Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 169
Filtrar
1.
Front Vet Sci ; 11: 1362502, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38721150

RESUMO

The yak, a unique species of cattle found exclusively on the western plateau of China, is a valuable source of livelihood for local residents. However, their low fecundity restricts the expansion of yak farming, whereas regional factors limit studies on yak breeding. Granulosa cells (GCs), which provide essential steroid hormones and growth factors for oocytes, have been the focus of many studies on the mechanisms of follicular growth and atresia. This study aimed to establish an immortalized cell line model that could serve as a tool for future studies on the mechanisms of ovarian follicle development in yaks. First, we isolated primary yak granulosa cells (yGCs) and evaluated their replicative senescence after continuous in vitro subculturing. Subsequently, an immortalized culture method for primary yGC was explored, and a new cell line model was established to study the mechanism of follicular development in vitro. We used a mammalian gene expression lentivirus vector to transfer the simian virus 40 large T antigen (SV40T) into primary yGC to obtain an immortalized cell line. The immortalized yGCs were morphologically identical to the primary yGCs, and cell proliferation and growth were normal within a limited number of generations. Follicle-stimulating hormone receptor (FSHR), a specific marker for GCs, was positively expressed in immortalized yGCs. Furthermore, the immortalized yGCs retained the ability of GCs to synthesize estradiol and progesterone and expressed genes related to steroid synthesis. The establishment of immortalized yGC opens up a myriad of possibilities for advancing our understanding of yak reproductive biology and improving yak breeding strategies.

2.
ACS Nano ; 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38781460

RESUMO

Ultrasmall nanomotors (<100 nm) are highly desirable nanomachines for their size-specific advantages over their larger counterparts in applications spanning nanomedicine, directed assembly, active sensing, and environmental remediation. While there are extensive studies on motors larger than 100 nm, the design and understanding of ultrasmall nanomotors have been scant due to the lack of high-resolution imaging of their propelled motions with orientation and shape details resolved. Here, we report the imaging of the propelled motions of catalytically powered ultrasmall nanomotors─hundreds of them─at the nanometer resolution using liquid-phase transmission electron microscopy. These nanomotors are Pt nanoparticles of asymmetric shapes ("tadpoles" and "boomerangs"), which are colloidally synthesized and observed to be fueled by the catalyzed decomposition of NaBH4 in solution. Statistical analysis of the orientation and position trajectories of fueled and unfueled motors, coupled with finite element simulation, reveals that the shape asymmetry alone is sufficient to induce local chemical concentration gradient and self-diffusiophoresis to act against random Brownian motion. Our work elucidates the colloidal design and fundamental forces involved in the motions of ultrasmall nanomotors, which hold promise as active nanomachines to perform tasks in confined environments such as drug delivery and chemical sensing.

3.
BMC Genomics ; 25(1): 394, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649832

RESUMO

BACKGROUND: Untargeted metabolomics and proteomics were employed to investigate the intracellular response of yak rumen epithelial cells (YRECs) to conditions mimicking subacute rumen acidosis (SARA) etiology, including exposure to short-chain fatty acids (SCFA), low pH5.5 (Acid), and lipopolysaccharide (LPS) exposure for 24 h. RESULTS: These treatments significantly altered the cellular morphology of YRECs. Metabolomic analysis identified significant perturbations with SCFA, Acid and LPS treatment affecting 259, 245 and 196 metabolites (VIP > 1, P < 0.05, and fold change (FC) ≥ 1.5 or FC ≤ 0.667). Proteomic analysis revealed that treatment with SCFA, Acid, and LPS resulted in differential expression of 1251, 1396, and 242 proteins, respectively (FC ≥ 1.2 or ≤ 0.83, P < 0.05, FDR < 1%). Treatment with SCFA induced elevated levels of metabolites involved in purine metabolism, glutathione metabolism, and arginine biosynthesis, and dysregulated proteins associated with actin cytoskeleton organization and ribosome pathways. Furthermore, SCFA reduced the number, morphology, and functionality of mitochondria, leading to oxidative damage and inhibition of cell survival. Gene expression analysis revealed a decrease the genes expression of the cytoskeleton and cell cycle, while the genes expression associated with inflammation and autophagy increased (P < 0.05). Acid exposure altered metabolites related to purine metabolism, and affected proteins associated with complement and coagulation cascades and RNA degradation. Acid also leads to mitochondrial dysfunction, alterations in mitochondrial integrity, and reduced ATP generation. It also causes actin filaments to change from filamentous to punctate, affecting cellular cytoskeletal function, and increases inflammation-related molecules, indicating the promotion of inflammatory responses and cellular damage (P < 0.05). LPS treatment induced differential expression of proteins involved in the TNF signaling pathway and cytokine-cytokine receptor interaction, accompanied by alterations in metabolites associated with arachidonic acid metabolism and MAPK signaling (P < 0.05). The inflammatory response and activation of signaling pathways induced by LPS treatment were also confirmed through protein interaction network analysis. The integrated analysis reveals co-enrichment of proteins and metabolites in cellular signaling and metabolic pathways. CONCLUSIONS: In summary, this study contributes to a comprehensive understanding of the detrimental effects of SARA-associated factors on YRECs, elucidating their molecular mechanisms and providing potential therapeutic targets for mitigating SARA.


Assuntos
Acidose , Proliferação de Células , Células Epiteliais , Metabolômica , Proteômica , Rúmen , Animais , Rúmen/metabolismo , Rúmen/efeitos dos fármacos , Acidose/veterinária , Acidose/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/efeitos dos fármacos , Bovinos , Proliferação de Células/efeitos dos fármacos , Ácidos Graxos Voláteis/metabolismo , Lipopolissacarídeos , Doenças dos Bovinos/metabolismo , Proteoma/metabolismo
4.
Animals (Basel) ; 14(8)2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38672391

RESUMO

Growth-retarded yaks are of a high proportion on the Tibetan plateau and reduce the economic income of farmers. Our previous studies discovered a maldevelopment in the ruminal epithelium of growth-retarded yaks, but the molecular mechanisms are still unclear. This study aimed to reveal how the proteomic profile in the ruminal epithelium contributed to the growth retardation of yaks. The proteome of the ruminal epithelium was detected using a high-resolution mass spectrometer. There were 52 proteins significantly differently expressed between the ruminal epithelium of growth-retarded yaks and growth-normal yaks, with 32 downregulated and 20 upregulated in growth-retarded yaks. Functional analysis showed the differently expressed proteins involved in the synthesis and degradation of ketone bodies (p = 0.012), propanoate metabolism (p = 0.018), pyruvate metabolism (p = 0.020), and mineral absorption (p = 0.024). The protein expressions of SLC26A3 and FTH1, enriched in the mineral absorption, were significantly downregulated in growth-retarded yaks. The key enzymes ACAT2 and HMGCS2 enriched in ketone bodies synthesis and key enzyme PCCA enriched in propanoate metabolism had lower protein expressions in the ruminal epithelium of growth-retarded yaks. The ATP concentration and relative mitochondrial DNA copy number in the ruminal epithelium of growth-normal yaks were dramatically higher than those of growth-retarded yaks (p < 0.05). The activities of citrate synthase (CS), the α-ketoglutarate dehydrogenase complex (α-KGDHC), isocitrate dehydrogenase (ICD) in the tricarboxylic acid cycle (TCA), and the mitochondrial respiratory chain complex (MRCC) were significantly decreased in ruminal epithelium of growth-retarded yaks compared to growth-normal yaks (p < 0.05). The mRNA expressions of COQ9, COX4, and LDHA, which are the encoding genes in MRCC I, IV and anaerobic respiration, were also significantly decreased in the ruminal epithelium of growth-retarded yaks (p < 0.05). Correlation analysis revealed that the average daily gain (ADG) was significantly positively correlated to the relative mitochondrial DNA copy number (p < 0.01, r = 0.772) and ATP concentration (p < 0.01, r = 0.728) in the ruminal epithelium, respectively. The ruminal weight was positively correlated to the relative mitochondrial DNA copy number (p < 0.05, r = 0.631) and ATP concentration in ruminal epithelium (p < 0.01, r = 0.957), respectively. The ruminal papillae had a significant positive correlation with ATP concentration in ruminal epithelium (p < 0.01, r = 0.770). These results suggested that growth-retarded yaks had a lower VFA metabolism, ketone bodies synthesis, ion absorption, and ATP synthesis in the ruminal epithelium; it also indicated that the growth retardation of yaks is related to the obstruction of cellular ATP synthesis in rumen epithelial cells.

5.
Environ Sci Technol ; 58(19): 8597-8606, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38687950

RESUMO

NiFe layered double hydroxides (NiFe-LDH) exhibited an outstanding performance and promising application potential for removing ozone. However, the effect of interlayer anions on ozone removal remains ambiguous. Here, a series of NiFe-LDH with different interlayer anions (F-, Cl-, Br-, NO3-, CO32-, and SO42-) were prepared to investigate the effect of the interlayer anion on ozone removal for the first time. It was found that the interlayer anions are a key factor affecting the water resistance of the NiFe-LDH catalyst under moist conditions. NiFe-LDH-CO32- exhibited the best water resistance, which was much better than that of NiFe-LDH containing other interlayer anions. The in situ DIRFTS demonstrates that the carbonates in the interlayer of NiFe-LDH-CO32- will undergo coordination changes through the interaction with water molecules under moist conditions, exposing new metal sites. As a result, the newly exposed metal sites could activate water molecules into hydroxyl groups that act as active sites for catalyzing ozone decomposition. This work provides a new insight into the interlayer anions of LDH, which is important for the design and development of LDH catalysts with excellent ozone removal properties.


Assuntos
Ânions , Hidróxidos , Ozônio , Ozônio/química , Hidróxidos/química , Catálise , Ânions/química
6.
J Dairy Sci ; 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38395405

RESUMO

Live body weight (LBW) is one of the most important parameters for supervising the growth and development of livestock. The yak (Bos grunniens) is a special species of cattle that lives on the Qinghai-Tibetan Plateau. Yaks are more untamed than regular cattle breeds, thus it is more challenging to measure their LBW. In this study, a YOLOv8 yak detection and LBW estimation models were used to automatically estimate yak LBW in real-time. First, the proper posture (normal posture) and individual yak identification was confirmed and then the YOLOv8 detection model was used for LBW estimation from 2-dimensional (2D) images. Yak LBW was estimated through yak body parameter extraction and a simple linear regression between the estimated yak LBW and the actual measured yak LBW. The results showed that the overall detection performance of yak normal yak posture was described by precision, recall, and mean Average Precision 50 (mAP50) indicators, reaching 81.8, 86.0, and 90.6%, respectively. The best yak identification results were represented by precision, recall, and mAP50 values of 97.8, 96.4, and 99.0%, respectively. The yak LBW estimation model achieved better results for the 12 mo old yaks with shorter hair with R2, root mean square error (RMSE), mean absolute percentage error (MAPE), and Multiple R values of 0.96, 2.43 kg, 1.69%, and 0.98, respectively. The results demonstrate that yak LBW can be estimated and monitored in real-time using this approach. This study has the potential to be used for daily yak LBW monitoring in an unstressed manner and to save considerable labor resources for large-scale livestock farms. In the future, to reduce the limitations caused by the impacts of yak hair and light condition data sets of dairy cows and yaks of different ages will be used to improve and generalize the model.

7.
Biol Trace Elem Res ; 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38376728

RESUMO

Inflammation is a complex physiological process that enables the clearance of pathogens and repairing damaged tissues. Elevated serum copper concentration has been reported in cases of inflammation, but the role of copper in inflammatory responses remains unclear. This study used bovine macrophages to establish lipopolysaccharide (LPS)-induced inflammation model. There were five groups in the study: a group treated with LPS (100 ng/ml), a group treated with either copper chelator (tetrathiomolybdate, TTM) (20 µmol) or CuSO4 (25 µmol or 50 µmol) after LPS stimulation, and a control group. Copper concentrations increased in macrophages after the LPS treatment. TTM decreased mRNA expression of pro-inflammatory factors (IL-1ß, TNF-α, IL-6, iNOS, and COX-2), whereas copper supplement increased them. Compared to the control group, TLP4 and MyD88 protein levels were increased in the TTM and copper groups. However, TTM treatment decreased p-p65 and increased IкB-α while the copper supplement showed reversed results. In addition, the phagocytosis and migration of bovine macrophages decreased in the TTM treatment group while increased in the copper treatment groups. Results mentioned above indicated that copper could promote the LPS-induced inflammatory response in bovine macrophages, promote pro-inflammatory factors by activating the NF-кB pathway, and increase phagocytosis capacity and migration. Our study provides a possible targeted therapy for bovine inflammation.

8.
Front Microbiol ; 14: 1248573, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37881250

RESUMO

Since 2011, pseudorabies based on the pseudorabies virus (PRV) variant has emerged as a serious health issue in pig farms in China. The PRV gE/TK or gE/gI/TK deletion strains protect against emerging PRV variants. However, these variants may cause lethal infections in newborn piglets without PRV antibodies. Previous studies have shown that codon deoptimization of a virulence gene causes virus attenuation. Accordingly, we deoptimized US3-S (US3 gene encoding a short isoform that represents approximately 95% of the total US3 transcription) and UL56 genes (first 10 or all codons) of PRV gE/TK deletion strain (PRVΔTK&gE-AH02) to generate six recombinant PRVs through bacterial artificial chromosome technology. In swine testicular cells, recombinant PRVs with all codon deoptimization of US3-S or UL56 genes were grown to lower titers than the parental virus. Notably, US3-S or UL56 with all codon deoptimization reduced mRNA and protein expressions. Subsequently, the safety and immunogenicity of recombinant PRVs with codon deoptimization of US3-S or UL56 are evaluated as vaccine candidates in mice and piglets. The mice inoculated with recombinant PRVs with codon deoptimization of US3-S or UL56 showed exceptional survival ability without severe clinical signs. All codons deoptimized (US3-S and UL56) significantly decreased virus load and attenuated pathological changes in the brains of the mice. Moreover, the protection efficiency offered by recombinant PRVs with codon deoptimization of US3-S or UL56 showed similar effects to PRVΔTK&gE-AH02. Remarkably, the 1-day-old PRV antibody-negative piglets inoculated with PRVΔTK&gE-US3-ST-CD (a recombinant PRV with all codon deoptimization of US3-S) presented no abnormal clinical symptoms, including fever. The piglets inoculated with PRVΔTK&gE-US3-ST-CD showed a high serum neutralization index against the PRV variant. In conclusion, these results suggest using codon deoptimization to generate innovative live attenuated PRV vaccine candidates.

9.
Toxins (Basel) ; 15(9)2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37755963

RESUMO

The yak lives in harsh alpine environments and the rumen plays a crucial role in the digestive system. Rumen-associated cells have unique adaptations and functions. The yak rumen fibroblast cell line (SV40T-YFB) was immortalized by introducing simian virus 40 large T antigen (SV40T) by lentivirus-mediated transfection. Further, we have reported the effects of lipopolysaccharide (LPS) of different concentrations on cell proliferation, extracellular matrix (ECM), and proinflammatory mediators in SV40T-YFB. The results showed that the immortalized yak rumen fibroblast cell lines were identified as fibroblasts that presented oval nuclei, a fusiform shape, and positive vimentin and SV40T staining after stable passage. Chromosome karyotype analysis showed diploid characteristics of yak (n = 60). LPS at different concentrations inhibited cell viability in a dose-dependent manner. SV40T-YFB treated with LPS increased mRNA expression levels of matrix metalloproteinases (MMP-2 and MMP-9), inflammatory cytokines (TNF-α, IL-1ß, IL-6), and urokinase-type plasminogen activator system components (uPA, uPAR). LPS inhibits the expression of tissue inhibitors of metalloproteinases (TIMP-1 and TIMP-2), plasminogen activator inhibitor-2 (PAI-2), fibronectin (FN), anti-inflammatory factor IL-10, and collagen I (COL I) in SV40T-YFB. Overall, these results suggest that LPS inhibits cell proliferation and induces ECM degradation and inflammatory response in SV40T-YFB.


Assuntos
Lipopolissacarídeos , Rúmen , Animais , Bovinos , Lipopolissacarídeos/farmacologia , Vírus 40 dos Símios/genética , Fibroblastos , Antígenos Virais de Tumores , Linhagem Celular , Fator X
10.
Int J Biol Macromol ; 253(Pt 3): 127007, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37734520

RESUMO

Intestinal mucus is the first line of defense against pathogens and has several active components. Poultry have a short intestine, the mucus of which may contain antiviral components. We hence investigated the antiviral components of mucus and explored their mechanisms of action. Initially, we isolated chicken intestinal mucus proteins that significantly inhibited the replication of avian viruses. The ileum 10-30 kDa protein fraction showed the greatest inhibition of viral replication. Moreover, liquid chromatography-mass spectrometry revealed 12 high-abundance proteins in the ileum 10-30 kDa protein fraction. Among them, we investigated the antiviral activity of calcium binding protein 1 (CALB1). Furthermore, eukaryotically and prokaryotically expressed CALB1 significantly suppressed the replication of avian viruses, possibly by binding calcium ions and/or inducing autophagy. In conclusion, we isolated and identified CALB1 from chicken intestinal mucus, which suppressed replication of avian viruses by regulating cellular calcium-ion homeostasis and autophagy.


Assuntos
Cálcio , Galinhas , Animais , Íleo , Antivirais/farmacologia , Muco
11.
J Xray Sci Technol ; 31(6): 1245-1262, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37718834

RESUMO

This paper is to investigate the high-quality analytical reconstructions of multiple source-translation computed tomography (mSTCT) under an extended field of view (FOV). Under the larger FOVs, the previously proposed backprojection filtration (BPF) algorithms for mSTCT, including D-BPF and S-BPF (their differences are different derivate directions along the detector and source, respectively), make some errors and artifacts in the reconstructed images due to a backprojection weighting factor and the half-scan mode, which deviates from the intention of mSTCT imaging. In this paper, to achieve reconstruction with as little error as possible under the extremely extended FOV, we combine the full-scan mSTCT (F-mSTCT) geometry with the previous BPF algorithms to study the performance and derive a suitable redundancy-weighted function for F-mSTCT. The experimental results indicate FS-BPF can get high-quality, stable images under the extremely extended FOV of imaging a large object, though it requires more projections than FD-BPF. Finally, for different practical requirements in extending FOV imaging, we give suggestions on algorithm selection.


Assuntos
Algoritmos , Tomografia Computadorizada por Raios X , Cintilografia , Artefatos
12.
J Environ Sci (China) ; 134: 2-10, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37673529

RESUMO

Ground-level ozone is harmful to human beings and ecosystems, while room-temperature catalytic decomposition is the most effective technology for ozone abatement. However, solving the deactivation of existing metal oxide catalysts was caused by oxygen-containing intermediates is challenging. Here, we successfully prepared a two-dimensional NiFe layered double hydroxide (NiFe-LDH) catalyst via a facile co-precipitation method, which exhibited stable and highly efficient performance of ozone decomposition under harsh operating conditions (high space velocity and humidity). The NiFe-LDH catalyst with Ni/Fe = 3 and crystallization time over 5 hr (named Ni3Fe-5) exhibited the best catalytic performance, which was well beyond that of most existing manganese-based oxide catalysts. Specifically, under relative humidity of 65% and space velocity of 840 L/(g·hr), Ni3Fe-5 showed ozone conversion of 89% and 76% for 40 ppmV of O3 within 6 and 168 hr at room-temperature, respectively. We demonstrated that the layered structure of NiFe-LDH played a decisive role in its outstanding catalytic performance in terms of both activity and water resistance. The LDH catalysts fundamentally avoids the deactivation caused by the occupancy of oxygen vacancies by oxygen-containing species (H2O, O-, and O2-) in manganese-based oxide. This study indicated the promising application potential of LDHs than manganese-based oxide catalysts in removal of gaseous ozone.


Assuntos
Ozônio , Humanos , Ecossistema , Manganês , Oxigênio , Água , Óxidos
13.
Opt Express ; 31(19): 30514-30528, 2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37710592

RESUMO

Recently, to easily extend the helical field-of-view (FOV), the segmented helical computed tomography (SHCT) method was proposed, as well as the corresponding generalized backprojection filtration (G-BPF) type algorithm. Similar to the geometric relationship between helical and circular CT, SHCT just becomes full-scan multiple source-translation CT (F-mSTCT) when the pitch is zero and the number of scan cycles is one. The strategy of G-BPF follows the idea of the generalized Feldkamp approximate cone-beam algorithm for helical CT, i.e., using the F-mSTCT cone-beam BPF algorithm to approximately perform reconstruction for SHCT. The image quality is limited by the pitch size, which implies that satisfactory quality could only be obtained under the conditions of small pitches. To extend the analytical reconstruction for SHCT, an effective single-slice rebinning (SSRB) method for SHCT is investigated here. Transforming the SHCT cone-beam reconstruction into the virtual F-mSTCT fan-beam stack reconstruction task with low computational complexity, and then some techniques are developed to address the challenges involved. By using the basic BPF reconstruction with derivating along the detector (D-BPF), our experiments demonstrate that SSRB has fewer interlayer artifacts, higher z-resolution, more uniform in-plane resolution, and higher reconstruction efficiency compared to G-BPF. SSRB could promote the effective application of deep learning in SHCT reconstruction.

14.
Opt Express ; 31(17): 27223-27238, 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37710802

RESUMO

Micro-computed tomography (Micro-CT) is inevitably required to inspect long large objects with high resolution. It is well known that helical CT solves the so-called "long object" problem, but it requires that the measured object be strictly located in the lateral field of view (FOV). Therefore, developing a novel scanning method to extend the FOV in both the lateral and axial directions (i.e., the large helical FOV) is necessary. Recently, due to the application of linearly distributed source arrays and the characteristics of easy extension of the FOV and engineering implementation, straight-line scanning systems have attracted much attention. In this paper, we propose a segmented helical computed tomography (SHCT) based on multiple slant source-translation. SHCT can readily extend the helical FOV by adjusting the source slant translation (SST) length, pitch (or elevation of the SST trajectory), and number of scanning circles. In SHCT, each projection view is truncated laterally and axially, but the projection data set within the cylindrical FOV region is complete. To ensure reconstruction efficiency and avoid the lateral truncation, we propose a generalized backprojection-filtration (G-BPF) algorithm for SHCT approximate reconstruction. Experimental results verify the effectiveness of the proposed SHCT methods for imaging large and long objects. As the pitch decreases, the proposed SHCT methods can reconstruct competitive, high-quality volumes.

15.
Sci Adv ; 9(26): eadh2250, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37390212

RESUMO

Soft-and-hard hybrid structures are ubiquitous in biological systems and have inspired the design of man-made mechanical devices, actuators, and robots. The realization of these structures, however, has been challenging at microscale, where material integration and actuation become exceedingly less practical. Here, through simple colloidal assembly, we create microscale superstructures consisting of soft and hard materials, which, serving as microactuators, have thermoresponsive shape-transforming properties. In this case, anisotropic metal-organic framework (MOF) particles as the hard components are integrated with liquid droplets, forming spine-mimicking colloidal chains via valence-limited assembly. The chains, with alternating soft and hard segments, are referred to as MicroSpine and can reversibly change shape, switching between straight and curved states through a thermoresponsive swelling/deswelling mechanism. By solidification of the liquid parts within a chain with prescribed patterns, we design various chain morphologies, such as "colloidal arms," with controlled actuating behaviors. The chains are further used to build colloidal capsules, which encapsulate and release guests by the temperature-programmed actuation.


Assuntos
Biomimética , Estruturas Metalorgânicas , Humanos , Anisotropia , Coluna Vertebral , Temperatura
16.
Int J Antimicrob Agents ; 62(2): 106859, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37244422

RESUMO

OBJECTIVES: PCV2-associated disease (PCVAD), caused by porcine circovirus type 2 (PCV2) infection, is one of the major infectious diseases in the global swine industry. Nitric oxide (NO), as an important signalling molecule, has antiviral activities against a variety of viruses. To date, limited knowledge is available on the role of NO during PCV2 infection. METHODS: This study was conducted to investigate the effects of exogenous NO on PCV2 replication in vitro. To exclude the possibility that the detected antiviral effects were due to cell toxicity, maximum non-cytotoxic concentrations of the drugs were determined. Kinetics of NO production were assessed after drug treatment. The antiviral activities of NO at different concentrations and at different time points were carefully assessed by measuring the virus titers, viral DNA copies and percentage of PCV2-infected cells. Regulation of NF-κB activity by exogenous NO was also investigated. RESULTS: Kinetics of NO production indicated that S-nitroso-acetylpenicillamine (SNAP) produced NO in a dose-dependent manner, while NO was scavenged by its scavenger haemoglobin (Hb). An in vitro antiviral assay demonstrated that exogenous NO strongly inhibited PCV2 replication in a time-dependent and dose-dependent manner, whereas the inhibitory effects could be reversed by Hb. Furthermore, inhibition of NF-κB activity induced by NO contributed to a notable decrease in PCV2 replication. CONCLUSION: These findings provide a new potential antiviral therapy against PCV2 infection, and the antiviral effects of exogenous NO may be partly achieved by regulating NF-κB activity.


Assuntos
Circovirus , Doenças dos Suínos , Animais , Suínos , NF-kappa B/genética , NF-kappa B/farmacologia , Óxido Nítrico , Circovirus/genética , Linhagem Celular , Antivirais/farmacologia , Replicação Viral
17.
ACS Nano ; 17(10): 9622-9632, 2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37134301

RESUMO

Hydrogels capable of transforming in response to a magnetic field hold great promise for applications in soft actuators and biomedical robots. However, achieving high mechanical strength and good manufacturability in magnetic hydrogels remains challenging. Here, inspired by natural load-bearing soft tissues, a class of composite magnetic hydrogels is developed with tissue-mimetic mechanical properties and photothermal welding/healing capability. In these hydrogels, a hybrid network involving aramid nanofibers, Fe3O4 nanoparticles, and poly(vinyl alcohol) is accomplished by a stepwise assembly of the functional components. The engineered interactions between nanoscale constituents enable facile materials processing and confer a combination of excellent mechanical properties, magnetism, water content, and porosity. Furthermore, the photothermal property of Fe3O4 nanoparticles organized around the nanofiber network allows near-infrared welding of the hydrogels, providing a versatile means to fabricate heterogeneous structures with custom designs. Complex modes of magnetic actuation are made possible with the manufactured heterogeneous hydrogel structures, suggesting opportunities for further applications in implantable soft robots, drug delivery systems, human-machine interactions, and other technologies.

18.
Artigo em Inglês | MEDLINE | ID: mdl-37220048

RESUMO

Deep learning has achieved many successes in the field of the hyperspectral image (HSI) classification. Most of existing deep learning-based methods have no consideration of feature distribution, which may yield lowly separable and discriminative features. From the perspective of spatial geometry, one excellent feature distribution form requires to satisfy both properties, i.e., block and ring. The block means that in a feature space, the distance of intraclass samples is close and the one of interclass samples is far. The ring represents that all class samples are overall distributed in a ring topology. Accordingly, in this article, we propose a novel deep ring-block-wise network (DRN) for the HSI classification, which takes full consideration of feature distribution. To obtain the good distribution used for high classification performance, in this DRN, a ring-block perception (RBP) layer is built by integrating the self-representation and ring loss into a perception model. By such way, the exported features are imposed to follow the requirements of both block and ring, so as to be more separably and discriminatively distributed compared with traditional deep networks. Besides, we also design an optimization strategy with alternating update to obtain the solution of this RBP layer model. Extensive results on the Salinas, Pavia Centre, Indian Pines, and Houston datasets have demonstrated that the proposed DRN method achieves the better classification performance in contrast to the state-of-the-art approaches.

19.
Front Vet Sci ; 10: 1142965, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37035805

RESUMO

Rumen bloat is the most common digestive disorder in fattening ruminants, which is responsible for around 2-3 % of deaths in the ruminants industry and is therefore considered to be a serious threat to ruminant farming. The root cause of rumen bloat caused by feeding high concentrate dies would be attributed to the production of a large amount of stable foam during the fattening period. The exact mechanism of rumen foam formation has yet to be investigated. Proteins, polysaccharides and carboxylates derived from feed, and synthesized by microbes during the rumen fermentation may act as foaming agents or stabilizers in the formation progress of rumen foam. Supplementation of condensed tannins and other additives can be an effective way to prevent feedlot bloat induced by feeding high concentrate diets.

20.
Int J Mol Sci ; 24(8)2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37108174

RESUMO

The receptor of advanced glycation end products (RAGE) and Toll-like receptor 4 (TLR4) are important receptors for inflammatory responses induced by high glucose (HG) and lipopolysaccharide (LPS) and show crosstalk phenomena in inflammatory responses. However, it is unknown whether RAGE and TLR4 can influence each other's expression through a crosstalk mechanism and whether the RAGE-TLR4 crosstalk related to the molecular mechanism of HG enhances the LPS-induced inflammatory response. In this study, the implications of LPS with multiple concentrations (0, 1, 5, and 10 µg/mL) at various treatment times (0, 3, 6, 12, and 24 h) in primary bovine alveolar macrophages (BAMs) were explored. The results showed that a 5 µg/mL LPS treatment at 12 h had the most significant increment on the pro-inflammatory cytokine interleukin 1ß (IL-1ß), IL-6, and tumor necrosis factor (TNF)-α levels in BAMs (p < 0.05) and that the levels of TLR4, RAGE, MyD88, and NF-κB p65 mRNA and protein expression were upregulated (p < 0.05). Then, the effect of LPS (5 µg/mL) and HG (25.5 mM) co-treatment in BAMs was explored. The results further showed that HG significantly enhanced the release of IL-1ß, IL-6, and TNF-α caused by LPS in the supernatant (p < 0.01) and significantly increased the levels of RAGE, TLR4, MyD88, and NF-κB p65 mRNA and protein expression (p < 0.01). Pretreatment with FPS-ZM1 and TAK-242, the inhibitors of RAGE and TLR4, significantly alleviated the HG + LPS-induced increment of RAGE, TLR4, MyD88, and NF-κB p65 mRNA and protein expression in the presence of HG and LPS (p < 0.01). This study showed that RAGE and TLR4 affect each other's expression through crosstalk during the combined usage of HG and LPS and synergistically activate the MyD88/NF-κB signaling pathway to promote the release of pro-inflammatory cytokines in BAMs.


Assuntos
NF-kappa B , Receptor para Produtos Finais de Glicação Avançada , Receptor 4 Toll-Like , Animais , Bovinos , Citocinas/metabolismo , Glucose , Produtos Finais de Glicação Avançada , Interleucina-6/metabolismo , Lipopolissacarídeos/toxicidade , Macrófagos Alveolares/metabolismo , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , NF-kappa B/metabolismo , RNA Mensageiro , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Receptor para Produtos Finais de Glicação Avançada/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA