1 rs1997605 GG genotypes and lower iAs% (AP: 0.50; 95% CI: 0.01, 0.99) or higher DMA% (AP: 0.52; 95% CI: 0.04, 0.99) were statistically significant. Similar additive interactions were also found between N6AMT1 rs1003671 GG genotypes and lower iAs% or higher DMA%. CONCLUSIONS: Genetic variants in N6AMT1 and efficient As metabolism (indicated by lower iAs% and higher DMA%) can interact to influence GDM occurrence synergistically in Chinese pregnant women.


Assuntos
Arsênio , Diabetes Gestacional , Humanos , Feminino , Gravidez , Arsênio/metabolismo , Polimorfismo de Nucleotídeo Único , Diabetes Gestacional/genética , Gestantes , Metiltransferases/genética , Metiltransferases/metabolismo , Estudos Transversais , População do Leste Asiático , Ácido Cacodílico , DNA Metiltransferases Sítio Específica (Adenina-Específica)/genética , DNA Metiltransferases Sítio Específica (Adenina-Específica)/metabolismo
19.
Neurochem Res ; 48(6): 1707-1715, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36602724

RESUMO

Various pharmacological blockers targeting K+ channel have been identified to be related to the treatment of Parkinson's disease (PD). Previous studies showed that 4-Aminopyridine (4-AP), a wide-spectrum K+ channel blocker, was able to attenuate apomorphine-induced rotation in parkinsonism rats, indicating the possible beneficial effects in attenuation of PD motor symptoms. However, it is unclear whether 4-AP exhibits neuroprotective effects against the neurodegeneration of substantia nigra (SN)-striatum system in PD. In this study, the 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated mouse model was employed to evaluate the neuroprotective effects of 4-AP. Results showed that 4-AP inhibited MPTP-induced dopaminergic neuronal loss in the SN as well as dopamine depletion in the striatum. Behavior indexes of open field test and rotarod test confirmed that 4-AP attenuated MPTP-induced motor deficits. We also showed that 4-AP treatment could significantly attenuate the MPTP-induced increase in malonaldehyde (MDA) levels and decrease in superoxide dismutase (SOD) levels. Additionally, MPTP significantly reduced the Bcl-2 expression and promoted the Caspase-3 activation; 4-AP protected dopaminergic neurons against MPTP-induced neurotoxicity by reversing these changes. These results indicate that 4-AP exerts a neuroprotective effect on dopaminergic neurons against MPTP by decreasing oxidative stress and apoptosis. This provides a promising therapeutic target for the treatment of PD.


Assuntos
Intoxicação por MPTP , Fármacos Neuroprotetores , Doença de Parkinson , Animais , Camundongos , Ratos , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/metabolismo , Modelos Animais de Doenças , Dopamina/metabolismo , Neurônios Dopaminérgicos , Camundongos Endogâmicos C57BL , Intoxicação por MPTP/tratamento farmacológico , Intoxicação por MPTP/prevenção & controle , Intoxicação por MPTP/induzido quimicamente , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Fármacos Neuroprotetores/metabolismo , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Substância Negra , 4-Aminopiridina/farmacologia
20.
Cytotherapy ; 25(2): 192-201, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36496302

RESUMO

BACKGROUND AIMS: The considerable efficacy of B-cell maturation antigen-targeted chimeric antigen receptor (CAR)-T-cell therapy has been extensively demonstrated in the treatment of relapsed or refractory multiple myeloma. Nevertheless, in clinical practice, prolonged hematologic toxicity (PHT) extends hospital stay and impairs long-term survival. METHODS: This retrospective study reviewed 99 patients with relapsed or refractory multiple myeloma who underwent B-cell maturation antigen CAR-T-cell therapy at our institution between April 2018 and September 2021 (ChiCTR1800017404). RESULTS: Among 93 evaluable patients, the incidence of prolonged hematologic toxicities was high after CAR-T-cell infusion, including 38.71% (36/93) of patients with prolonged neutropenia, 22.58% (21/93) with prolonged anemia and 59.14% (55/93) with prolonged thrombocytopenia. In addition, 9.68% (9/93) of patients experienced prolonged pancytopenia. Our multivariate analyses identified that cytokine profiles were independent risk factors for PHTs, whereas a sufficient baseline hematopoietic function and high CD4/CD8 ratio of CAR-T cells were protective factors for PHTs after CAR-T-cell infusion. Subgroup analyses found that the kinetics of post-CAR-T hematologic parameters were primarily determined by the collective effects of cytokine release syndrome and baseline hematopoietic functions, and showed influential weights for the three lineages. CONCLUSIONS: Our findings improve the understanding of the impact of cytokines on hematopoietic functions, which could contribute to the mechanism investigation and exploration of potential intervention strategies.


Assuntos
Mieloma Múltiplo , Receptores de Antígenos Quiméricos , Humanos , Mieloma Múltiplo/terapia , Antígeno de Maturação de Linfócitos B , Estudos Retrospectivos , Imunoterapia Adotiva/efeitos adversos , Citocinas , Terapia Baseada em Transplante de Células e Tecidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA