Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 9(19): 21307-21321, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38764687

RESUMO

Gas explosion is one of the main accident risks during underground coal gasification (UCG). There are significant differences in the gas composition and explosive environment between UCG syngas and other gases. Previous research on the explosion characteristics of UCG syngas is not comprehensive enough, especially without considering the influence of the initial temperature on various characteristic parameters. A set of calculation methods for explosion characteristic parameters of UCG syngas based on existing research was proposed, which was applied to analyze explosion characteristics of syngas produced by different gasifying processes in the Huating UCG industrial test. The results showed that with the initial temperature improving, the maximum temperature and upper explosion limit of different gases increased, while the maximum pressure, lower explosion limit, and oxygen content safety limit decreased. However, the explosion thermal effect, pressure rise rate, and explosion characteristic values showed small changes. When the initial temperature increased from 298 to 1473 K, the explosion temperature of different gas explosions increased from 1645-2286 to 2652-3238 K, the maximum pressure dropped from 0.59-0.81 MPa (absolute pressure) to 0.19-0.23 MPa, the lower explosion limit dropped from 12.34-29.79% to 0.58-1.77%, the upper explosion limit increased from 55.68-83.35% to 70.89-93.73%, and the safety limit of oxygen content dropped from 4.86-6.37% to 0.26-0.34%. In addition, the gas calorific value also affected the values of various explosion characteristic parameters, among which the explosive thermal effect, maximum temperature, maximum pressure, pressure rise rate, explosion characteristic value, and safety limit of oxygen content in the syngas were all proportional to the calorific value of gas, while the lower and upper limits of explosion were inversely proportional to it. Based on the above research, syngas explosion-prone stages and causes of each potential risk area in the Huating UCG project were analyzed, the explosion characteristic parameters were determined, and targeted prevention and control measures were proposed accordingly. This study can lay a theoretical foundation for the study of syngas explosion characteristics and risk control for the UCG project.

2.
ACS Omega ; 8(12): 11544-11555, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37008084

RESUMO

The lack of systematic geological work is an essential reason why underground coal gasification (UCG) has not been industrialized for a long time. Building a scientific index system and favorable area evaluation technology for the UCG site selection is the key to breaking through the geological bottleneck. Aiming at the problems of the single index weight determination method, intense subjectivity, and poor reliability of current evaluation models, we put forward an evaluation modeling methodology for the UCG site selection using the combination weighting method with the game theory. The factors of coal resource conditions associated with the potential risk of UCG are systematically analyzed. From the six dimensions of the geological structure, hydrogeology, seam occurrence, coal properties, reserves, and roof lithology, 23 key factors were selected as evaluation indexes to construct a hierarchical model composed of the target layer, category index layer, and index layer. The influence of each index on UCG and its reasonable value range were systematically analyzed. The evaluation index system for UCG site selection was formed. The improved analytic hierarchy process (AHP) was adopted to sequence indices and determine their subjective weight. And the variability, conflict, and information amount of the index data were analyzed by the CRiteria Importance Through Intercriteria Correlation (CRITIC) method to calculate the objective weight. Then, the subjective and objective weights were combined through game theory. On this basis, fuzzy theory was employed to calculate the membership of indices and construct the fuzzy comprehensive judgment matrix. The evaluation model of the UCG site selection was applied to the suitability evaluation of resource conditions of UCG pilot projects at Zhongliangshan (ZLS), Huating (HT), and Shanjiaoshu (SJS) mines in China. The result shows that the resource conditions of HT are the best, followed by ZLS and, finally, SJS, which are consistent with the actual running effects of the three UCG pilot projects. It indicates that the evaluation model can provide a scientific theoretical basis and reliable technical support for the UCG site selection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA