Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Sci Rep ; 12(1): 8646, 2022 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-35606505

RESUMO

Widespread insecticide resistance in African malaria vectors raises concerns over the potential to compromise malaria vector control interventions. Understanding the evolution of resistance mechanisms, and whether the selective disadvantages are large enough to be useful in resistance management or designing suitable control strategies is crucial. This study assessed whether insecticide resistance to pyrethroids has an effect on the gonotrophic cycle and reproductive potential of malaria vector Anopheles gambiae. Comparative tests were performed with pyrethroid-resistant and susceptible colonies of Anopheles gambiae colonized from the same geographical area, and the reference Kisumu strain was used as a control. Adult females aged 3 days old were given a blood meal and kept separately for individual egg-laying. The number of days taken to lay eggs post-blood-feeding was recorded to determine the length of the gonotrophic cycle. To measure adult longevity and reproduction potential, newly emerged males and females of equal numbers were aspirated into a cage and females allowed to blood feed daily. The number of eggs laid and the surviving mosquitoes were recorded daily to determine fecundity, net reproduction rate, intrinsic growth rate and adult longevity. Overall, the resistant females had a significantly longer (1.8 days) gonotrophic cycle than susceptible females (F2, 13 = 9. 836, P < 0.01). The proportion of resistant females that laid eggs was lower 31.30% (94/300) compared to 54% (162/300) in the susceptible colony and 65.7% (197/300) in the Kisumu strain. The mean number of eggs laid per female was significantly lower in the resistant colony (88.02 ± 20) compared to the susceptible colony (104.9 ± .28.8) and the Kisumu strain (97.6 ± 34.8). The adult longevity was significantly higher for resistant (39.7 ± 1.6 days) compared to susceptible (29.9 ± 1.7 days) and the Kisumu strain was (29.6 ± 1.1 days) (F2,8 = 45.05, P < 0.0001). Resistant colony exhibited a lower fecundity (4.3 eggs/females/day) and net reproductive rate (2.6 offsprings/female/generation) compared to the susceptible colony (8.6 eggs/female/day; 4.7 offsprings/female/generation respectively) and Kisumu strain (9.7 eggs/female/day; 4.1 offsprings/female/generation respectively). The study suggests high fitness cost on reproductive parameters of pyrethroid-resistant mosquitoes particularly on the duration of gonotrophic cycle, fecundity and net reproductive rate. These fitness costs are likely associated with maintaining both target site and metabolic mechanisms of resistance to pyrethroids. Despite these costs, resistant mosquitoes had longer longevity. These results give insights to understanding the fitness cost of insecticide resistance and thus are critical when predicting the epidemiological impact of insecticide resistance.


Assuntos
Anopheles , Aptidão Genética , Resistência a Inseticidas , Inseticidas , Longevidade , Malária , Animais , Anopheles/efeitos dos fármacos , Anopheles/fisiologia , Feminino , Aptidão Genética/efeitos dos fármacos , Aptidão Genética/fisiologia , Resistência a Inseticidas/fisiologia , Inseticidas/efeitos adversos , Inseticidas/farmacologia , Longevidade/efeitos dos fármacos , Longevidade/fisiologia , Malária/prevenção & controle , Masculino , Controle de Mosquitos/métodos , Mosquitos Vetores/efeitos dos fármacos , Mosquitos Vetores/fisiologia , Piretrinas/farmacologia
2.
Malar J ; 20(1): 259, 2021 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-34107949

RESUMO

BACKGROUND: Despite increasing documentation of insecticide resistance in malaria vectors against public health insecticides in sub-Saharan Africa, there is a paucity of information on the potential fitness costs of pyrethroid resistance in malaria vectors, which is important in improving the current resistant management strategies. This study aimed to assess the fitness cost effects of insecticide resistance on the development and survival of immature Anopheles gambiae from western Kenya. METHODS: Two-hour old, first instar larvae (L1) were introduced and raised in basins containing soil and rainwater in a semi-field set-up. Each day the number of surviving individuals per larval stage was counted and their stage of development were recorded until they emerged as adults. The larval life-history trait parameters measured include mean larval development time, daily survival and pupal emergence. Pyrethroid-resistant colony of An. gambiae sensu stricto and susceptible colony originating from the same site and with the same genetic background were used. Kisumu laboratory susceptible colony was used as a reference. RESULTS: The resistant colony had a significantly longer larval development time through the developmental stages than the susceptible colony. The resistant colony took an average of 2 days longer to develop from first instar (L1) to fourth instar (L4) (8.8 ± 0.2 days) compared to the susceptible colony (6.6 ± 0.2 days). The development time from first instar to pupa formation was significantly longer by 3 days in the resistant colony (10.28 ± 0.3 days) than in susceptible colony (7.5 ± 0.2 days). The time from egg hatching to adult emergence was significantly longer for the resistant colony (12.1 ± 0.3 days) than the susceptible colony (9.6 ± 0.2 days). The pupation rate (80%; 95% (CI: 77.5-83.6) vs 83.5%; 95% (CI: 80.6-86.3)) and adult emergence rate (86.3% vs 92.8%) did not differ between the resistant and susceptible colonies, respectively. The sex ratio of the females to males for the resistant (1:1.2) and susceptible colonies (1:1.07) was significantly different. CONCLUSION: The study showed that pyrethroid resistance in An. gambiae had a fitness cost on their pre-imaginal development time and survival. Insecticide resistance delayed the development and reduced the survivorship of An. gambiae larvae. The study findings are important in understanding the fitness cost of insecticide resistance vectors that could contribute to shaping resistant management strategies.


Assuntos
Anopheles/fisiologia , Aptidão Genética , Resistência a Inseticidas , Animais , Anopheles/genética , Anopheles/crescimento & desenvolvimento , Inseticidas/farmacologia , Quênia , Larva/genética , Larva/crescimento & desenvolvimento , Larva/fisiologia , Pupa/genética , Pupa/crescimento & desenvolvimento , Pupa/fisiologia
3.
Gastroenterol Hepatol Bed Bench ; 13(3): 238-246, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32821354

RESUMO

AIM: Determine the prevalence of enteric bacterial pathogens and their antimicrobial resistance among diarrheic children in Nairobi City, Kenya. BACKGROUND: Regardless of enteric bacterial pathogens being a major cause of gastroenteritis in children, their occurrence and antimicrobial resistance patterns reveals regional spatial and temporal variation. METHODS: In a cross-sectional study, a total of 374 children below five years presenting with diarrhea at Mbagathi County Hospital were recruited. Stool microbiology test was used to detect enteric bacterial infection. Antimicrobial resistance was determined using the disk diffusion method. RESULTS: Diarrheagenic E. coli (36.4%) was the leading species followed by Shigella (3.2%), Salmonella (2.4%), Campylobacter (1.6%), Yersinia (1.3%) and Aeromonas (1.1%) species. Escherichia coli pathotyping revealed that 20.9%, 4.0%, 10.2% and 0.5% of the study participants were infected with enteroaggregative E. coli (EAEC), enteropathogenic E. coli (EPEC), enterotoxigenic E. coli (ETEC) and enteroinvasive E. coli (EIEC) pure isolates while the prevalence of mixed pathotype infections was 0.3% for EAEC/EPEC/ETEC and 0.5% for EAEC/ETEC. Shigella sero-grouping revealed that 0.5%, 0.3%, 1.9%, and 0.5% were infected with Shigella boydii, Shigella dysentriae, Shigella flexneri and Shigella sonnei pure isolates. Shigella species and E. coli co-infection was detected in 2.4% of the children, specifically, 1.1% for EAEC/Shigella boydii, 0.5% for EAEC/Shigella dysentriae and 0.3% in each case of EAEC/Shigella sonnei, EPEC/Shigella flexneri and ETEC/Shigella flexneri co-infections. Most of the isolates were resistant to commonly prescribed antibiotics. CONCLUSION: There was a high prevalence of enteric bacterial pathogens and co-infection alters epidemiological dynamics of bacterial diarrhea in children. Continuous antibiotic resistance surveillance is justified because the pathogens were highly resistant to commonly prescribed antimicrobials.

4.
Malar J ; 19(1): 168, 2020 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-32349765

RESUMO

BACKGROUND: Naturally acquired immunity (NAI), which is characterized by protection against overt clinical disease and high parasitaemia, is acquired with age and transmission intensity. The role of NAI on the efficacy of anti-malarial drugs, including artemisinin-based combinations used as the first-line treatment for uncomplicated Plasmodium falciparum, has not been fully demonstrated. This study investigated the role of NAI in response to artemisinin-based combination therapy (ACT), in symptomatic patients living in western Kenya, a high malaria transmission area. METHODS: Sera samples from malaria immune participants (n = 105) in a therapeutic efficacy study were assessed for in vitro growth inhibitory activity against the 3D7 strain of P. falciparum using a fluorescent-based growth inhibition assay (GIA). Participants' age and parasite clearance parameters were used in the analysis. Pooled sera from malaria naïve participants (n = 6) with no Plasmodium infection from malaria non-endemic regions of Kenya was used as negative control. RESULTS: The key observations of the study were as follows: (1) Sera with intact complement displayed higher GIA activity at lower (1%) serum dilutions (p < 0.0001); (2) there was significant relationship between GIA activity, parasite clearance rate (p = 0.05) and slope half-life (p = 0.025); and (3) age was a confounding factor when comparing the GIA activity with parasite clearance kinetics. CONCLUSION: This study demonstrates for the first time there is synergy of complement, pre-existing immunity, and drug treatment in younger patients with symptomatic malaria in a high-transmission area.


Assuntos
Imunidade Adaptativa , Antimaláricos/uso terapêutico , Artemisininas/uso terapêutico , Ativação do Complemento , Malária Falciparum/imunologia , Plasmodium falciparum/efeitos dos fármacos , Adolescente , Adulto , Criança , Pré-Escolar , Combinação de Medicamentos , Feminino , Humanos , Lactente , Recém-Nascido , Quênia , Malária Falciparum/parasitologia , Malária Falciparum/prevenção & controle , Masculino , Pessoa de Meia-Idade , Adulto Jovem
5.
Ethiop J Health Sci ; 30(6): 881-890, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33883832

RESUMO

BACKGROUND: The marked genome plasticity of diarrheagenic Escherichia coli promotes emergence of pathotypes displaying unique phenotypic and genotypic resistance. This study examined phenotypic and genotypic antibiotic resistant diarrheagenic Escherichia coli pathotypes among children in Nairobi City, Kenya. METHODS: In a cross-sectional study, diarrheagenic Escherichia coli pathotypes were isolated from stool samples and their phenotypic and genotypic resistance against eight antimicrobial agents assayed. RESULTS: Diarrheagenic Escherichia coli was detected in 136(36.4%) children. Most of diarrheagenic Escherichia coli that were resistant to ampicillin, ceftriaxone, streptomycin, gentamycin, ciprofloxacin, chloramphenicol, erythromycin and tetracycline, harbored citm, bla CMY, aadA1, aac(3)-IV, qnr, catA, ere(A) and tet(A) corresponding resistant genes. CONCLUSION: Antimicrobial-resistant genes are highly prevalent among phenotypic resistant ETEC pathotypes indicating a possibility of horizontal gene transfer in spreading antibiotic resistant genes among E. coli pathotypes.


Assuntos
Infecções por Escherichia coli , Escherichia coli , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Criança , Estudos Transversais , Diarreia/tratamento farmacológico , Diarreia/epidemiologia , Escherichia coli/genética , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/epidemiologia , Humanos , Quênia/epidemiologia , Testes de Sensibilidade Microbiana
6.
J Infect Dis ; 219(12): 1969-1979, 2019 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-30649381

RESUMO

BACKGROUND: The impact of preexisting immunity on the efficacy of artemisinin combination therapy must be examined to monitor resistance, and for implementation of new treatment strategies. METHODS: Serum samples obtained from a clinical trial in Western Kenya randomized to receive artemether-lumefantrine (AL) or artesunate-mefloquine (ASMQ) were screened for total immunoglobulin G against preerythrocytic and erythrocytic antigens. The association and correlation between different variables, and impact of preexisting immunity on parasite slope half-life (t½) was determined. RESULTS: There was no significant difference in t½, but the number of individuals with lag phase was significantly higher in the AL than in the ASMQ arm (29 vs 13, respectively; P < .01). Circumsporozoite protein-specific antibodies correlate positively with t½ (AL, P = .03; ASMQ, P = .09), but negatively with clearance rate in both study arms (AL, P = .16; ASMQ, P = .02). The t½ correlated negatively with age in ASMQ group. When stratified based on t½, the antibody titers against circumsporozoite protein and merozoite surface protein 1 were significantly higher in participants who cleared parasites rapidly in the AL group (P = .01 and P = .02, respectively). CONCLUSION: Data presented here define immunoprofiles associated with distinct responses to 2 different antimalarial drugs, revealing impact of preexisting immunity on the efficacy of artemisinin combination therapy regimens in a malaria-holoendemic area. CLINICAL TRIALS REGISTRATION: NCT01976780.


Assuntos
Anticorpos Antiprotozoários/sangue , Antimaláricos/uso terapêutico , Combinação Arteméter e Lumefantrina/uso terapêutico , Malária , Adolescente , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Quênia , Malária/tratamento farmacológico , Malária/epidemiologia , Malária/imunologia , Masculino , Mefloquina/uso terapêutico , Carga Parasitária
7.
Front Public Health ; 6: 55, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29546039

RESUMO

BACKGROUND: Malaria vector control efforts have taken malaria related cases down to appreciable number per annum after large scale of intervention tools. Insecticides-based tools remain the major control option for malaria vectors in Kenya and, therefore, the potential of such programs to be compromised by the reported insecticide resistance is of major concern. The objective of this study was to evaluate the status of insecticide resistance in malaria vectors in different agro ecosystems from western Kenya. METHODS: The study was carried out in the lowlands and highlands of western Kenya namely; Ahero, Kisian, Chulaimbo, Emutete, Emakakha, Iguhu, and Kabula. World Health Organization tube bioassays was conducted using standard diagnostic dosages of Lambdacyhalothrin, Deltamethrin, Permethrin, DDT, Bendiocarb, and Malathion tested on Anopheles mosquitoes collected from seven sites; Ahero, Kisian, Chulaimbo, Emutete, Emakakha, Iguhu, and Kabula. Biochemical assays, where the enzymatic activity of three enzymes (monooxygenases, esterases, and glutathione S-transferases) were performed on susceptible and resistant mosquito populations. Wild mosquito populations were identified to species level using polymerase chain reaction (PCR). The species of the wild mosquito populations were identified to species level using PCR. Real-time PCR was performed on the susceptible and resistant mosquitoes after the WHO tube bioassays to determine the presence of knockdown resistance (kdr) allele. RESULTS: WHO susceptibility tests indicated that Anopheles gambiae showed resistance to Pyrethroids and DDT in all the study sites, to Bendiocarb in Iguhu and Kabula and susceptible to Malathion (100% mortality) in all the study sites. There was an elevation of monooxygenases and esterases enzymatic activities in resistant An. gambiae mosquito populations exposed to Lambdacyhalothrin, Permethrin, Deltamethrin and DDT but no elevation in glutathione S-transferases. A high frequency of L1014S allele was detected in An. gambiae s.s. population, but there was no kdr allele found in Anopheles arabiensis mosquitoes. CONCLUSION: An. gambiae mosquitoes from western Kenya have developed phenotypic resistance to pyrethroids and DDT. Therefore, there is a need for further research covering different climatic zones with different agroeconomic activities for detailed report on current status of insecticide resistance in malaria vectors.

8.
Malar J ; 16(1): 466, 2017 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-29145842

RESUMO

BACKGROUND: Monitoring and evaluation of entomological, parasitological and clinical data is an important component of malaria control as it is a measure of the success of the interventions. In many studies, clinical data has been used to monitor trends in malaria morbidity and mortality. This study was conducted to demonstrate age dependent prevalence of malaria in the pre- and post-interventions period. METHODS: A series of cross-sectional malaria parasitological surveys were conducted in Iguhu, western Kenya. Participants were randomly selected school-aged children between 6 and 13 years. The study was conducted between June 2002-December 2003 and January 2012-February 2015. Sexual and asexual parasite prevalence and densities were determined using microscopy. Age-dependence in parasite infections was compared between 2002-2003 and 2012-2015. RESULTS: Plasmodium falciparum had the highest prevalence of 43.5 and 11.5% in the pre- and post-intervention periods. Plasmodium malariae had a prevalence of 2.3 and 0.2%, while Plasmodium ovale had a prevalence of 0.3 and 0.1% during the pre- and post-intervention period, respectively. There was a 73.7% reduction in prevalence of P. falciparum in the post-intervention compared to the pre-intervention period. Plasmodium falciparum parasite density increased by 71.2% between pre- and post-intervention period from (geometric mean of) 554.4-949.2 parasites/µl. Geometric mean gametocytaemia in Iguhu was higher in the post-intervention period (106.4 parasites/µl), when compared to the pre-intervention period (54.1 parasites/µl). Prevalence and density of P. falciparum showed a lower age-dependency during post-intervention period when compared to pre-intervention period. CONCLUSION: The study provides evidence for reduction of malaria prevalence following the introduction of LLINs and ACT in western Kenya. Fewer people become infected but the few infected may be more infectious as suggested by higher gametocyte densities. The high parasite densities, which were not dependent on age, observed in the post intervention period imply that a more comprehensive integrated malaria management may be required to sustain the current interventions and hence reduce malaria transmission.


Assuntos
Malária/epidemiologia , Plasmodium falciparum/isolamento & purificação , Plasmodium malariae/isolamento & purificação , Plasmodium ovale/isolamento & purificação , Adolescente , Antimaláricos/administração & dosagem , Criança , Estudos Transversais , Humanos , Quênia/epidemiologia , Malária/parasitologia , Malária Falciparum/epidemiologia , Malária Falciparum/parasitologia , Prevalência
9.
Malar J ; 15(1): 577, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27903292

RESUMO

BACKGROUND: Outdoor malaria transmission is becoming an increasingly important problem in malaria control in Africa. Larval control is a promising intervention as it can target both indoor and outdoor biting mosquitoes. However, the currently available biolarvicide formulations have a short effective duration, and consequently larval control incurs a high operational expense due to the requirement for frequent re-treatment of larval habitats. Formulations of biolarvicides with long-lasting effects is highly desired. A recently developed FourStar® slow-release briquet formulation of Bacillus thuringiensis israelensis and Bacillus sphaericus was evaluated to test its efficacy on malaria vectors. METHODS: The study evaluated FourStar™ briquets 180-days formulation under semi-natural and natural conditions to test their efficacy in reducing the mosquito population in western Kenya. The semi-natural habitats used the formulation dissolved in rainwater with appropriate concentrations, and second-instar larvae of Anopheles gambiae were introduced and the number of surviving larvae and pupae produced was recorded daily as the outcome. The briquets formulation was then tested in natural habitats for efficacy on pupal productivity reduction in highland and lowland sites in western Kenya. The formulation was finally tested for efficacy in reducing adult mosquito populations in randomized clusters in western Kenya highland. RESULTS: In semi-natural conditions, the FourStar™ briquets 180-days formulation completely inhibited mosquito pupal production in the first 3 months, and then reduced pupal productivity by 87-98% (P < 0.001) 4-6 months after application. In natural habitats, during the first 2 months no pupae were detected from any of the treated habitats in highland sites, and Anopheles spp. pupal density was reduced by 60-90% in the next 3-5 months (P < 0.001). In the lowland site, pupal productivity reduction was 100% in the first 3 months, and 75-90% in the next 4-5 months (P < 0.001). The randomized cluster trial found that the application of the briquets formulation reduced mean densities of indoor-biting mosquitoes by 76-82% (P < 0.001) and by 67-75% (P < 0.001) for outdoor-biting mosquitoes. CONCLUSION: This study demonstrated that long-lasting biological larviciding was effective in reducing pupal productivity of larval habitats, and reducing indoor and outdoor resting mosquitoes. The study suggests that long-lasting microbial larviciding may be a promising complementary malaria vector control tool and warrants further large-scale evaluation.


Assuntos
Anopheles/microbiologia , Anopheles/fisiologia , Bacillus/crescimento & desenvolvimento , Bacillus/metabolismo , Toxinas Bacterianas/metabolismo , Controle de Mosquitos/métodos , Controle Biológico de Vetores/métodos , Animais , Feminino , Quênia , Larva/microbiologia , Larva/fisiologia , Análise de Sobrevida
10.
Front Public Health ; 4: 227, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27790610

RESUMO

BACKGROUND: It is almost an axiom that in the African highlands (above 1,500 m) transmission of Plasmodium falciparum is limited primarily by low ambient temperature and that small changes in temperature could result in temporary favorable conditions for unstable transmission within populations that have acquired little functional immunity. The pattern of malaria transmission in the highland plateau ecosystems is less distinct due to the flat topography and diffuse hydrology resulting from numerous streams. The non-homogeneous distribution of larval breeding habitats in east African highlands obviously affects Anopheles spatial distribution which, consequently, leads to heterogeneous human exposure to malaria. Another delicate parameter in the fragile transmission risk of malaria in the highlands is the rapid loss of primary forest due to subsistence agriculture. The implication of this change in land cover on malaria transmission is that deforestation can lead to changes in microclimate of both adult and larval habitats hence increase larvae survival, population density, and gametocytes development in adult mosquitoes. Deforestation has been documented to enhancing vectorial capacity of Anopheles gambiae by nearly 100% compared to forested areas. METHOD: The study was conducted in five different ecosystems in the western Kenya highlands, two U-shaped valleys (Iguhu, Emutete), two V-shaped valleys (Marani, Fort Ternan), and one plateau (Shikondi) for 16 months among 6- to 15-year-old children. Exposure to malaria was tested using circumsporozoite protein (CSP) and merozoite surface protein immunochromatographic antibody tests. Malaria parasite was examined using different tools, which include microscopy based on blood smears, rapid diagnostic test based on HRP 2 proteins, and serology based on human immune response to parasite and vector antigens have been also examined in the highlands in comparison with different topographical systems of western Kenya. RESULTS: The results suggested that changes in the topography had implication on transmission in highlands of western Kenya and appropriate diagnosis, treatment, and control tool needed to be considered accordingly. Both plateau and U-shaped valley found to have higher parasite density than V-shaped valley. People in V-valley were less immune than in plateau and U-valley residents. CONCLUSION: Topography diversity in western Kenya highlands has a significant impact on exposure rates of human to malaria vectors and parasite. The residents of V-shaped valleys are at risk of having explosive malaria outbreaks during hyper-transmission periods due to low exposure to malaria parasite; hence, they have low immune response to malaria, while the U-shaped valleys have stable malaria transmission, therefore, the human population has developed immunity to malaria due to continuous exposure to malaria.

11.
Parasit Vectors ; 8: 588, 2015 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-26567915

RESUMO

BACKGROUND: Indoor residual spraying (IRS) and long-lasting insecticidal nets (LLINs) are the first-line tools for malaria prevention and control in Africa. Vector resistance to insecticides has been extensively studied, however the insecticidal effects of the nets and sprayed walls on pyrethroid resistant mosquitoes has not been studied thoroughly. We evaluated the bioefficacy of LLINs of different ages and lambda-cyhalothrin (ICON 10cs) on the sprayed mud walls for a period of time on malaria vector survivorship. METHODS: WHO tube bioassay was performed using diagnostic doses of lambda-cyhalothrin (0.05%), permethrin (0.75%) and deltamethrin (0.05%). Cone bioassays were conducted on netting materials from 0 to 3 years old long-lasting insecticide-impregnated nets. Wall bioassays were performed monthly on mud slabs sprayed with lambdacyhalothrin over a period of seven months. All bioassays used An. gambiae mosquitoes collected from the field and the laboratory susceptible reference Kisumu strain. Concentration of the insecticides on the netting materials was examined using the gas chromatography method. Mosquitoes were identified to species level using PCR and genotyped for the kdr gene mutation frequencies. RESULTS: WHO bioassays results showed that populations from five sites were highly resistant to the pyrethroids (mortalities ranged from 52.5 to 75.3%), and two sites were moderately resistant to these insecticides (80.4 - 87.2%). Homozygote kdr mutations of L1014S ranged from 73 to 88% in An. gambiae s.s. dominant populations whereas L1014S mutation frequencies were relatively low (7-31%) in An. arabiensis dominant populations. There was a significant decrease (P < 0.05) in mosquito mortality with time after the spray with both lambda-cyhalothrin (75% mortality after six months) and with the age of LLINs (60% mortality after 24 month). Field collected mosquitoes were able to survive exposure to both IRS and LLINs even with newly sprayed walls (86.6-93.5% mortality) and new LLINs (77.5-85.0% mortality), Wild mosquitoes collected from the field had significantly lower mortality rates to LLINs (59.6-85.0%) than laboratory reared susceptible strain (100%). Insecticide concentration decreased significantly from 0.14 µg/ml in the new nets to 0.077 µg/ml in nets older than 18 months (P < 0.05). CONCLUSION: This study confirms that insecticide decay and developing levels of resistance have a negative contribution to reduced efficacy of ITN and IRS in western Kenya. These factors contribute to decreased efficacy of pyrethroid insectides in ongoing malaria control programs. In order to mitigate against the impact of insecticide resistance and decay it is important to follow the WHO policy to provide the residents with new LLINs every three years of use while maintaining a high level of LLINs coverage and usage. There is also need for urgent development and deployment of non-pyrethroid based vector control tools.


Assuntos
Anopheles/efeitos dos fármacos , Anopheles/crescimento & desenvolvimento , Mosquiteiros Tratados com Inseticida , Inseticidas/farmacologia , Controle de Mosquitos/métodos , Animais , Bioensaio , Cromatografia Gasosa , Quênia , Nitrilas/farmacologia , Permetrina/farmacologia , Piretrinas/farmacologia , Fatores de Tempo
12.
Emerg Infect Dis ; 21(12): 2178-81, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26583525

RESUMO

We conducted standard insecticide susceptibility testing across western Kenya and found that the Anopheles gambiae mosquito has acquired high resistance to pyrethroids and DDT, patchy resistance to carbamates, but no resistance to organophosphates. Use of non-pyrethroid-based vector control tools may be preferable for malaria prevention in this region.


Assuntos
Anopheles/efeitos dos fármacos , DDT/farmacologia , Resistência a Inseticidas , Organofosfatos/farmacologia , Piretrinas/farmacologia , Animais , DDT/uso terapêutico , Quênia , Malária/prevenção & controle , Mosquiteiros , Organofosfatos/uso terapêutico , Piretrinas/uso terapêutico
13.
Malar J ; 14: 244, 2015 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-26082138

RESUMO

BACKGROUND: Malaria is a great public health burden and Africa suffers the largest share of malaria-attributed deaths. Despite control efforts targeting indoor malaria transmission, such as insecticide-treated bed nets (ITNs) and deployment of indoor residual spraying, transmission of the parasite in western Kenya is still maintained. This study was carried out to determine the impact of ITNs on indoor vector densities and biting behaviour in western Kenya. METHODS: Indoor collection of adult mosquitoes was done monthly in six study sites in western Kenya using pyrethrum spray collections from 2012 to 2014. The rotator trap collections were done in July-August in 2013 and May-June in 2014. Mosquitoes were collected every 2 h between 18.00 and 08.00 h. Human behaviour study was conducted via questionnaire surveys. Species within Anopheles gambiae complex was differentiated by PCR and sporozoite infectivity was determined by ELISA. Species distribution was determined and bed net coverage in the study sites was recorded. RESULTS: During the study a total of 5,469 mosquito vectors were collected from both PSC and Rotator traps comprising 3,181 (58.2%) Anopheles gambiae and 2,288 (41.8%) Anopheles funestus. Compared to all the study sites, Rae had the highest density of An. gambiae with a mean of 1.2 (P<0.001) while Kombewa had the highest density of An. funestus with a mean of 1.08 (P<0.001). Marani had the lowest density of vectors with 0.06 An. gambiae and 0.17 An. funestus (P<0.001). Among the 700 PCR confirmed An. gambiae s.l. individuals, An. gambiae s.s. accounted for 49% and An. arabiensis 51%. Over 50% of the study population stayed outdoors between 18.00 and 20.00 and 06.00 and 08.00 which was the time when highest densities of blood fed vectors were collected. Anopheles gambie s.s. was the main malaria parasite vector in the highland sites and An. arabiensis in the lowland sites. Bed net ownership in 2012 averaged 87% across the study sites. CONCLUSIONS: This study suggests that mass distribution of ITNs has had a significant impact on vector densities, species distribution and sporozoite rate. However, shift of biting time poses significant threats to the current malaria vector control strategies which heavily rely on indoor controls.


Assuntos
Anopheles/fisiologia , Mordeduras e Picadas/epidemiologia , Comportamento Alimentar , Insetos Vetores/fisiologia , Inseticidas/farmacologia , Animais , Mordeduras e Picadas/parasitologia , Humanos , Mosquiteiros Tratados com Inseticida/estatística & dados numéricos , Quênia/epidemiologia , Malária/prevenção & controle , Controle de Mosquitos , Densidade Demográfica
14.
Malar J ; 12: 256, 2013 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-23870708

RESUMO

BACKGROUND: The effect of integrating vector larval intervention on malaria transmission is unknown when insecticide-treated bed-net (ITN) coverage is very high, and the optimal indicator for intervention evaluation needs to be determined when transmission is low. METHODS: A post hoc assignment of intervention-control cluster design was used to assess the added effect of both indoor residual spraying (IRS) and Bacillus-based larvicides (Bti) in addition to ITN in the western Kenyan highlands in 2010 and 2011. Cross-sectional, mass parasite screenings, adult vector populations, and cohort of active case surveillance (ACS) were conducted before and after the intervention in three study sites with two- to three-paired intervention-control clusters at each site each year. The effect of larviciding, IRS, ITNs and other determinants of malaria risk was assessed by means of mixed estimating methods. RESULTS: Average ITN coverage increased from 41% in 2010 to 92% in 2011 in the study sites. IRS intervention had significant added impact on reducing vector density in 2010 but the impact was modest in 2011. The effect of IRS on reducing parasite prevalence was significant in 2011 but was seasonal specific in 2010. ITN was significantly associated with parasite densities in 2010 but IRS application was significantly correlated with reduced gametocyte density in 2011. IRS application reduced about half of the clinical malaria cases in 2010 and about one-third in 2011 compare to non-intervention areas. CONCLUSION: Compared with a similar study conducted in 2005, the efficacy of the current integrated vector control with ITN, IRS, and Bti reduced three- to five-fold despite high ITN coverage, reflecting a modest added impact on malaria transmission. Additional strategies need to be developed to further reduce malaria transmission.


Assuntos
Pesquisa sobre Serviços de Saúde , Malária/prevenção & controle , Controle de Mosquitos/métodos , Animais , Pré-Escolar , Estudos de Coortes , Estudos Transversais , Feminino , Humanos , Lactente , Inseticidas/administração & dosagem , Quênia , Controle Biológico de Vetores/métodos , Gravidez
15.
Parasit Vectors ; 4: 144, 2011 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-21781291

RESUMO

BACKGROUND: Vector control in the highlands of western Kenya has resulted in a significant reduction of malaria transmission and a change in the vectorial system. Climate variability as a result of events such as El Niño increases the highlands suitability for malaria transmission. Surveillance and monitoring is an important component of early transmission risk identification and management. However, below certain disease transmission thresholds, traditional tools for surveillance such as entomological inoculation rates may become insensitive. A rapid diagnostic kit comprising Plasmodium falciparum circumsporozoite surface protein and merozoite surface protein antibodies in humans was tested for early detection of transmission surges in the western Kenya highlands during an El Niño event (October 2009-February 2010). METHODS: Indoor resting female adult malaria vectors were collected in western Kenya highlands in four selected villages categorized into two valley systems, the U-shaped (Iguhu and Emutete) and the V-shaped valleys (Marani and Fort Ternan) for eight months. Members of the Anopheles gambiae complex were identified by PCR. Blood samples were collected from children 6-15 years old and exposure to malaria was tested using a circum-sporozoite protein and merozoite surface protein immunchromatographic rapid diagnostic test kit. Sporozoite ELISA was conducted to detect circum-sporozoite protein, later used for estimation of entomological inoculation rates. RESULTS: Among the four villages studied, an upsurge in antibody levels was first observed in October 2009. Plasmodium falciparum sporozoites were then first observed in December 2009 at Iguhu village and February 2010 at Emutete. Despite the upsurge in Marani and Fort Ternan no sporozoites were detected throughout the eight month study period. The antibody-based assay had much earlier transmission detection ability than the sporozoite-based assay. The proportion of An. arabiensis among An. gambiae s.l. ranged from 2.9-66.7% indicating a rearrangement of the sibling species of the An. gambiae s.l complex. This is possibly an adaptation to insecticide interventions and climate change. CONCLUSION: The changing malaria transmission rates in the western Kenya highlands will lead to more unstable transmission, decreased immunity and a high vulnerability to epidemics unless surveillance tools are improved and effective vector control is sustained.


Assuntos
Anopheles/crescimento & desenvolvimento , Anticorpos Antiprotozoários/sangue , Vetores de Doenças , Malária Falciparum/epidemiologia , Malária Falciparum/transmissão , Plasmodium falciparum/imunologia , Adolescente , Animais , Anopheles/genética , Criança , El Niño Oscilação Sul , Feminino , Humanos , Quênia
16.
Parasit Vectors ; 4: 81, 2011 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-21595898

RESUMO

BACKGROUND: Malaria in the western Kenya highlands is characterized by unstable and high transmission variability which results in epidemics during periods of suitable climatic conditions. The sensitivity of a site to malaria epidemics depends on the level of immunity of the human population. This study examined how terrain in the highlands affects exposure and sensitivity of a site to malaria. METHODS: The study was conducted in five sites in the western Kenya highlands, two U-shaped valleys (Iguhu, Emutete), two V-shaped valleys (Marani, Fort-Ternan) and one plateau (Shikondi) for 16 months among 6-15 years old children. Exposure to malaria was tested using circum-sporozoite protein (CSP) and merozoite surface protein (MSP) immunochromatographic antibody tests; malaria infections were tested by microscopic examination of thick and thin smears, the children's homes were georeferenced using a global positioning system. Paired t-test was used to compare the mean prevalence rates of the sites, K-function was use to determine if the clustering of malaria infections was significant. RESULTS AND DISCUSSION: The mean antibody prevalence was 22.6% in Iguhu, 24% in Emutete, 11.5% in Shikondi, 8.3% in Fort-Ternan and 9.3% in Marani. The mean malaria infection prevalence was 23.3% in Iguhu, 21.9% in Emutete, 4.7% in Shikondi, 2.9% in Fort-Ternan and 2.4% in Marani. There was a significant difference in the antibodies and malaria infection prevalence between the two valley systems, and between the two valley systems and the plateau (P < 0.05). There was no significant difference in the antibodies and malaria infection prevalence in the two U-shaped valleys (Iguhu and Emutete) and in the V-shaped valleys (Marani and Fort Ternan) (P > 0.05). There was 8.5- fold and a 2-fold greater parasite and antibody prevalence respectively, in the U-shaped compared to the V-shaped valleys. The plateau antibody and parasite prevalence was similar to that of the V-shaped valleys. There was clustering of malaria antibodies and infections around flat areas in the U-shaped valleys, the infections were randomly distributed in the V-shaped valleys and less clustered at the plateau. CONCLUSION: This study showed that the V-shaped ecosystems have very low malaria prevalence and few individuals with an immune response to two major malaria antigens and they can be considered as epidemic hotspots. These populations are at higher risk of severe forms of malaria during hyper-transmission seasons. The plateau ecosystem has a similar infection and immune response to the V-shaped ecosystems. The U-shaped ecosystems are transmission hotspots.


Assuntos
Malária/epidemiologia , Malária/transmissão , Adolescente , Anticorpos Antiprotozoários/sangue , Sangue/imunologia , Sangue/parasitologia , Criança , Geografia , Humanos , Imunoensaio , Quênia/epidemiologia , Malária/diagnóstico , Malária/imunologia , Microscopia , Plasmodium/isolamento & purificação , Prevalência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA