Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Bioconjug Chem ; 27(7): 1579-83, 2016 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-27357145

RESUMO

Immobilization of enzymes enhances their properties for application in industrial processes as reusable and robust biocatalysts. Here, we developed a new immobilization method by mimicking the natural cellulosome system. A group of cohesin and carbohydrate-binding module (CBM)-containing scaffoldins were genetically engineered, and their length was controlled by cohesin number. To use green fluorescent protein (GFP) as an immobilization model, its C-terminus was fused with a dockerin domain. GFP was able to specifically bind to scaffoldin via cohesin-dockerin interaction, while the scaffoldin could attach to cellulose by CBM-cellulose interaction. Our results showed that this mild and convenient approach was able to achieve site-specific immobilization, and the maximum GFP loading capacity reached ∼0.508 µmol/g cellulose.


Assuntos
Proteínas de Bactérias/química , Proteínas de Ciclo Celular/química , Celulose/química , Proteínas Cromossômicas não Histona/química , Proteínas Imobilizadas/química , Sítios de Ligação , Proteínas de Fluorescência Verde/química , Modelos Moleculares , Conformação Proteica , Domínios Proteicos , Coesinas
2.
Biotechnol Biofuels ; 9: 137, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27382414

RESUMO

BACKGROUND: Consolidated bioprocessing (CBP), integrating cellulase production, cellulose saccharification, and fermentation into one step has been widely considered as the ultimate low-cost configuration for producing second-generation fuel ethanol. However, the requirement of a microbial strain able to hydrolyze cellulosic biomass and convert the resulting sugars into high-titer ethanol limits CBP application. RESULTS: In this work, cellulolytic yeasts were developed by engineering Saccharomyces cerevisiae with a heterologous cellodextrin utilization pathway and bifunctional minicellulosomes. The cell-displayed minicellulosome was two-scaffoldin derived, and contained an endoglucanase and an exoglucanase, while the intracellular cellodextrin pathway consisted of a cellodextrin transporter and a ß-glucosidase, which mimicked the unique cellulose-utilization system in Clostridium thermocellum and allowed S. cerevisiae to degrade and use cellulose without glucose inhibition/repression on cellulases and mixed-sugar uptake. Consequently, only a small inoculation of the non-induced yeast cells was required to efficiently co-convert both cellulose and galactose to ethanol in a single-step co-fermentation process, achieving a high specific productivity of ~62.61 mg cellulosic ethanol/g cell·h from carboxymethyl cellulose and ~56.37 mg cellulosic ethanol/g cell·h from phosphoric acid-swollen cellulose. CONCLUSIONS: Our work provides a versatile engineering strategy for co-conversion of cellulose-mixed sugars to ethanol by S. cerevisiae, and the achievements in this work may further promote cellulosic biofuel production.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA