Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
1.
Science ; 385(6704): eadm8762, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38963845

RESUMO

Understanding how numerous quantitative trait loci (QTL) shape phenotypic variation is an important question in genetics. To address this, we established a permanent population of 18,421 (18K) rice lines with reduced population structure. We generated reference-level genome assemblies of the founders and genotyped all 18K-rice lines through whole-genome sequencing. Through high-resolution mapping, 96 high-quality candidate genes contributing to variation in 16 traits were identified, including OsMADS22 and OsFTL1 verified as causal genes for panicle number and heading date, respectively. We identified epistatic QTL pairs and constructed a genetic interaction network with 19 genes serving as hubs. Overall, 170 masking epistasis pairs were characterized, serving as an important factor contributing to genetic background effects across diverse varieties. The work provides a basis to guide grain yield and quality improvements in rice.


Assuntos
Epistasia Genética , Genoma de Planta , Oryza , Locos de Características Quantitativas , Oryza/genética , Sequenciamento Completo do Genoma , Mapeamento Cromossômico , Genes de Plantas , Genótipo , Redes Reguladoras de Genes , Fenótipo
2.
Front Immunol ; 15: 1410634, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38911860

RESUMO

Bilateral facial palsy with paresthesia (FDP) is a rare variant of GBS, characterized by simultaneous bilateral facial palsy and paresthesia of the distal limbs. Mounting evidence indicates that the presence of anti-GT1a IgG has a pathogenic role as an effector molecule in the development of cranial nerve palsies in certain patients with GBS, whereas anti-GT1a antibody is rarely presented positive in FDP. Here, we report the case of a 33-year-old male diagnosed with FDP presented with acute onset of bilateral facial palsy and slight paresthesias at the feet as the only neurological manifestation. An antecedent infection with no identifiable reason for the fever or skin eruptions was noted in the patient. He also exhibited cerebrospinal fluid albuminocytologic dissociation and abnormal nerve conduction studies. Notably, the testing of specific serum anti-gangliosides showed positive anti-GT1a IgG/IgM Ab. The patient responded well to intravenous immunoglobulin therapy. This case brings awareness to a rare variant of GBS, and provides the first indication that anti-GT1a antibodies play a causative role in the development of FDP. The case also suggests that prompt management with IVIG should be implemented if FDP is diagnosed.


Assuntos
Autoanticorpos , Paralisia Facial , Gangliosídeos , Parestesia , Humanos , Masculino , Adulto , Parestesia/imunologia , Parestesia/diagnóstico , Parestesia/etiologia , Paralisia Facial/diagnóstico , Paralisia Facial/etiologia , Paralisia Facial/imunologia , Autoanticorpos/imunologia , Autoanticorpos/sangue , Gangliosídeos/imunologia , Imunoglobulinas Intravenosas/uso terapêutico , Imunoglobulina G/imunologia , Imunoglobulina G/sangue , Síndrome de Guillain-Barré/diagnóstico , Síndrome de Guillain-Barré/imunologia
3.
J Nanobiotechnology ; 22(1): 202, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658952

RESUMO

Multi-modal combination therapy is regarded as a promising approach to cancer treatment. Combining chemotherapy and phototherapy is an essential multi-modal combination therapy endeavor. Ivermectin (IVM) is a potent antiparasitic agent identified as having potential antitumor properties. However, the fact that it induces protective autophagy while killing tumor cells poses a challenge to its further application. IR780 iodide (IR780) is a near-infrared (NIR) dye with outstanding photothermal therapy (PTT) and photodynamic therapy (PDT) effects. However, the hydrophobicity, instability, and low tumor uptake of IR780 limit its clinical applications. Here, we have structurally modified IR780 with hydroxychloroquine, an autophagy inhibitor, to synthesize a novel compound H780. H780 and IVM can form H780-IVM nanoparticles (H-I NPs) via self-assembly. Using hyaluronic acid (HA) to modify the H-I NPs, a novel nano-delivery system HA/H780-IVM nanoparticles (HA/H-I NPs) was synthesized for chemotherapy-phototherapy of colorectal cancer (CRC). Under NIR laser irradiation, HA/H-I NPs effectively overcame the limitations of IR780 and IVM and exhibited potent cytotoxicity. In vitro and in vivo experiment results showed that HA/H-I NPs exhibited excellent anti-CRC effects. Therefore, our study provides a novel strategy for CRC treatment that could enhance chemo-phototherapy by modulating autophagy.


Assuntos
Autofagia , Neoplasias Colorretais , Reposicionamento de Medicamentos , Ivermectina , Nanopartículas , Autofagia/efeitos dos fármacos , Animais , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/terapia , Humanos , Camundongos , Nanopartículas/química , Ivermectina/farmacologia , Ivermectina/química , Linhagem Celular Tumoral , Indóis/química , Indóis/farmacologia , Camundongos Endogâmicos BALB C , Camundongos Nus , Fotoquimioterapia/métodos , Antineoplásicos/farmacologia , Antineoplásicos/química , Fototerapia/métodos , Ácido Hialurônico/química , Hidroxicloroquina/farmacologia , Hidroxicloroquina/química , Terapia Fototérmica/métodos
4.
J Integr Plant Biol ; 66(5): 943-955, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38501459

RESUMO

Maize (Zea mays subspecies mays) is an important commercial crop across the world, and its flowering time is closely related to grain yield, plant cycle and latitude adaptation. FKF1 is an essential clock-regulated blue-light receptor with distinct functions on flowering time in plants, and its function in maize remains unclear. In this study, we identified two FKF1 homologs in the maize genome, named ZmFKF1a and ZmFKF1b, and indicated that ZmFKF1a and ZmFKF1b independently regulate reproductive transition through interacting with ZmCONZ1 and ZmGI1 to increase the transcription levels of ZmCONZ1 and ZCN8. We demonstrated that ZmFKF1b underwent artificial selection during modern breeding in China probably due to its role in geographical adaptation. Furthermore, our data suggested that ZmFKF1bHap_C7 may be an elite allele, which increases the abundance of ZmCONZ1 mRNA more efficiently and adapt to a wider range of temperature zone than that of ZmFKF1bHap_Z58 to promote maize floral transition. It extends our understanding of the genetic diversity of maize flowering. This allele is expected to be introduced into tropical maize germplasm to enrich breeding resources and may improve the adaptability of maize at different climate zones, especially at temperate region.


Assuntos
Flores , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Zea mays , Zea mays/genética , Zea mays/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Flores/genética , Flores/fisiologia , Adaptação Fisiológica/genética , Reprodução/genética , Reprodução/fisiologia , Geografia , Alelos
5.
JCI Insight ; 9(5)2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38456503

RESUMO

Colon cancer affects people of all ages. However, its frequency, as well as the related morbidity and mortality, are high among older adults. The complex physiological changes in the aging gut substantially limit the development of cancer therapies. Here, we identify a potentially unique intestinal microenvironment that is linked with an increased risk of colon cancer in older adults. Our findings show that aging markedly influenced persistent fucosylation of the apical surfaces of intestinal epithelial cells, which resulted in a favorable environment for tumor growth. Furthermore, our findings shed light on the importance of the host-commensal interaction, which facilitates the dysregulation of fucosylation and promotes tumor growth as people get older. We analyzed colonic microbial populations at the species level to find changes associated with aging that could contribute to the development of colon cancer. Analysis of single-cell RNA-sequencing data from previous publications identified distinct epithelial cell subtypes involved in dysregulated fucosylation in older adults. Overall, our study provides compelling evidence that excessive fucosylation is associated with the development of colon cancer, that age-related changes increase vulnerability to colon cancer, and that a dysbiosis in microbial diversity and metabolic changes in the homeostasis of older mice dysregulate fucosylation levels with age.


Assuntos
Neoplasias do Colo , Humanos , Camundongos , Animais , Idoso , Neoplasias do Colo/metabolismo , Glicosilação , Células Epiteliais/metabolismo , Mucosa Intestinal/patologia , Microambiente Tumoral
6.
Medicine (Baltimore) ; 103(5): e37192, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38306528

RESUMO

RATIONALE: During the past 3 years of the corona virus disease 2019 (COVID-19) pandemic, COVID-19 has been recognized to cause various neurological complications, including rare posterior reversible encephalopathy syndrome (PRES). In previously reported cases of PRES associated with COVID-19, the majority of patients had severe COVID-19 infection and known predisposing factors for PRES, such as uncontrolled hypertension, renal dysfunction, and use of immunosuppressants. It remains unclear whether these risk factors or infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) contributes to the development of PRES in these patients. Here we report a special case of PRES associated with COVID-19 without any known risk factors for PRES, indicating the SARS-CoV-2's direct role in the pathogenesis of PRES associated with COVID-19. PATIENT CONCERNS: An 18-year-old female patient presented to the emergency department with abdominal pain. Preliminary investigations showed no abnormalities, except for positive results in novel coronavirus nucleic acid tests using oropharyngeal swabs. However, the patient subsequently developed tonic-clonic seizures, headaches, and vomiting on the second day. Extensive investigations have been performed, including brain MRI and lumbar puncture. Brain MRI showed hypointense T1-weighted and hyperintense T2-weighted lesions in the bilateral occipital, frontal, and parietal cortices without enhancement effect. Blood and cerebrospinal fluid analyses yielded negative results. The patient had no hypertension, renal insufficiency, autoimmune disease, or the use of immunosuppressants or cytotoxic drugs. DIAGNOSES: PRES was diagnosed based on the clinical features and typical MRI findings of PRES. INTERVENTIONS: Symptomatic treatments such as anticonvulsants were administered to the patients. OUTCOMES: The patient fully recovered within 1 week. The initial MRI abnormalities also disappeared completely on a second MR examination performed 11 days later, supporting the diagnosis of PRES. The patient was followed up for 6 months and remained in a normal state. LESSONS: The current case had no classical risk factors for PRES, indicating that although the cause of PRES in COVID-19 patients may be multifactorial, the infection of SARS-CoV-2 may play a direct role in the pathogenesis of PRES associated with COVID-19.


Assuntos
COVID-19 , Hipertensão , Síndrome da Leucoencefalopatia Posterior , Feminino , Humanos , Adolescente , Síndrome da Leucoencefalopatia Posterior/complicações , SARS-CoV-2 , COVID-19/complicações , Convulsões/complicações , Hipertensão/complicações , Imunossupressores/uso terapêutico
7.
Antiviral Res ; 222: 105811, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38242503

RESUMO

Coxsackievirus B3 (CVB3) is a non-enveloped, single-stranded, positive RNA virus known for its role in provoking inflammatory diseases that affect the heart, pancreas, and brain, leading to conditions such as myocarditis, pancreatitis, and meningitis. Currently, there are no FDA-approved drugs treating CVB3 infection; therefore, identifying potential molecular targets for antiviral drug development is imperative. In this study, we examined the possibility of activating the cyclic GMP-AMP (cGAMP) synthase (cGAS)-stimulator of interferon genes (STING) pathway, a cytosolic DNA-sensing pathway that triggers a type-I interferon (IFN) response, in inhibiting CVB3 infection. We found that activation of the cGAS-STING pathway through the application of cGAS (poly dA:dT and herring testes DNA) or STING agonists (2'3'-cGAMP and diamidobenzimidazole), or the overexpression of STING, significantly suppresses CVB3 replication. Conversely, gene-silencing of STING enhances viral replication. Mechanistically, we demonstrated that cGAS-STING activation combats CVB3 infection by inducing IFN response. Notably, we discovered that knockdown of IFN-α/ß receptor, a key membrane receptor in type-I IFN signaling, or inhibition of the downstream JAK1/2 signaling with ruxolitinib, mitigates the effects of STING activation, resulting in increased viral protein production. Furthermore, we investigated the interplay between CVB3 and the cGAS-STING pathway. We showed that CVB3 does not trigger cGAS-STING activation; instead, it antagonizes STING and the downstream TBK1 activation induced by cGAMP. In summary, our results provide insights into the interaction of an RNA virus and the DNA-sensing pathway, highlighting the potential for agonist activation of the cGAS-STING pathway in the development of anti-CVB3 drugs.


Assuntos
Imunidade Inata , Interferon Tipo I , Transdução de Sinais/genética , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Interferon Tipo I/metabolismo , DNA
8.
Sci Adv ; 10(1): eadj1120, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38170765

RESUMO

The dual role of CD8+ T cells in influenza control and lung pathology is increasingly appreciated. To explore whether protective and pathological functions can be linked to specific subsets, we dissected CD8+ T responses in influenza-infected murine lungs. Our single-cell RNA-sequencing (scRNA-seq) analysis revealed notable diversity in CD8+ T subpopulations during peak viral load and infection-resolved state. While enrichment of a Cxcr3hi CD8+ T effector subset was associated with a more robust cytotoxic response, both CD8+ T effector and central memory exhibited equally potent effector potential. The scRNA-seq analysis identified unique regulons regulating the cytotoxic response in CD8+ T cells. The late-stage CD8+ T blockade in influenza-cleared lungs or continuous CXCR3 blockade mitigated lung injury without affecting viral clearance. Furthermore, adoptive transfer of wild-type CD8+ T cells exacerbated influenza lung pathology in Cxcr3-/- mice. Collectively, our data imply that CXCR3 interception could have a therapeutic effect in preventing influenza-linked lung injury.


Assuntos
Influenza Humana , Lesão Pulmonar , Animais , Humanos , Camundongos , Linfócitos T CD8-Positivos , Pulmão , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Quimiocinas
9.
Biochemistry ; 63(3): 241-250, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38216552

RESUMO

Viroporins constitute a class of viral membrane proteins with diverse roles in the viral life cycle. They can self-assemble and form pores within the bilayer that transport substrates, such as ions and genetic material, that are critical to the viral infection cycle. However, there is little known about the oligomeric state of most viroporins. Here, we use native mass spectrometry in detergent micelles to uncover the patterns of oligomerization of the full-length SARS-CoV-2 envelope (E) protein, poliovirus VP4, and HIV Vpu. Our data suggest that the E protein is a specific dimer, VP4 is exclusively monomeric, and Vpu assembles into a polydisperse mixture of oligomers under these conditions. Overall, these results revealed the diversity in the oligomerization of viroporins, which has implications for the mechanisms of their biological functions as well as their potential as therapeutic targets.


Assuntos
COVID-19 , Infecções por HIV , Poliovirus , Humanos , SARS-CoV-2/metabolismo , Proteínas Viroporinas , Proteínas Virais Reguladoras e Acessórias , Proteínas do Vírus da Imunodeficiência Humana/química , Proteínas do Vírus da Imunodeficiência Humana/metabolismo
10.
Colloids Surf B Biointerfaces ; 234: 113697, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38071945

RESUMO

Benefiting from the biocompatibility, adhesiveness, and natural extracellular matrix-mimicking ability, hydrogels have received increasing research in recent years. In this study, a hydrogel system composed of dopamine, quaternized ammoniated chitosan (QCS), and polyvinylpyrrolidone was reported to exhibit fast hemostatic properties in Sprague-Dawley rat tail amputation and liver bleeding models. The results showed that this hydrogel had good hemostatic properties. The designed hydrogel showed high swelling ratios in H2O, PBS, and 0.9 % NaCl solution, indicating its capability to absorb tissue residual exudate and form a stable hydrogel. Compared with the control group, the blood loss in Sprague-Dawley rat tail amputation and liver bleeding were reduced by nearly 78 % and 76 %, respectively. Interestingly, dopamine endowed the hydrogel with antioxidant properties, thus holding a great application promise in inflammatory wounds. Furthermore, the designed hydrogel demonstrated good and reversible adhesion properties (12.23 ± 0.22 kPa-24.31 ± 0.55 kPa), ensuring its firm attachment to bleeding wounds of pig skin in wet environments. This research points out a novel path for designing chitosan-based hydrogels for biomedical applications.


Assuntos
Quitosana , Hemostáticos , Ratos , Animais , Suínos , Quitosana/farmacologia , Antioxidantes/farmacologia , Hidrogéis/farmacologia , Dopamina , Ratos Sprague-Dawley , Aderências Teciduais , Hemostáticos/farmacologia , Hemostasia , Antibacterianos
11.
Geriatr Nurs ; 55: 79-88, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37976559

RESUMO

OBJECTIVE: The study investigates the impact of preoperative rehabilitation on the surgical prognosis of frail older patients. METHOD: The effect sizes of all studies retrieved and included by the nine databases were analyzed and expressed as RR and WMD. RESULTS: 8 studies with 902 participants met the criteria for inclusion. A significant reduction in total complications (RR = 0.84, 95 % CI = 0.73 to 0.97, P = 0.021) and the 6MWT after surgery (WMD = 74.76, 95 % CI = 44.75 to 104.77, P = 0.000) was observed in the prehabilitation group. But it had no differences in mortality(RR = 1.89, 95 % CI = 0.75 to 4.72, P = 0.176), readmission rates(RR = 1.04, 95 % CI = 0.56 to 1.91, P = 0.906) and LOS(WMD = -0.24, 95 % CI = -1.00 to 0.52, P = 0.540). CONCLUSIONS: Prehabilitation had positive effect on postoperative complications and functional recovery in frail older patients.


Assuntos
Idoso Fragilizado , Exercício Pré-Operatório , Humanos , Idoso , Complicações Pós-Operatórias/prevenção & controle , Complicações Pós-Operatórias/etiologia , Prognóstico , Recuperação de Função Fisiológica
12.
Nucleic Acids Res ; 52(D1): D1519-D1529, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38000385

RESUMO

The explosive amount of multi-omics data has brought a paradigm shift both in academic research and further application in life science. However, managing and reusing the growing resources of genomic and phenotype data points presents considerable challenges for the research community. There is an urgent need for an integrated database that combines genome-wide association studies (GWAS) with genomic selection (GS). Here, we present CropGS-Hub, a comprehensive database comprising genotype, phenotype, and GWAS signals, as well as a one-stop platform with built-in algorithms for genomic prediction and crossing design. This database encompasses a comprehensive collection of over 224 billion genotype data and 434 thousand phenotype data generated from >30 000 individuals in 14 representative populations belonging to 7 major crop species. Moreover, the platform implemented three complete functional genomic selection related modules including phenotype prediction, user model training and crossing design, as well as a fast SNP genotyper plugin-in called SNPGT specifically built for CropGS-Hub, aiming to assist crop scientists and breeders without necessitating coding skills. CropGS-Hub can be accessed at https://iagr.genomics.cn/CropGS/.


Assuntos
Produtos Agrícolas , Bases de Dados Genéticas , Genômica , Genótipo , Fenótipo , Produtos Agrícolas/genética , Genoma , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Internet
13.
PLoS Pathog ; 19(12): e1011847, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38060620

RESUMO

The upper respiratory tract (nasopharynx or NP) is the first site of influenza replication, allowing the virus to disseminate to the lower respiratory tract or promoting community transmission. The host response in the NP regulates an intricate balance between viral control and tissue pathology. The hyper-inflammatory responses promote epithelial injury, allowing for increased viral dissemination and susceptibility to secondary bacterial infections. However, the pathologic contributors to influenza upper respiratory tissue pathology are incompletely understood. In this study, we investigated the role of interleukin IL-17 recetor A (IL-17RA) as a modulator of influenza host response and inflammation in the upper respiratory tract. We used a combined experimental approach involving IL-17RA-/- mice and an air-liquid interface (ALI) epithelial culture model to investigate the role of IL-17 response in epithelial inflammation, barrier function, and tissue pathology. Our data show that IL-17RA-/- mice exhibited significantly reduced neutrophilia, epithelial injury, and viral load. The reduced NP inflammation and epithelial injury in IL-17RA-/- mice correlated with increased resistance against co-infection by Streptococcus pneumoniae (Spn). IL-17A treatment, while potentiating the apoptosis of IAV-infected epithelial cells, caused bystander cell death and disrupted the barrier function in ALI epithelial model, supporting the in vivo findings.


Assuntos
Influenza Humana , Animais , Camundongos , Humanos , Influenza Humana/complicações , Interleucina-17/genética , Interleucina-17/metabolismo , Inflamação/complicações , Streptococcus pneumoniae/metabolismo , Interleucinas
14.
BMC Bioinformatics ; 24(1): 473, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38097937

RESUMO

PURPOSE: Sequenced Protein-Protein Interaction (PPI) prediction represents a pivotal area of study in biology, playing a crucial role in elucidating the mechanistic underpinnings of diseases and facilitating the design of novel therapeutic interventions. Conventional methods for extracting features through experimental processes have proven to be both costly and exceedingly complex. In light of these challenges, the scientific community has turned to computational approaches, particularly those grounded in deep learning methodologies. Despite the progress achieved by current deep learning technologies, their effectiveness diminishes when applied to larger, unfamiliar datasets. RESULTS: In this study, the paper introduces a novel deep learning framework, termed DL-PPI, for predicting PPIs based on sequence data. The proposed framework comprises two key components aimed at improving the accuracy of feature extraction from individual protein sequences and capturing relationships between proteins in unfamiliar datasets. 1. Protein Node Feature Extraction Module: To enhance the accuracy of feature extraction from individual protein sequences and facilitate the understanding of relationships between proteins in unknown datasets, the paper devised a novel protein node feature extraction module utilizing the Inception method. This module efficiently captures relevant patterns and representations within protein sequences, enabling more informative feature extraction. 2. Feature-Relational Reasoning Network (FRN): In the Global Feature Extraction module of our model, the paper developed a novel FRN that leveraged Graph Neural Networks to determine interactions between pairs of input proteins. The FRN effectively captures the underlying relational information between proteins, contributing to improved PPI predictions. DL-PPI framework demonstrates state-of-the-art performance in the realm of sequence-based PPI prediction.


Assuntos
Aprendizado Profundo , Mapeamento de Interação de Proteínas , Mapeamento de Interação de Proteínas/métodos , Redes Neurais de Computação , Sequência de Aminoácidos , Proteínas/metabolismo
15.
J Transl Med ; 21(1): 612, 2023 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-37689664

RESUMO

Distant metastasis remains a leading cause of mortality among patients with colorectal cancer (CRC). Organotropism, referring to the propensity of metastasis to target specific organs, is a well-documented phenomenon in CRC, with the liver, lungs, and peritoneum being preferred sites. Prior to establishing premetastatic niches within host organs, CRC cells secrete substances that promote metastatic organotropism. Given the pivotal role of organotropism in CRC metastasis, a comprehensive understanding of its molecular underpinnings is crucial for biomarker-based diagnosis, innovative treatment development, and ultimately, improved patient outcomes. In this review, we focus on metabolic reprogramming, tumor-derived exosomes, the immune system, and cancer cell-organ interactions to outline the molecular mechanisms of CRC organotropic metastasis. Furthermore, we consider the prospect of targeting metastatic organotropism for CRC therapy.


Assuntos
Neoplasias Colorretais , Exossomos , Humanos , Terapias em Estudo , Comunicação Celular , Fígado , Neoplasias Colorretais/terapia
16.
J Am Chem Soc ; 145(38): 20859-20867, 2023 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-37700579

RESUMO

Lipids can play important roles in modulating membrane protein structure and function. However, it is challenging to identify natural lipids bound to membrane proteins in complex bilayers. Here, we developed lipidomic lipid exchange-mass spectrometry (LX-MS) to study the lipid affinity for membrane proteins on a lipidomic scale. We first mix membrane protein nanodiscs with empty nanodiscs that have no embedded membrane proteins. After allowing lipids to passively exchange between the two populations, we separate the two types of nanodiscs and perform lipidomic analysis on each with liquid chromatography and MS. Enrichment of lipids in the membrane protein nanodiscs reveals the affinity of individual lipids for binding the target membrane protein. We apply this approach to study three membrane proteins. With the Escherichia coli ammonium transporter AmtB and aquaporin AqpZ in nanodiscs with E. coli polar lipid extracts, we detected binding of cardiolipin and phosphatidyl-glycerol lipids to the proteins. With the acetylcholine receptor in nanodiscs with brain polar lipid extracts, we discovered a complex set of lipid interactions that depended on the head group and tail composition. Overall, lipidomic LX-MS provides a detailed understanding of the lipid-binding affinity and thermodynamics for membrane proteins in complex bilayers and provides a unique perspective on the chemical environment surrounding membrane proteins.


Assuntos
Proteínas de Transporte de Cátions , Proteínas de Escherichia coli , Lipídeos de Membrana , Escherichia coli , Lipidômica , Proteínas de Membrana , Espectrometria de Massas
17.
Int J Oral Sci ; 15(1): 44, 2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37736748

RESUMO

Oral squamous cell carcinoma (OSCC) develops on the mucosal epithelium of the oral cavity. It accounts for approximately 90% of oral malignancies and impairs appearance, pronunciation, swallowing, and flavor perception. In 2020, 377,713 OSCC cases were reported globally. According to the Global Cancer Observatory (GCO), the incidence of OSCC will rise by approximately 40% by 2040, accompanied by a growth in mortality. Persistent exposure to various risk factors, including tobacco, alcohol, betel quid (BQ), and human papillomavirus (HPV), will lead to the development of oral potentially malignant disorders (OPMDs), which are oral mucosal lesions with an increased risk of developing into OSCC. Complex and multifactorial, the oncogenesis process involves genetic alteration, epigenetic modification, and a dysregulated tumor microenvironment. Although various therapeutic interventions, such as chemotherapy, radiation, immunotherapy, and nanomedicine, have been proposed to prevent or treat OSCC and OPMDs, understanding the mechanism of malignancies will facilitate the identification of therapeutic and prognostic factors, thereby improving the efficacy of treatment for OSCC patients. This review summarizes the mechanisms involved in OSCC. Moreover, the current therapeutic interventions and prognostic methods for OSCC and OPMDs are discussed to facilitate comprehension and provide several prospective outlooks for the fields.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Humanos , Carcinoma de Células Escamosas/terapia , Carcinoma de Células Escamosas de Cabeça e Pescoço , Neoplasias Bucais/terapia , Microambiente Tumoral
18.
BMC Bioinformatics ; 24(1): 345, 2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37723425

RESUMO

Understanding gene expression processes necessitates the accurate classification and identification of transcription factors, which is supported by high-throughput sequencing technologies. However, these techniques suffer from inherent limitations such as time consumption and high costs. To address these challenges, the field of bioinformatics has increasingly turned to deep learning technologies for analyzing gene sequences. Nevertheless, the pursuit of improved experimental results has led to the inclusion of numerous complex analysis function modules, resulting in models with a growing number of parameters. To overcome these limitations, it is proposed a novel approach for analyzing DNA transcription factor sequences, which is named as DeepCAC. This method leverages deep convolutional neural networks with a multi-head self-attention mechanism. By employing convolutional neural networks, it can effectively capture local hidden features in the sequences. Simultaneously, the multi-head self-attention mechanism enhances the identification of hidden features with long-distant dependencies. This approach reduces the overall number of parameters in the model while harnessing the computational power of sequence data from multi-head self-attention. Through training with labeled data, experiments demonstrate that this approach significantly improves performance while requiring fewer parameters compared to existing methods. Additionally, the effectiveness of our approach  is validated in accurately predicting DNA transcription factor sequences.


Assuntos
Aprendizado Profundo , Fatores de Transcrição , DNA , Biologia Computacional , Redes Neurais de Computação
19.
Biomater Res ; 27(1): 92, 2023 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-37742011

RESUMO

BACKGROUND: Colorectal cancer (CRC) is the second most deadly cancer worldwide, with chemo-resistance remaining a major obstacle in CRC treatment. Notably, the imbalance of redox homeostasis-mediated ferroptosis and the modulation of hypoxic tumor microenvironment are regarded as new entry points for overcoming the chemo-resistance of CRC. METHODS: Inspired by this, we rationally designed a light-activatable oxygen self-supplying chemo-photothermal nanoplatform by co-assembling cisplatin (CDDP) and linoleic acid (LA)-tailored IR820 via enhanced ferroptosis against colorectal cancer chemo-resistance. In this nanoplatform, CDDP can produce hydrogen peroxide in CRC cells through a series of enzymatic reactions and subsequently release oxygen under laser-triggered photothermal to alleviate hypoxia. Additionally, the introduced LA can add exogenous unsaturated fatty acids into CRC cells, triggering ferroptosis via oxidative stress-related peroxidized lipid accumulation. Meanwhile, photothermal can efficiently boost the rate of enzymatic response and local blood flow, hence increasing the oxygen supply and oxidizing LA for enhanced ferroptosis. RESULTS: This nanoplatform exhibited excellent anti-tumor efficacy in chemo-resistant cell lines and showed potent inhibitory capability in nude mice xenograft models. CONCLUSIONS: Taken together, this nanoplatform provides a promising paradigm via enhanced ferroptosis and alleviated hypoxia tumor microenvironment against CRC chemo-resistance.

20.
EMBO J ; 42(21): e113975, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37718683

RESUMO

Paneth cells (PCs), a specialized secretory cell type in the small intestine, are increasingly recognized as having an essential role in host responses to microbiome and environmental stresses. Whether and how commensal and pathogenic microbes modify PC composition to modulate inflammation remain unclear. Using newly developed PC-reporter mice under conventional and gnotobiotic conditions, we determined PC transcriptomic heterogeneity in response to commensal and invasive microbes at single cell level. Infection expands the pool of CD74+ PCs, whose number correlates with auto or allogeneic inflammatory disease progressions in mice. Similar correlation was found in human inflammatory disease tissues. Infection-stimulated cytokines increase production of reactive oxygen species (ROS) and expression of a PC-specific mucosal pentraxin (Mptx2) in activated PCs. A PC-specific ablation of MyD88 reduced CD74+ PC population, thus ameliorating pathogen-induced systemic disease. A similar phenotype was also observed in mice lacking Mptx2. Thus, infection stimulates expansion of a PC subset that influences disease progression.


Assuntos
Microbiota , Celulas de Paneth , Humanos , Animais , Camundongos , Celulas de Paneth/metabolismo , Celulas de Paneth/patologia , Intestino Delgado , Inflamação/patologia , Citocinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA