Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Small ; : e2308182, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38308386

RESUMO

The electrochemical reduction of nitrate to ammonia is an effective method for mitigating nitrate pollution and generating ammonia. To design superior electrocatalysts, it is essential to construct a reaction site with high activity. Herein, a simple two-step method is applied to in situ reduce amorphous copper over boron-doped SnS2 nanosheets(denoted as aCu@B-SnS2-x . DFT calculations reveal the combination of amorphous copper and B-doping strategy can construct Cu-B active twins and introduce sulfur vacancies on the surface of the inert SnS2 , the active twins can efficiently adsorb nitrate and forcibly separate oxygen atoms from nitrate under the assistance of the exposed Sn atom, leading to strong nitrate adsorption. Benefiting from this, aCu@B-SnS2-x exhibited an ultrahigh NH3 FE of 94.6% at -0.67 V versus RHE and the highest NH3 yield rate of 0.55 mmol h-1  mg-1 cat (9350 µg h-1  mg-1 cat ) at -0.77 V versus RHE under alkaline conditions. Besides, aCu@B-SnS2-x is confirmed to remain active after various stability tests, suggesting the practicality of utilizing aCu@B-SnS2-x in industrial applications. This work highlights the feasibility of enhanced nitrate-to-ammonia conversion efficiency by combining the doping method and amorphous metal.

2.
Anal Chim Acta ; 1282: 341903, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37923404

RESUMO

BACKGROUND: Surface-enhanced Raman spectroscopy (SERS) has been extensively used in biomedical and food safety detection due to its advantages of label-free, in situ and fingerprint spectrum. However, it is challenging to develop an excellent SERS substrate that possesses all three of these characteristics including sensitivity, repeatability and stability. RESULTS: In this work, a specific sodium alginate hydrogel flexible SERS substrate encapsulated gold-silver core-shell nanoparticles (Au@Ag NPs) was developed to address the aforementioned issue. The Au@Ag NPs with SERS "hot spot" structure were evenly dispersed in the hydrogel, which achieved the direct and high efficiency detection of the pesticide residues from complex sample matrix. Taking thiram as objective, this SERS substrates exhibit high sensitivity (detection limit of approximately 1 × 10-10 mol/L), excellent stability (maintain above 78.35 % of SERS activity after 7 weeks) and outstanding repeatability (RSD in one substrate as low as 3.56 %). Furthermore, the flexible hydrogel SERS substrates can be used to analyze a variety of small molecules in real samples (juices, vegetables and fruits), without the need for a laborious pretreatment process. SIGNIFICANCE: In light of the aforementioned benefits, the functional flexible hydrogel SERS substrates present a reliable platform for the accurate and on-site measurement of chemical contaminants from complex samples.


Assuntos
Nanoestruturas , Resíduos de Praguicidas , Resíduos de Praguicidas/análise , Hidrogéis , Tiram/análise , Análise Espectral Raman/métodos
3.
Nanotechnology ; 35(3)2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37797600

RESUMO

The electrolytic water method is an outstanding hydrogen production process because of its high stability and no restriction. A low-priced and efficient catalyst for electro-deposition of Ni-Co microspheres and nanoclusters on carbon steel (Ni-Co/CS) has been prepared by the dynamic hydrogen bubble template. In the 6 M KOH solution, Ni-Co/CS only requires an overpotential of 48 mV to provide a current density of 50 mA cm-2. At the same time, it also has a large electrochemically active specific surface area (ECSA) and a hydrophilic surface. In addition, the study about the influence of carbon steel (CS) on Ni-Co coatings and the comparison experiment for different base materials has been completed. The results prove that CS is an excellent base material for hydrogen production. It can help the Ni-Co catalyst to have a stable electrolysis in 6 M KOH for 500 h. The above properties of Ni-Co/CS catalyst make it a new choice of hydrogen production by electrolysis of water in practical applications.

4.
Nanotechnology ; 34(35)2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37334966

RESUMO

Fuel cells, as the alternative to fossil energy, have engaged widespread attention by reason of the high conversion efficiency from the chemical energy to the electric energy combined with low pollution emissions. The cathodic ORR catalysts with excellent performance and cost-effectiveness are the dominant point towards the massive development of fuel cells. Here, our group select the Pd NWs as the template and construct the Pd@PtRuNi core-shell bilayer nanostructure to expand platinum atom utilization. Pd@PtRuNi bilayer core-shell NWs unfold elevated mass activity of1.62Amgmetal-1at 0.9 V versus RHE in alkaline media, 2.03- and 6.23-fold of pristine Pd NWs and benchmark commercial Pt/C, respectively. Meanwhile, the cyclic stability tests reveal the excellent durability of Pd@PtRuNi NWs, whose mass activity is only 13.58% degradation after accelerated durability tests. The catalytic activity and durability towards ORR are better than the U.S. 2025 DOE target (0.44Amgpt-1and less than 40% activity attenuation at 0.9 V after 30 000 potential cycles). The elevated catalytic properties can be traceable to the synergism between the ligand effect of Ni and Ru and one-dimensional structure superiority, which optimizes the electronic structure of active sites, promotes the charge transfer and restrains the agglomeration and detachment.

5.
Environ Monit Assess ; 195(7): 865, 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37338706

RESUMO

Tuojiang River watershed is an economically developed and densely populated area in Sichuan Province (southwest of China), which is also an important tributary of the Yangtze River. Nitrogen (N) and phosphorus (P) are the main pollutants affecting water quality, but there is still lack of study on the spatial and temporal distribution characteristics of these two pollutants. In this study, the typical non-point source pollution loads in the Tuojiang River watershed are simulated by Soil and Water Assessment Tool (SWAT) model, and the spatial autocorrelation method is used to reveal the spatial and temporal distribution characteristics of the pollution loads from the annual average and water periods. Combined with redundancy analysis (RDA) and geographically weighted regression (GWR) analysis, the main driving factors affecting the typical non-point source pollution loads in the Tuojiang River watershed are discussed from the global and local perspectives. The results show that (1) from different water periods, the pollution loads of total nitrogen (TN) and total phosphorus (TP) in three water periods show obviously different, is the highest in the abundant water period, with 323.4 kg/ha and 47.9 kg/ha, followed by the normal water period, with 95.7 kg/ha and 14.1 kg/ha, and the lowest in the dry water period, with 28.4 kg/ha and 4.2 kg/ha. The annual average value of TN pollution load is higher than that of TP, with 447.5 kg/ha and 66.1 kg/ha, respectively; (2) the TN and TP pollution loads are stable on the whole, and the overall level in the middle reaches is higher. The pollution loads of Shifang City and Mianzhu City are higher in all three water periods. (3) Elevation and slope are two main driving factors affecting the TN and TP pollution loads in the Tuojiang River watershed. Therefore, the visualization and quantification of temporal and spatial distribution characteristics of typical non-point source pollution loads in the Tuojiang River watershed are helpful to provide the basis for scientific prevention and control of pollution in the Tuojiang River watershed and are of great significance to promote the sustainable, coordinated, and healthy development of water environment and economy in the watershed.


Assuntos
Monitoramento Ambiental , Poluição Ambiental , China , Poluentes Ambientais/análise , Nitrogênio/análise , Fósforo/análise , Rios , Solo , Poluição Ambiental/estatística & dados numéricos
6.
ACS Appl Mater Interfaces ; 15(12): 15585-15594, 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-36917253

RESUMO

Potassium-ion batteries (PIBs) are considered as a promising technology alternative to lithium-ion batteries due to more abundance of potassium than lithium and a lower redox potential of K/K+ than that of Na/Na+. The critical limitation in PIBs is the electrode with poor rate capability and cycling stability induced by the sluggish reaction kinetics and large volume change during potassiation and depotassiation. In this work, we report a turbostratic lattice iodine-doped carbon (TLIC) nanosheet as an advanced innovative anode for PIBs displaying fast charge/discharge and electrode stability. The turbostratic lattice caused by doping of large-sized iodine and the unique charge transfer between iodine/carbon atoms creates more active sites and a shorter transport distance for K ions, improves the electrochemical activity, promotes rapid ion diffusion, and enhances pseudocapacitive behavior. The TLIC exhibits a high capacity of 433.5 mAh g-1 at 50 mA g-1, an ultrahigh rate capability of 162.1 mAh g-1 at 20 A g-1, and an excellent capacity retention of ∼96% (206 mAh g-1) after 4000 cycles. The combination of turbostratic lattice and pseudocapactive storage is an effective approach to designing carbon electrodes with the transformational performance of high capacity, rate performance, and long lifetime for practical applications of PIBs.

7.
Environ Sci Pollut Res Int ; 30(14): 42192-42213, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36645605

RESUMO

Traditional method of estimating pollution loads may neglect the internal spatial heterogeneity of socio-economic driving factors, which can result in overestimate and underestimate of pollution loads. In this study, the corrected approach to estimating total phosphorus (TP) pollution load was proposed to explore its future variation to develop effective phosphorus pollution control strategies for water environment management. As the first-class tributary of the Yangtze River, the TP out of limits in the Tuojiang River is serious. Thus, based on the presently related basic datasets related to TP pollution load estimation, we firstly adopted the GM (1,1) model to predict their varied trends from 2021 to 2025. We then used the pollution emission coefficient method to calculate the TP pollution load. Moreover, considering the temporal and spatial heterogeneity of the pollutant generation coefficient, we further introduced population and GDP factors to further modify the pollutant generation coefficient to correct TP pollution load. Finally, we employed the exploratory spatial data analysis (ESDA) method to explore spatial distribution characteristics and spatial autocorrelation of TP pollution load from diverse pollution sources in 2025. The results showed that the total TP pollution load from diverse pollution sources will increase from 12,194.92 t in 2021 to 12,461.26 t in 2025, an increase of 2.18%. More concretely, the TP pollution load from rural domestic sewage, rural domestic waste and livestock, and poultry pollution sources will separately decrease by 94.24 t, 77.9 t, and 86.52 t. However, the TP pollution load from agricultural runoff and agricultural solid wastes pollution sources will increase by 74.52 t and 451.49 t, respectively. The contribution of TP pollution load from diverse pollution sources to total TP pollution load will be as follows: livestock and poultry (63.49%) > agricultural solid wastes (16.72%) > agricultural runoff (12.26%) > rural domestic sewage (4.12%) > rural domestic waste (3.41%). The difference in the spatial distribution of TP pollution load from diverse pollution sources in 2025 will be prominent. TP pollution from rural domestic sewage and rural domestic waste pollution sources is more serious in the Xindu and Longquanyi districts, and that from agricultural runoff and agricultural solid wastes pollution sources is more prominent in the midstream and downstream. TP pollution load from livestock and poultry pollution source is higher in the Renshou, Anyue, Rongxian, Luxian counties, and Jiangyang district. Additionally, TP pollution load from rural domestic sewage, rural domestic waste, agricultural runoff, and agricultural solid wastes pollution sources in 2025 will show a clear spatial correlation, but the spatial correlation of TP pollution load from livestock and poultry pollution source will be weak. The study is effective to eliminate the influence of temporal and spatial variation of pollutants generates coefficients on TP pollution load estimation. The method can reflect the actual condition of pollution loads in watersheds more objectively, which can be applied to estimate other pollution loads of similar watersheds with intensive socio-economic activities. The findings in this study can provide a critical reference for the stakeholders to balance water environment conservation and socio-economic development.


Assuntos
Poluentes Químicos da Água , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos , Fósforo/análise , Esgotos , Resíduos Sólidos , Nitrogênio/análise , China , Água
8.
ACS Nano ; 15(8): 12996-13006, 2021 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-34328307

RESUMO

Gas sensors lie at the heart of various fields ranging from medical to environmental sciences, and the demand of gas sensors is instantly expanding. However, in the face of complex gas samples, how to maintain high sensitivity while performing multiplex detection still puzzles the researchers. Here, by introducing Ti3C2Tx MXene into a microfluidic gas sensor with a three-dimensional (3D) transferable SERS substrate, a powerful gas sensor having both multiplex detecting ability and high sensitivity is demonstrated. The employ of MXene endows the sensor with a universal high adsorption efficiency for various gases while the generation of in situ gas vortices in the sophisticated nanomicro structure extends the molecule residence time in SERS-active area, both leading to the increased sensitivity. In the proof-of-concept experiment, a limit of detection (LOD) of 10-50 ppb was achieved for three typical volatile organic compounds (VOCs) according to the intrinsic SERS signals of gas molecules. Besides, the well-designed periodic 3D structure solves the general repeatability problem of SERS substrates. In addition, the detailed composition of gas mixture was revealed using classic least-square analysis (CLS) with an average accuracy of 90.6%. Further, a chromatic barcode was developed based on the results of CLS to read out the complex composition of samples visually.


Assuntos
Análise Espectral Raman , Compostos Orgânicos Voláteis , Análise Espectral Raman/métodos , Titânio , Limite de Detecção , Gases/química , Compostos Orgânicos Voláteis/análise
9.
Nanotechnology ; 32(36)2021 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-33836518

RESUMO

An electrochemical catalyst with efficient, stable, inexpensive energy storage for oxygen evolution and hydrogen evolution has raised global concerns on energy, calling for high-performance materials for effective treatments. In this paper, novel amorphous polymetallic doped CeO2particles were prepared for an electrochemical catalyst via homogeneous phase precipitation at room temperature. Metal ions can be easily embedded into the oxygen vacancies formed by CeO2, and the the electron transport capacity of the CeO2/NiFeCo electrocatalyst is improved owing to the increase in active sites. In addition, the amorphous CeO2/NiFeCo composite material is in a metastable state and will transform into different active states in a reducing or oxidizing environment. Furthermore, the amorphous material drives oxygen evolution reaction (OER) through the lattice oxygen oxidation mechanism (LOM), while LOM can effectively bypass the adsorption of strongly related intermediates in the adsorbate release mechanism, thus promoting OER procedure in a timely manner. As a result, CeO2/NiFeCo exhibits a lower oxygen evolution overpotential of 260 mV at 10 mA cm-2current density, which shows a predatorily competitive advantage compared with commercially available RuO2and the reported catalysts.

10.
Biosens Bioelectron ; 179: 113083, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33588297

RESUMO

A novel voltammetric method applying a semi-circular potential sweep is applied to the simultaneous electroanalytical determination of solutions containing two components with similar oxidation potentials which precludes their resolution using conventional voltammetric methods including linear sweep, square wave and pulse voltammetries. Three such biologically important mixtures, ascorbic acid/acetaminophen, glucose/ethanol and hydroquinone/catechol were studied, analytical methods developed and the method of semi-circular sweep voltammetry shown to give notable advantages over the other conventional analytical voltammetries in terms of signal resolution and the sensitivity of the detection. Favourable accuracy was obtained using electrodes with either simple or no modification in the established linear detection ranges.


Assuntos
Técnicas Biossensoriais , Acetaminofen , Ácido Ascórbico , Eletrodos
12.
Phys Chem Chem Phys ; 22(26): 14537-14543, 2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32578612

RESUMO

Numerous experiments have demonstrated that an appropriate electronic configuration can effectively activate the electrocatalytic activity. However, systematic studies on the effects of non-metallic elemental doping and its p-orbital center (εp) on electrocatalysis have not yet been carried out. Combining theoretical and experimental methods, we demonstrate an electronic configuration and p-orbital center control engineering for promoting the HER course in both acid and alkaline solutions over group VA elements doped into the inert basal plane of nanoMoS2. In acidic solutions, As-doped MoS2 has the best electrocatalytic activity. Theoretically, the calculated ΔGH of the As atom is only -0.07 eV, indicating that it has excellent catalytic performance. Furthermore, the p-orbital center under and near the Fermi level plays a significant role in the H adsorption course, and the closer the εp value is to the Fermi level, the weaker the H- non-metallic atom bond is. An appropriate εp can insure a proper strength of bond with H and further influence the catalytic activity of the HER. In alkaline solutions, P-doped MoS2 has the best electrocatalytic activity, which is due to the engineering of water dissociation sites by doping P atoms into MoS2 nanosheets. These findings pave the path to develop a rational strategy to trigger the activity of the inert basal plane of MoS2, to enhance the conductivity of inherent MoS2 towards the HER and provide a new idea that can be extended to other layered dichalcogenides.

13.
Food Chem ; 323: 126844, 2020 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-32335461

RESUMO

A simple electrochemical method employing a novel semi-circular potential sweep voltammetry on a glassy carbon (GC) electrode was developed to distinguish and quantify two main chlorophyll components (chlorophyll a and b) present in their mixtures. The semi-circular potential sweep generates large, transient scan rates, enabling the selective detection of species with closely similar oxidative potentials. The proposed method shows good applicability in mixtures of chlorophyll a (Chl a) and chlorophyll b (Chl b) with concentrations ranging from 46.2 to 110.8 µM and 46.2 to 92.4 µM respectively, which were prepared to mimic varying compositions of chlorophyll a and b in nature for the application in food quality control. The method was successfully applied to real sample of spinach.

14.
Food Chem ; 309: 125606, 2020 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-31678675

RESUMO

A simple, rapid method of the detection of piperine in black pepper is reported using a voltammetric sensor based on a glassy carbon (GC) electrode with analysis following a short one-step extraction using ethanol. The method is based on a novel potential sweep designed to maximise signal sizes and shown with context of the present analytical challenge to be essential for gathering data allowing the construction of a linear calibration curve for the analysis in the relevant range namely 0.25-5.0 mM.


Assuntos
Alcaloides/análise , Benzodioxóis/análise , Técnicas Eletroquímicas/métodos , Análise de Alimentos/métodos , Piper nigrum/química , Piperidinas/análise , Alcamidas Poli-Insaturadas/análise , Calibragem , Carbono , Técnicas Eletroquímicas/instrumentação , Eletrodos
15.
J Hazard Mater ; 373: 367-376, 2019 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-30933859

RESUMO

Transition metal oxides (TMOs) derived from metal - organic frameworks (MOF) combined with two-dimensional (2D) transition metal carbides possibly pave an innovative pathway for designing promising biosensors. Herein, a novel electrochemical sensing platform has been fabricated for ultra-sensitive determination of organophosphorus pesticides (OPs), based on MOF-derived MnO2/Mn3O4 and Ti3C2 MXene/Au NPs composites. Remarkably, the three-dimensional (3D) MnO2/Mn3O4 hierarchical microcuboids derived from Mn-MOF are composed of vertically aligned, highly ordered nanosheets, and further combined with MXene/Au NPs yields synergistic signal amplification effect, with outstanding electrochemical performance, large specific surface area, and good environmental biocompatibility. Under the optimum conditions, the reported sensing platform AChE-Chit/MXene/Au NPs/MnO2/Mn3O4/GCE can be utilized to detect methamidophos in a broad concentration range (10-12-10-6 M), together with a good linearity (R = 0.995). Besides that, the biosensor possesses a low limit of detection (1.34 × 10-13 M), which far exceeds the maximum residue limits (MRLs) for methamidophos (0.01 mg/kg) established by European Union. Additionally, the feasibility of the proposed biosensor for detecting methamidophos in real samples has been demonstrated with excellent recoveries (95.2%-101.3%). Interestingly, the unique structures and remarkable properties of these composites make them attractive materials for various electrochemical sensors for monitoring either pesticide residuals or other environmentally deleterious chemicals.


Assuntos
Técnicas Eletroquímicas , Compostos de Manganês/química , Nanoestruturas/química , Óxidos/química , Praguicidas/análise , Titânio/química , Ouro/química , Nanoestruturas/ultraestrutura , Compostos Organotiofosforados/análise
16.
Small ; 15(16): e1805435, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30941892

RESUMO

A class of 2D layered materials exhibits substantial potential for high-performance electrocatalysts due to high specific surface area, tunable electronic properties, and open 2D channels for fast ion transport. However, liquid-phase exfoliation always utilizes organic solvents that are harmful to the environment, and the active sites are limited to edge sites. Here, an environmentally friendly exfoliator in aqueous solution is presented without utilizing any toxic or hazardous substance and active site self-assembly on the inert base of 2D materials. Benefiting from thin 2D/2D heterostructure and strong interfacial coupling, the resultant highly disordered amorphous NiFe/2D materials (Ti3C2 MXene, graphene and MoS2 ) thin nanosheets exhibit extraordinary electrocatalytic performance toward oxygen evolution reaction (OER) in alkaline media. DFT results further verify the experimental results. The study emphasizes a viable idea to probe efficient electrocatalysts by means of the synergistic effect of environmentally friendly exfoliator in aqueous solution and active site self-assembly on the inert base of 2D materials which forms the unique thin 2D/2D heterostructure in-suit. This new type of heterostructure opens up a novel avenue for the rational design of highly efficient 2D materials for electrocatalysis.

17.
Nanotechnology ; 30(5): 055501, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30499458

RESUMO

The exploration of new materials for modifying electrodes is important to advance electrochemical biosensors. Herein, we demonstrated that amorphous bimetallic boride material (Co-2Ni-B) prepared by a simple and facile aqueous reaction is an efficient matrix to immobilize acetylcholinesterase (AChE) to construct a biosensor for the determination of organophosphate pesticides. The effects of different composition and crystallinity on its electrochemical performance are investigated, and the optimization studies of the biological transducer were also discussed. Under optimal conditions, the fabricated sensor showed good analytical performance for the determination of chlorpyrifos with a low limit of detection (2.83 pM) and a wide linear range (3 pM-300 nM). The proposed biosensor also demonstrated high reproducibility, stability and accuracy. The impressive performance was due to the excellent conductivity and the unique amorphous bimetal-metalloid complex nanostructure. These results introduce a new class of promising materials as a robust platform for biosensor applications.


Assuntos
Acetilcolinesterase/química , Compostos de Boro/química , Metais/química , Organofosfatos/química , Praguicidas/química , Técnicas Biossensoriais/métodos , Eletrodos , Reprodutibilidade dos Testes
18.
J Hazard Mater ; 357: 466-474, 2018 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-29935459

RESUMO

A novel electrochemical biosensor was designed for sensitive detection of organophosphate pesticides based on three-dimensional porous bimetallic alloy architecture with ultrathin nanowires (PdCo NWs, PdCu NWs, PdNi NWs) and monolayer MoS2 nanosheet (m-MoS2). The bimetallic alloy NWs/m-MoS2 nanomaterials were used as a sensing platform for electrochemical analysis of omethoate, a representative organophosphate pesticide, via acetylcholinesterase inhibition pathway. We demonstrated that all three bimetallic alloy NWs enhanced electrochemical responses of enzymatic biosensor, benefited from bimetallic synergistic action and porous structure. In particular, PdNi NWs outperformed other two bimetallic alloy. Moreover, PdNi NWs/m-MoS2 as an electronic transducer is superior to the corresponding biosensor in the absence of monolayer MoS2 nanosheet, which arise from synergistic signal amplification effect between different components. Under optimized conditions, the developed biosensor on the basis of PdNi NWs/m-MoS2 shows outstanding performance for the electrochemical assay of omethoate, such as a wide linear range (10-13 M∼10-7 M), a low detection limit of 0.05 pM at a signal-to-noise ratio of 3, high sensitivity and long-time stability. The results demonstrate that bimetallic alloy NWs/m-MoS2 nanocomposites could be excellent transducers to promote electron transfer for the electrochemical reactions, holding great potentials in the construction of current and future biosensing devices.


Assuntos
Técnicas Biossensoriais , Inibidores da Colinesterase/análise , Dimetoato/análogos & derivados , Técnicas Eletroquímicas , Poluentes Ambientais/análise , Praguicidas/análise , Acetilcolinesterase/química , Ligas/química , Inibidores da Colinesterase/química , Dimetoato/análise , Dimetoato/química , Poluentes Ambientais/química , Molibdênio/química , Nanocompostos/química , Nanofios/química , Níquel/química , Paládio/química , Praguicidas/química , Porosidade
19.
ACS Appl Mater Interfaces ; 9(33): 27715-27719, 2017 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-28756659

RESUMO

Two-dimensional molybdenum disulfide (2D MoS2) has drawn persistent interests as one of the most promising alternatives to Pt catalysts for the hydrogen evolution reaction (HER). It is generally accepted that the edge sites of 2D MoS2 are catalytically active but the basal planes are inert. Activating the MoS2 basal plane is an obvious strategy to enhance the HER activity of this material. However, few approaches have sought to activate the basal plane. Here, for the first time, we demonstrate that the inert basal planes can be activated via the synergistic effects of nitrogen and fluorine codoping. Our first-principles calculations reveal that nitrogen in the basal plane of the fluorine- and nitrogen-codoped MoS2 (NF-MoS2) can act as a new active and further tuneable catalytic site. The as-prepared NF-MoS2 catalyst exhibited an enormously enhanced HER activity compared to that of pure MoS2 and N-doped MoS2 due to the chemical codoping effect. This work will pave a novel pathway for enhancing the HER activity using the synergistic effects of chemical codoping.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA