Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 317
Filtrar
1.
Adv Sci (Weinh) ; : e2406333, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38981044

RESUMO

Mortality rates due to lung cancer are high worldwide. Although PD-1 and PD-L1 immune checkpoint inhibitors boost the survival of patients with non-small-cell lung cancer (NSCLC), resistance often arises. The Warburg Effect, which causes lactate build-up and potential lysine-lactylation (Kla), links immune dysfunction to tumor metabolism. The role of non-histone Kla in tumor immune microenvironment and immunotherapy remains to be clarified. Here, global lactylome profiling and metabolomic analyses of samples from patients with NSCLC is conducted. By combining multi-omics analysis with in vitro and in vivo validation, that intracellular lactate promotes extracellular lipolysis through lactyl-APOC2 is revealed. Mechanistically, lactate enhances APOC2 lactylation at K70, stabilizing it and resulting in FFA release, regulatory T cell accumulation, immunotherapy resistance, and metastasis. Moreover, the anti-APOC2K70-lac antibody that sensitized anti-PD-1 therapy in vivo is developed. This findings highlight the potential of anti lactyl-APOC2-K70 approach as a new combination therapy for sensitizing immunotherapeutic responses.

2.
Biomater Sci ; 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39007343

RESUMO

Although the current surgical hematoma removal treatment saves patients' lives in critical moments of intracerebral hemorrhage (ICH), the lethality and disability rates of ICH are still very high. Due to the individual differences of patients, postoperative functional improvement is still to be confirmed, and the existing drug treatment has limited benefits for ICH. Recent advances in biomaterials may provide new ideas for the therapy of ICH. This review first briefly describes the pathogenic mechanisms of ICH, including primary and secondary injuries such as inflammation and intracerebral edema, and briefly describes the existing therapeutic approaches and their limitations. Secondly, existing nanomaterials and hydrogels for ICH, including exosomes, liposomes, and polymer nanomaterials, are also described. In addition, the potential challenges and application prospects of these biomaterials for clinical translation in ICH treatment are discussed.

3.
Artigo em Inglês | MEDLINE | ID: mdl-39004508

RESUMO

Nanomedicines have significantly advanced the development of diagnostic and therapeutic strategies for various diseases, while they still encounter numerous challenges. Upon entry into the human body, nanomedicines interact with biomolecules to form a layer of proteins, which is defined as the protein corona that influences the biological properties of nanomedicines. Traditional approaches have primarily focused on designing stealthy nanomedicines to evade biomolecule adsorption; however, due to the intricacies of the biological environment within body, this method cannot completely prevent biomolecule adsorption. As research on the protein corona progresses, manipulating the protein corona to modulate the in vivo behaviors of nanomedicines has become a research focus. In this review, modern strategies focused on influencing the biological efficacy of nanomedicines in vivo by manipulating protein corona, along with their wide-ranging applications across diverse diseases are critically summarized, highlighted and discussed. Finally, future directions for this important yet challenging research area are also briefly discussed. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Emerging Technologies Biology-Inspired Nanomaterials > Protein and Virus-Based Structures.


Assuntos
Nanomedicina , Coroa de Proteína , Coroa de Proteína/química , Humanos , Animais , Sistemas de Liberação de Medicamentos
4.
Heliyon ; 10(13): e33631, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39027614

RESUMO

Emodin is a naturally occurring anthraquinone derivative and serves as an active component in various traditional Chinese herbal medicines. It is widely known for its broad pharmacological effects, including anti-inflammatory, antioxidant, and anticancer properties. However, high doses and long-term use of emodin can also lead to liver toxicity. Nevertheless, the mechanism of emodin-induced liver toxicity remains unclear at present. This article aims to summarize the toxicological research progress on emodin, with a particular focus on elucidating the mechanisms underlying emodin-induced hepatocyte injury. By providing essential information, the study intends to facilitate further research and safe usage of emodin for researchers and clinical practitioners.

5.
J Ethnopharmacol ; 334: 118582, 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39009325

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Radiation-induced heart disease (RIHD) is one of the most serious complications in patients receiving chest radiotherapy, partially offsetting its benefits. At present, there is a lack of effective treatments for RIHD. Ferroptosis is a newly discovered type of cell death that results from iron-dependent lipid peroxide accumulation. It was recently shown that irradiation generates severe ferroptosis, providing new insights for the treatment of RIHD. Abelmoschus manihot (L.) possesses excellent pharmacological properties and is widely used in treating various ischemic heart and brain diseases; however, its efficacy and mechanism in treating RIHD are unknown. AIM: This study aimed to investigate the efficacy and mechanism of total extracts from A. manihot (L.) (TEA) in treating RIHD. MATERIALS AND METHODS: C57BL/6 mice and H9C2 cells were exposed to irradiation to induce RIHD in vivo and in vitro, respectively. In vivo, we evaluated the protective effects of TEA (150 and 300 mg/kg) on RIHD. Body and heart weight changes of mice were calculated in each group, and malondialdehyde (MDA) level, glutathione/oxidized glutathione (GSH/GSSH) and nicotinamide adenine dinucleotide phosphate (NADPH/NADP+) ratios, western blot, heart histology, and immunohistochemistry were used to evaluate TEA effectiveness. We identified the potential mechanism of radiation-induced cardiomyocyte injury in H9C2 cells treated with small interfering RNA. We determined the effective dose of TEA (0.6 mg/mL) using a Cell Counting Kit-8 assay. Intracellular Fe2+ and lipid peroxidation levels were detected by Phen Green™ SK diacetate probe, BODIPY 581/591 C11 staining, and MDA, GSH, and NADPH kits, and the level of target protein was evaluated by immunofluorescence and western blot. RESULTS: Radiation inhibited system Xc-cystine (xCT)/glutathione peroxidase 4 (GPX4) expression and activity in cardiomyocytes in a time and dose-dependent manner. After silencing xCT/GPX4, MDA significantly increased and GSH/GSSH and NADPH/NADP+ ratios were reduced. xCT/GPX4 inhibition drove ferroptosis in radiation-induced H9C2 injury. Oxidative stress in H9C2 was significantly enhanced by irradiation, which also significantly increased NADPH oxidase 4 (NOX4) expression and inhibited nuclear factor E2-related factor 2 (Nrf2) expression in vivo and in vitro. Inhibition of xCT/GPX4 drove ferroptosis in radiation-induced H9C2 injury, which was aggravated by inactivation of Nrf2 and alleviated by inhibition of NOX4. Compared with the ionizing radiation-only group, TEA improved body weight loss, MDA levels, and histological changes induced by irradiation in mice hearts, and increased the ratio of GSH/GSSH and NADPH/NADP+in vivo; it also reduced lipid peroxidation and intracellular Fe2+ accumulation, restored MDA levels, and elevated the ratios of GSH/GSSH and NADPH/NADP+ in irradiation-injured H9C2 cells. TEA up-regulated Nrf2, xCT, and GPX4 expression and inhibited NOX4 expression in vivo and in vitro. CONCLUSIONS: Ferroptosis induced by redox imbalance mediated through the NOX4/xCT/GPX4 axis is a potential mechanism behind radiation-induced cardiomyocyte injury, and can be prevented by TEA.

6.
Artigo em Inglês | MEDLINE | ID: mdl-38886186

RESUMO

Large-scale transcriptomic data are crucial for understanding the molecular features of hepatocellular carcinoma (HCC). Integrated 15 transcriptomic datasets of HCC clinical samples, the first version of HCC database (HCCDB v1.0) was released in 2018. Through the meta-analysis of differentially expressed genes and prognosis-related genes across multiple datasets, it provides a systematic view of the altered biological processes and the inter-patient heterogeneities of HCC with high reproducibility and robustness. With four years having passed, the database now needs integration of recently published datasets. Furthermore, the latest single-cell and spatial transcriptomics have provided a great opportunity to decipher complex gene expression variations at the cellular level with spatial architecture. Here, we present HCCDB v2.0, an updated version that combines bulk, single-cell, and spatial transcriptomic data of HCC clinical samples. It dramatically expands the bulk sample size by adding 1656 new samples from 11 datasets to the existing 3917 samples, thereby enhancing the reliability of transcriptomic meta-analysis. A total of 182,832 cells and 69,352 spatial spots are added to the single-cell and spatial transcriptomics sections, respectively. A novel single-cell level and 2-dimension (sc-2D) metric is proposed as well to summarize cell type-specific and dysregulated gene expression patterns. Results are all graphically visualized in our online portal, allowing users to easily retrieve data through a user-friendly interface and navigate between different views. With extensive clinical phenotypes and transcriptomic data in the database, we show two applications for identifying prognosis-associated cells and tumor microenvironment. HCCDB v2.0 is available at http://lifeome.net/database/hccdb2.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Análise de Célula Única , Transcriptoma , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Análise de Célula Única/métodos , Transcriptoma/genética , Bases de Dados Genéticas , Perfilação da Expressão Gênica/métodos , RNA-Seq/métodos , Regulação Neoplásica da Expressão Gênica/genética , Análise da Expressão Gênica de Célula Única
7.
Front Med (Lausanne) ; 11: 1349178, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38841570

RESUMO

Background and aim: Lymphocytes are effector cells that fight cancer by killing tumor cells. Here, we aim to explore the prognostic significance of both peripheral and tumor-infiltrating lymphocytes (TILs) in newly diagnosed stage III/IV non-small-cell lung cancer (NSCLC). Materials and methods: In total, 105 cases of newly diagnosed stage III/IV NSCLC from July 2017 to October 2022 at the Tianjin Beichen Hospital were retrospectively investigated. Peripheral blood samples at the time of diagnosis and tumor tissue slices from these patients were collected. General peripheral blood cell composition and TILs were measured and analyzed via an automatic blood analyzer and immunofluorescence staining analysis. The overall survival (OS) time of all patients was also obtained and analyzed. Results: The median overall survival (mOS) of all patients is 12 months. The 1-, 2-, and 3-year overall survival rates were 60.5, 28.4, and 18.6%, respectively. Peripheral lymphocyte and neutrophil percentages, serum C-reactive protein (CRP) expression, tumor size, and tumor pathology are the prognostic factors of OS for newly diagnosed stage III/IV NSCLC patients. Moreover, patients with high tumor CD4+ and CD8+ T cell infiltration survived significantly longer compared to patients with low tumor CD4+ and CD8+ T cell infiltration (p < 0.0001 and p = 0.011, respectively). Compared to low tumor CD33+ cell infiltration, high tumor CD33+ cell infiltration was associated with worse OS (p = 0.018). High tumor CD8+ T cell infiltration was associated with lower peripheral lymphocyte number, lower serum CRP expression, smaller tumor size, and better tumor pathology (p = 0.012, p = 0.040, p = 0.012, and p = 0.029, respectively). Conclusion: Increased numbers of peripheral lymphocytes, CD33+ cells, CD4+ TILs, and CD8+ TILs were significantly associated with OS in newly diagnosed stage III/IV NSCLC patients, which were positively associated with several basic clinical factors.

8.
Toxicology ; 505: 153829, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38740170

RESUMO

Drug-induced liver injury (DILI) is one of the major concerns during drug development. Wide acceptance of the 3 R principles and the innovation of in-vitro techniques have introduced various novel model options, among which the three-dimensional (3D) cell spheroid cultures have shown a promising prospect in DILI prediction. The present study developed a 3D quadruple cell co-culture liver spheroid model for DILI prediction via self-assembly. Induction by phorbol 12-myristate 13-acetate at the concentration of 15.42 ng/mL for 48 hours with a following 24-hour rest period was used for THP-1 cell differentiation, resulting in credible macrophagic phenotypes. HepG2 cells, PUMC-HUVEC-T1 cells, THP-1-originated macrophages, and human hepatic stellate cells were selected as the components, which exhibited adaptability in the designated spheroid culture conditions. Following establishment, the characterization demonstrated the competence of the model in long-term stability reflected by the maintenance of morphology, viability, cellular integration, and cell-cell junctions for at least six days, as well as the reliable liver-specific functions including superior albumin and urea secretion, improved drug metabolic enzyme expression and CYP3A4 activity, and the expression of MRP2, BSEP, and P-GP accompanied by the bile acid efflux transport function. In the comparative testing using 22 DILI-positive and 5 DILI-negative compounds among the novel 3D co-culture model, 3D HepG2 spheroids, and 2D HepG2 monolayers, the 3D culture method significantly enhanced the model sensitivity to compound cytotoxicity compared to the 2D form. The novel co-culture liver spheroid model exhibited higher overall predictive power with margin of safety as the classifying tool. In addition, the non-parenchymal cell components could amplify the toxicity of isoniazid in the 3D model, suggesting their potential mediating role in immune-mediated toxicity. The proof-of-concept experiments demonstrated the capability of the model in replicating drug-induced lipid dysregulation, bile acid efflux inhibition, and α-SMA upregulation, which are the key features of liver steatosis and phospholipidosis, cholestasis, and fibrosis, respectively. Overall, the novel 3D quadruple cell co-culture spheroid model is a reliable and readily available option for DILI prediction.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Técnicas de Cocultura , Esferoides Celulares , Humanos , Esferoides Celulares/efeitos dos fármacos , Doença Hepática Induzida por Substâncias e Drogas/patologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Células Hep G2 , Células Estreladas do Fígado/efeitos dos fármacos , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/patologia , Células THP-1 , Fígado/efeitos dos fármacos , Fígado/patologia , Fígado/metabolismo , Sobrevivência Celular/efeitos dos fármacos
9.
Mikrochim Acta ; 191(6): 325, 2024 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-38739279

RESUMO

Glial fibrillary acidic protein (GFAP) in serum has been shown as a biomarker of traumatic brain injury (TBI) which is a significant global public health concern. Accurate and rapid detection of serum GFAP is critical for TBI diagnosis. In this study, a time-resolved fluorescence immunochromatographic test strip (TRFIS) was proposed for the quantitative detection of serum GFAP. This TRFIS possessed excellent linearity ranging from 0.05 to 2.5 ng/mL for the detection of serum GFAP and displayed good linearity (Y = 598723X + 797198, R2 = 0.99), with the lowest detection limit of 16 pg/mL. This TRFIS allowed for quantitative detection of serum GFAP within 15 min and showed high specificity. The intra-batch coefficient of variation (CV) and the inter-batch CV were both < 4.0%. Additionally, this TRFIS was applied to detect GFAP in the serum samples from healthy donors and patients with cerebral hemorrhage, and the results of TRFIS could efficiently discern the patients with cerebral hemorrhage from the healthy donors. Our developed TRFIS has the characteristics of high sensitivity, high accuracy, and a wide linear range and is suitable for rapid and quantitative determination of serum GFAP on-site.


Assuntos
Cromatografia de Afinidade , Proteína Glial Fibrilar Ácida , Humanos , Biomarcadores/sangue , Hemorragia Cerebral/sangue , Hemorragia Cerebral/diagnóstico , Cromatografia de Afinidade/métodos , Proteína Glial Fibrilar Ácida/sangue , Limite de Detecção , Fitas Reagentes
10.
Comput Biol Med ; 177: 108608, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38796880

RESUMO

BACKGROUND AND OBJECTIVE: Cardiac computed tomography angiography (CTA) is the preferred modality for preoperative planning in aortic valve stenosis. However, it cannot provide essential functional hemodynamic data, specifically the mean transvalvular pressure gradient (MPG). This study aims to introduce a computational fluid dynamics (CFD) approach for MPG quantification using cardiac CTA, enhancing its diagnostic value. METHODS: Twenty patients underwent echocardiography, cardiac CTA, and invasive catheterization for pressure measurements. Cardiac CTA employed retrospective electrocardiographic gating to capture multi-phase data throughout the cardiac cycle. We segmented the region of interest based on mid-systolic phase cardiac CTA images. Then, we computed the average flow velocity into the aorta as the inlet boundary condition, using variations in end-diastolic and end-systolic left ventricular volume. Finally, we conducted CFD simulations using a steady-state model to obtain pressure distribution within the computational domain, allowing for the derivation of MPG. RESULTS: The mean value of MPG, measured via invasive catheterization (MPGInv), echocardiography (MPGEcho), and cardiac CTA (MPGCT), were 51.3 ± 28.4 mmHg, 44.8 ± 19.5 mmHg, and 55.8 ± 25.6 mmHg, respectively. In comparison to MPGInv, MPGCT exhibited a higher correlation of 0.91, surpassing that of MPGEcho, which was 0.82. Moreover, the limits of agreement for MPGCT ranged from -27.7 to 18.7, outperforming MPGEcho, which ranged from -40.1 to 18.0. CONCLUSIONS: The proposed method based on cardiac CTA enables the evaluation of MPG for aortic valve stenosis patients. In future clinical practice, a single cardiac CTA examination can comprehensively assess both the anatomical and functional hemodynamic aspects of aortic valve disease.


Assuntos
Angiografia por Tomografia Computadorizada , Hemodinâmica , Humanos , Angiografia por Tomografia Computadorizada/métodos , Masculino , Feminino , Idoso , Hemodinâmica/fisiologia , Pessoa de Meia-Idade , Valva Aórtica/diagnóstico por imagem , Valva Aórtica/fisiopatologia , Valvopatia Aórtica/diagnóstico por imagem , Valvopatia Aórtica/fisiopatologia , Estenose da Valva Aórtica/diagnóstico por imagem , Estenose da Valva Aórtica/fisiopatologia , Modelos Cardiovasculares , Ecocardiografia/métodos
11.
Acta Pharm Sin B ; 14(4): 1787-1800, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38572091

RESUMO

Radiotherapy (RT) is one of the most feasible and routinely used therapeutic modalities for treating malignant tumors. In particular, immune responses triggered by RT, known as radio-immunotherapy, can partially inhibit the growth of distantly spreading tumors and recurrent tumors. However, the safety and efficacy of radio-immunotherapy is impeded by the radio-resistance and poor immunogenicity of tumor. Herein, we report oxaliplatin (IV)-iron bimetallic nanoparticles (OXA/Fe NPs) as cascade sensitizing amplifiers for low-dose and robust radio-immunotherapy. The OXA/Fe NPs exhibit tumor-specific accumulation and activation of OXA (II) and Fe2+ in response to the reductive and acidic microenvironment within tumor cells. The cascade reactions of the released metallic drugs can sensitize RT by inducing DNA damage, increasing ROS and O2 levels, and amplifying the immunogenic cell death (ICD) effect after RT to facilitate potent immune activation. As a result, OXA/Fe NPs-based low-dose RT triggered a robust immune response and inhibited the distant and metastatic tumors effectively by a strong abscopal effect. Moreover, a long-term immunological memory effect to protect mice from tumor rechallenging is observed. Overall, the bimetallic NPs-based cascade sensitizing amplifier system offers an efficient radio-immunotherapy regimen that addresses the key challenges.

12.
Nano Lett ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38619219

RESUMO

Current density imaging is helpful for discovering interesting electronic phenomena and understanding carrier dynamics, and by combining pressure distributions, several pressure-induced novel physics may be comprehended. In this work, noninvasive, high-resolution two-dimensional images of the current density and pressure gradient for graphene ribbon and hBN-graphene-hBN devices are explored using nitrogen-vacancy (NV) centers in diamond under high pressure. The two-dimensional vector current density is reconstructed by the vector magnetic field mapped by the near-surface NV center layer in the diamond. The current density images accurately and clearly reproduce the complicated structure and current flow of graphene under high pressure. Additionally, the spatial distribution of the pressure is simultaneously mapped, rationalizing the nonuniformity of the current density under high pressure. The current method opens a significant new avenue to investigate electronic transport and conductance variations in two-dimensional materials and electrical devices under high pressure as well as for nondestructive evaluation of semiconductor circuits.

13.
Sensors (Basel) ; 24(8)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38676102

RESUMO

Partially impaired sensor arrays pose a significant challenge in accurately estimating signal parameters. The occurrence of bad data is highly probable, resulting in random loss of source information and substantial performance degradation in parameter estimation. In this paper, a tensor variational sparse Bayesian learning (TVSBL) method is proposed for the estimate of direction of arrival (DOA) and polarization parameters jointly based on a conformal polarization sensitive array (CPSA), taking into account scenarios with the partially impaired sensor array. First, a sparse tensor-based received data model is developed for CPSAs that incorporates bad data. Then, a column vector detection method is proposed to diagnose the positions of the impaired sensors. In scenarios involving partially impaired sensor arrays, a low-rank matrix completion method is employed to recover the random loss of signal information. Finally, variational sparse Bayesian learning (VSBL) and minimum eigenvector methods are utilized sequentially to obtain the DOA and polarization parameters estimation, successively. Furthermore, the Cramér-Rao bound is given for the proposed method. Simulation results validated the effectiveness of the proposed method.

14.
Front Microbiol ; 15: 1390269, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38686115

RESUMO

Fusarium solani is a pathogenic fungus that causes significant harm, leading to crop yield reduction, fruit quality reduction, postharvest decay, and other diseases. This study used potato glycoside alkaloids (PGA) as inhibitors to investigate their effects on the mitochondrial structure and tricarboxylic acid (TCA) cycle pathway of F. solani. The results showed that PGA could inhibit the colony growth of F. solani (54.49%), resulting in the disappearance of the mitochondrial membrane and the loss of contents. PGA significantly decreased the activities of aconitase (ACO), isocitrate dehydrogenase (IDH), α-ketoglutarate dehydrogenase (α-KGDH), succinate dehydrogenase (SDH), fumarase (FH), malate dehydrogenase (MDH), succinyl-CoA synthetase (SCS), and increased the activity of citrate synthase (CS) in F. solani. After PGA treatment, the contents of acetyl coenzyme A (CoA), citric acid (CA), malic acid (L-MA), and α-ketoglutaric acid (α-KG) in F. solani were significantly decreased. The contents of isocitric acid (ICA), succinyl coenzyme A (S-CoA), succinic acid (SA), fumaric acid (FA), and oxaloacetic acid (OA) were significantly increased. Transcriptomic analysis showed that PGA could significantly affect the expression levels of 19 genes related to TCA cycle in F. solani. RT-qPCR results showed that the expression levels of ACO, IDH, α-KGDH, and MDH-related genes were significantly down-regulated, and the expression levels of SDH and FH-related genes were significantly up-regulated, which was consistent with the results of transcriptomics. In summary, PGA can achieve antifungal effects by reducing the tricarboxylic acid cycle's flow and regulating key genes' expression levels. This study reveals the antifungal mechanism of PGA from the perspective of TCA cycle, and provides a theoretical basis for the development and application of PGA as a biopesticide.

15.
ChemSusChem ; 17(14): e202301787, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-38440928

RESUMO

As a promising large-scale energy storage technology, all-vanadium redox flow battery has garnered considerable attention. However, the issue of capacity decay significantly hinders its further development, and thus the problem remains to be systematically sorted out and further explored. This review provides comprehensive insights into the multiple factors contributing to capacity decay, encompassing vanadium cross-over, self-discharge reactions, water molecules migration, gas evolution reactions, and vanadium precipitation. Subsequently, it analyzes the impact of various battery parameters on capacity. Based on this foundation, the article expounds upon the significance of battery internal state estimation technology. Additionally, the review also summarizes domestic and international mathematical models utilized for simulating capacity decay, serving as a valuable reference for future research endeavors. Finally, through the comparison of traditional experimental methods and mathematical modeling methods, this article offers effective guidance for the future development direction of battery state monitoring. This review generally overview the problems related to the capacity attenuation of all-vanadium flow batteries, which is of great significance for understanding the mechanism behind capacity decay and state monitoring technology of all-vanadium redox flow battery.

16.
Nat Protoc ; 19(7): 2206-2229, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38491145

RESUMO

As different taxa evolve, gene order often changes slowly enough that chromosomal 'blocks' with conserved gene orders (synteny) are discernible. The MCScanX toolkit ( https://github.com/wyp1125/MCScanX ) was published in 2012 as freely available software for the detection of such 'colinear blocks' and subsequent synteny and evolutionary analyses based on genome-wide gene location and protein sequence information. Owing to its simplicity and high efficiency for colinear block detection, MCScanX provides a powerful tool for conducting diverse synteny and evolutionary analyses. Moreover, the detection of colinear blocks has been embraced as an integral step for pangenome graph construction. Here, new application trends of MCScanX are explored, striving to better connect this increasingly used tool to other tools and accelerate insight generation from exponentially growing sequence data. We provide a detailed protocol that covers how to install MCScanX on diverse platforms, tune parameters, prepare input files from data from the National Center for Biotechnology Information, run MCScanX and its visualization and evolutionary analysis tools, and connect MCScanX with external tools, including MCScanX-transposed, Circos and SynVisio. This protocol is easily implemented by users with minimal computational background and is adaptable to new data of interest to them. The data and utility programs for this protocol can be obtained from http://bdx-consulting.com/mcscanx-protocol .


Assuntos
Evolução Molecular , Software , Sintenia , Genômica/métodos , Humanos , Biologia Computacional/métodos
17.
Phys Rev Lett ; 132(8): 086502, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38457738

RESUMO

A one-dimensional Bose-Hubbard model with unidirectional hopping is shown to be exactly solvable. Applying the algebraic Bethe ansatz method, we prove the integrability of the model and derive the Bethe ansatz equations. The exact eigenvalue spectrum can be obtained by solving these equations. The distribution of Bethe roots reveals the presence of a superfluid-Mott insulator transition at the ground state, and the critical point is determined. By adjusting the boundary parameter, we demonstrate the existence of a non-Hermitian skin effect even in the presence of interaction, but it is completely suppressed for the Mott insulator state in the thermodynamical limit. Our result represents a new class of exactly solvable non-Hermitian many-body systems, which has no Hermitian correspondence and can be used as a benchmark for various numerical techniques developed for non-Hermitian many-body systems.

19.
Aging (Albany NY) ; 16(3): 2887-2907, 2024 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-38345559

RESUMO

Lung adenocarcinoma (LUAD) is a malignant tumor of the respiratory system that has a poor 5-year survival rate. Anoikis, a type of programmed cell death, contributes to tumor development and metastasis. The aim of this study was to develop an anoikis-based stratified model, and a multivariable-based nomogram for guiding clinical therapy for LUAD. Through differentially expressed analysis, univariate Cox, LASSO Cox regression, and random forest algorithm analysis, we established a 4 anoikis-related genes-based stratified model, and a multivariable-based nomogram, which could accurately predict the prognosis of LUAD patients in the TCGA and GEO databases, respectively. The low and high-risk score LUAD patients stratified by the model showed different tumor mutation burden, tumor microenvironment, gemcitabine sensitivity and immune checkpoint expressions. Through immunohistochemical analysis of clinical LUAD samples, we found that the 4 anoikis-related genes (PLK1, SLC2A1, ANGPTL4, CDKN3) were highly expressed in the tumor samples from clinical LUAD patients, and knockdown of these genes in LUAD cells by transfection with small interfering RNAs significantly inhibited LUAD cell proliferation and migration, and promoted anoikis. In conclusion, we developed an anoikis-based stratified model and a multivariable-based nomogram of LUAD, which could predict the survival of LUAD patients and guide clinical treatment.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Anoikis/genética , Adenocarcinoma de Pulmão/genética , Biomarcadores , Biologia Computacional , Neoplasias Pulmonares/genética , Prognóstico , Microambiente Tumoral/genética
20.
BMC Biol ; 22(1): 50, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38414012

RESUMO

BACKGROUND: The formation and domestication of ornamental traits are influenced by various aspects, such as the recognition of esthetic values and cultural traditions. Camellia japonica is widely appreciated and domesticated around the world mainly due to its rich variations in ornamental traits. Ornamental camellias have a diverse range of resources, including different bud variations from Camellia spp. as well as inter- and intra- specific hybridization. Despite research on the formation of ornamental traits, a basic understanding of their genetics and genomics is still lacking. RESULTS: Here, we report the chromosomal-level reference genome of C. japonica through combining multiple DNA-sequencing technologies and obtain a high-density genetic linkage map of 4255 markers by sequencing 98 interspecific F1 hybrids between C. japonica and C. chekiangoleosa. We identify two whole-genome duplication events in C. japonica: one is a shared ancient γ event, and the other is revealed to be specific to genus Camellia. Based on the micro-collinearity analysis, we find large-scale segmental duplication of chromosome 8, resulting to two copies of the AGAMOUS loci, which may play a key role in the domestication of floral shapes. To explore the regulatory mechanisms of seasonal flowering, we have analyzed year-round gene expression patterns of C. japonica and C. azalea-a sister plant of continuous flowering that has been widely used for cross breeding. Through comparative analyses of gene co-expression networks and annual gene expression patterns, we show that annual expression rhythms of some important regulators of seasonal growth and development, including GIGANTEA and CONSTANS of the photoperiod pathway, have been disrupted in C. azalea. Furthermore, we reveal that the distinctive expression patterns of FLOWERING LOCUS T can be correlated with the seasonal activities of flowering and flushing. We demonstrate that the regulatory module involved in GIGANTEA, CONSTANS, and FLOWERING LOCUS T is central to achieve seasonality. CONCLUSIONS: Through the genomic and comparative genomics characterizations of ornamental Camellia spp., we propose that duplication of chromosomal segments as well as the establishment of gene expression patterns has played a key role in the formation of ornamental traits (e.g., flower shape, flowering time). This work provides a valuable genomic platform for understanding the molecular basis of ornamental traits.


Assuntos
Camellia , Estações do Ano , Camellia/genética , Melhoramento Vegetal , Genômica , Flores/genética , Expressão Gênica , Regulação da Expressão Gênica de Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA