Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Thromb Haemost ; 20(5): 1256-1270, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35108449

RESUMO

BACKGROUND: Osteopontin (OPN) is a multifunctional proinflammatory matricellular protein overexpressed in multiple human cancers and associated with tumor progression and metastases. Thrombin cleavage of OPN reveals a cryptic binding site for α4 ß1 and α9 ß1 integrins. METHODS: Thrombin cleavage-resistant OPNR153A knock-in (OPN-KI) mice were generated and compared to OPN deficient mice (OPN-KO) and wild type (WT) mice in their ability to support growth of melanoma cells. Flow cytometry was used to analyze tumor infiltrating leukocytes. RESULTS: OPN-KI mice engineered with a thrombin cleavage-resistant OPN had reduced B16 melanoma growth and fewer pulmonary metastases than WT mice. The tumor suppression phenotype of the OPN-KI mouse was identical to that observed in OPN-KO mice and was replicated in WT mice by pharmacologic inhibition of thrombin with dabigatran. Tumors isolated from OPN-KI mice had increased tumor-associated macrophages with an altered activation phenotype. Immunodeficient OPN-KI mice (NOG-OPN-KI) or macrophage-depleted OPN-KI mice did not exhibit the tumor suppression phenotype. As B16 cells do not express OPN, thrombin-cleaved fragments of host OPN suppress host antitumor immune response by functionally modulating the tumor-associated macrophages. YUMM3.1 cells, which express OPN, showed less tumor suppression in the OPN-KI and OPN-KO mice than B16 cells, but its growth was suppressed by dabigatran similar to B16 cells. CONCLUSIONS: Thrombin cleavage of OPN, derived from the host and the tumor, initiates OPN's tumor-promoting activity in vivo.


Assuntos
Melanoma Experimental , Trombina , Animais , Adesão Celular/genética , Dabigatrana , Humanos , Camundongos , Osteopontina/química , Osteopontina/genética , Trombina/metabolismo
2.
JCI Insight ; 4(19)2019 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-31465300

RESUMO

Excessive vascular remodeling is characteristic of hemophilic arthropathy (HA) and may contribute to joint bleeding and the progression of HA. Mechanisms for pathological vascular remodeling after hemophilic joint bleeding are unknown. In hemophilia, activation of thrombin-activatable fibrinolysis inhibitor (TAFI) is impaired, which contributes to joint bleeding and may also underlie the aberrant vascular remodeling. Here, hemophilia A (factor VIII-deficient; FVIII-deficient) mice or TAFI-deficient mice with transient (antibody-induced) hemophilia A were used to determine the role of FVIII and TAFI in vascular remodeling after joint bleeding. Excessive vascular remodeling and vessel enlargement persisted in FVIII-deficient and TAFI-deficient mice, but not in transient hemophilia WT mice, after similar joint bleeding. TAFI-overexpression in FVIII-deficient mice prevented abnormal vessel enlargement and vascular leakage. Age-related vascular changes were observed with FVIII or TAFI deficiency and correlated positively with bleeding severity after injury, supporting increased vascularity as a major contributor to joint bleeding. Antibody-mediated inhibition of uPA also prevented abnormal vascular remodeling, suggesting that TAFI's protective effects include inhibition of uPA-mediated plasminogen activation. In conclusion, the functional TAFI deficiency in hemophilia drives maladaptive vascular remodeling in the joints after bleeding. These mechanistic insights allow targeted development of potentially new strategies to normalize vascularity and control rebleeding in HA.


Assuntos
Carboxipeptidase B2/genética , Carboxipeptidase B2/metabolismo , Fator VIII/genética , Hemartrose/complicações , Hemofilia A/complicações , Hemofilia A/genética , Remodelação Vascular/fisiologia , Animais , Modelos Animais de Doenças , Fator VIII/metabolismo , Feminino , Predisposição Genética para Doença/genética , Hemartrose/patologia , Hemofilia A/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transcriptoma
3.
PLoS One ; 14(4): e0214938, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30951532

RESUMO

T cells are crucial players in obesity-mediated adipose tissue inflammation. We hypothesized that osteopontin (OPN), an inflammatory protein with enhanced activity when proteolytically cleaved, affects the number of viable T cells in adipose tissue and assessed inhibition of the interaction between T cells and thrombin and matrix metalloproteinases-cleaved OPN using antibodies and postimmune sera. Gene expression of T cell markers in adipose tissue from wild-type (wt) and Spp1-/- (OPN deficient) mice was analyzed after 16 weeks of high fat diet (HFD) or low fat diet (LFD) feeding. CD3, CD8 and OPN gene expression in omental adipose tissue from individuals with obesity was measured. OPN-T cell interactions were assessed with a fluorescence-based adhesion assay and blocked with antibodies targeting OPN. Comparison of T cell gene expression in adipose tissue from wt and Spp1-/- mice showed that OPN affected the number of T cells while in humans, levels of OPN correlated with T cell markers in omental adipose tissue. The interaction between T cells and cleaved OPN was blocked by postimmune sera following OPN peptide vaccinations and with monoclonal antibodies. In conclusion, levels of OPN affected the number of T cells in obesity and antibodies against cleaved OPN antagonize OPN-T cell interactions.


Assuntos
Tecido Adiposo/imunologia , Anticorpos/imunologia , Citotoxicidade Celular Dependente de Anticorpos , Obesidade/imunologia , Osteopontina/imunologia , Paniculite/imunologia , Proteólise , Linfócitos T/imunologia , Tecido Adiposo/patologia , Animais , Anticorpos/genética , Antígenos CD5/genética , Antígenos CD5/imunologia , Antígenos CD8/genética , Antígenos CD8/imunologia , Feminino , Regulação da Expressão Gênica/imunologia , Humanos , Inflamação/genética , Inflamação/imunologia , Inflamação/patologia , Masculino , Camundongos , Camundongos Knockout , Obesidade/genética , Obesidade/patologia , Osteopontina/genética , Paniculite/genética , Paniculite/patologia , Linfócitos T/patologia
4.
Mol Metab ; 5(11): 1131-1137, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27818939

RESUMO

OBJECTIVE: Recent findings point towards an important role of local macrophage proliferation also in obesity-induced adipose tissue inflammation that underlies insulin resistance and type 2 diabetes. Osteopontin (OPN) is an inflammatory cytokine highly upregulated in adipose tissue (AT) of obese and has repeatedly been shown to be functionally involved in adipose-tissue inflammation and metabolic sequelae. In the present work, we aimed at unveiling both the role of OPN in human monocyte and macrophage proliferation as well as the impact of OPN deficiency on local macrophage proliferation in a mouse model for diet-induced obesity. METHODS: The impact of recombinant OPN on viability, apoptosis, and proliferation was analyzed in human peripheral blood monocytes and derived macrophages. Wild type (WT) and OPN knockout mice (SPP1KO) were compared with respect to in vivo adipose tissue macrophage and in vitro bone marrow-derived macrophage (BMDM) proliferation. RESULTS: OPN not only enhanced survival and decreased apoptosis of human monocytes but also induced proliferation similar to macrophage colony stimulating factor (M-CSF). Even in fully differentiated monocyte-derived macrophages, OPN induced a proliferative response. Moreover, proliferation of adipose tissue macrophages in obese mice was detectable in WT but virtually absent in SPP1KO. In BMDM, OPN also induced proliferation while OPN as well as M-CSF-induced proliferation was similar in WT and SPP1KO. CONCLUSIONS: These data confirm that monocytes and macrophages not only are responsive to OPN and migrate to sites of inflammation but also they survive and proliferate more in the presence of OPN, a mechanism also strongly confirmed in vivo. Therefore, secreted OPN appears to be an essential player in AT inflammation, not only by driving monocyte chemotaxis and macrophage differentiation but also by facilitating local proliferation of macrophages.


Assuntos
Tecido Adiposo/citologia , Proliferação de Células , Macrófagos , Obesidade , Osteopontina/fisiologia , Animais , Diabetes Mellitus Tipo 2 , Humanos , Inflamação , Resistência à Insulina , Camundongos , Camundongos Knockout
5.
Immunol Lett ; 179: 85-94, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27639826

RESUMO

Obesity causes insulin resistance via a chronic low-grade inflammation. This inflammation is characterized by elevated pro-inflammatory markers and macrophage accumulation in the adipose tissue (AT). AT inflammation is a key factor causing insulin resistance and thus type 2 diabetes, both linked to atherosclerotic cardiovascular disease. Osteopontin (OPN), a well-known inflammatory cytokine, is involved in obesity-linked complications including AT inflammation, insulin resistance, atherosclerosis and CVD. During inflammation, OPN is proteolytically cleaved by matrix metalloproteinases or thrombin leading to increased OPN activity. Therefore, OPN provides a new interesting target for immunological prevention and treatment of obesity-associated diseases. The aim of our study was to evaluate peptide-based vaccines against integrin binding sites of OPN and to examine whether these active immunotherapies are functional in reducing metabolic tissue inflammation, insulin resistance, and atherosclerosis in a cardio-metabolic (Ldlr-/- mice) and a diet-induced obesity model (WT mice). However, atherosclerosis, insulin resistance and AT inflammation were not diminished after treatment with OPN-derived peptides in murine models. Lack of efficacy was based on a failure to induce antibodies capable to bind epitopes in the context of functional OPN protein. In conclusion, our data point to unexpected challenges in the immunotherapeutic targeting of adhesive motives, such as RGD containing sequences, on endogenous proteins.


Assuntos
Sítios de Ligação/imunologia , Cardiopatias/metabolismo , Integrinas/metabolismo , Doenças Metabólicas/metabolismo , Osteopontina/imunologia , Osteopontina/metabolismo , Fragmentos de Peptídeos/imunologia , Animais , Anticorpos/sangue , Anticorpos/imunologia , Aterosclerose/etiologia , Aterosclerose/metabolismo , Aterosclerose/patologia , Biomarcadores , Reações Cruzadas/imunologia , Modelos Animais de Doenças , Cardiopatias/sangue , Cardiopatias/etiologia , Cardiopatias/terapia , Imunização , Inflamação/etiologia , Inflamação/metabolismo , Resistência à Insulina , Integrinas/química , Masculino , Doenças Metabólicas/sangue , Doenças Metabólicas/etiologia , Doenças Metabólicas/terapia , Camundongos , Camundongos Knockout , Obesidade/metabolismo , Osteopontina/química , Fragmentos de Peptídeos/administração & dosagem , Ligação Proteica , Receptores de LDL/deficiência
6.
Obesity (Silver Spring) ; 24(7): 1489-98, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27221527

RESUMO

OBJECTIVE: Macrophages are the main drivers of obesity-induced adipose tissue (AT) inflammation that causes insulin resistance. Macrophages polarize toward different inflammatory (M1) or protective (M2) phenotypes. Osteopontin (OPN) is an inflammatory cytokine highly expressed in AT in obesity and known to be involved in chronic inflammatory processes. It was hypothesized that OPN polarizes macrophages into a proinflammatory phenotype. METHODS: AT macrophages (ATMs) of OPN-deficient (Spp1(-/-) ) and wild-type C57BL/6 (WT) mice with obesity and bone marrow-derived macrophages (BMDMs) of Spp1(-/-) and WT mice as well as human monocyte-derived macrophages (MDMs) polarized in the presence of OPN were investigated. RESULTS: While ATM infiltration was lower in Spp1(-/-) upon high-fat diet, Spp1(-/-) ATMs expressed more M1 and less M2 markers but less tumor necrosis factor-α compared with WT. There was no effect of OPN deficiency on BMDM polarization. In human MDMs, the presence of OPN during polarization ambiguously altered M1/M2-related marker expression and diminished LPS-induced inflammatory cytokine production. Strikingly, phagocytic activity was elevated by the presence of OPN during polarization in both human MDMs and murine BMDMs. CONCLUSIONS: In contradiction to our hypothesis, data indicated that OPN does not induce inflammatory macrophages but was a signal to induce phagocytosis, which may be required due to increased adipocyte death in obesity.


Assuntos
Macrófagos/fisiologia , Obesidade/fisiopatologia , Osteopontina/metabolismo , Adipócitos/fisiologia , Tecido Adiposo/metabolismo , Animais , Dieta Hiperlipídica , Inflamação/fisiopatologia , Resistência à Insulina , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fagocitose/fisiologia , Fenótipo , Fator de Necrose Tumoral alfa/metabolismo
7.
PLoS One ; 9(12): e114469, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25474576

RESUMO

BACKGROUND: Low Density Lipoprotein (LDL) hypercholesterolemia, and its associated cardiovascular diseases, are some of the leading causes of death worldwide. The ability of proprotein convertase subtilisin/kexin 9 (PCSK9) to modulate circulating LDL cholesterol (LDLc) concentrations made it a very attractive target for LDLc management. To date, the most advanced approaches for PCSK9 inhibition are monoclonal antibody (mAb) therapies. Although shown to lower LDLc significantly, mAbs face functional limitations because of their relatively short in vivo half-lives necessitating frequent administration. Here, we evaluated the long-term efficacy and safety of PCSK9-specific active vaccines in different preclinical models. METHODS AND FINDING: PCSK9 peptide-based vaccines were successfully selected by our proprietary technology. To test their efficacy, wild-type (wt) mice, Ldlr+/- mice, and rats were immunized with highly immunogenic vaccine candidates. Vaccines induced generation of high-affine PCSK9-specific antibodies in all species. Group mean total cholesterol (TC) concentration was reduced by up to 30%, and LDLc up to 50% in treated animals. Moreover, the PCSK9 vaccine-induced humoral immune response persisted for up to one year in mice, and reduced cholesterol levels significantly throughout the study. Finally, the vaccines were well tolerated in all species tested. CONCLUSIONS: Peptide-based anti-PCSK9 vaccines induce the generation of antibodies that are persistent, high-affine, and functional for up to one year. They are powerful and safe tools for long-term LDLc management, and thus may represent a novel therapeutic approach for the prevention and/or treatment of LDL hypercholesterolemia-related cardiovascular diseases in humans.


Assuntos
Hipercolesterolemia/terapia , Pró-Proteína Convertases/antagonistas & inibidores , Vacinação , Animais , LDL-Colesterol/sangue , Feminino , Hipercolesterolemia/sangue , Hipercolesterolemia/imunologia , Masculino , Camundongos da Linhagem 129 , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pró-Proteína Convertase 9 , Pró-Proteína Convertases/imunologia , Ratos Wistar , Serina Endopeptidases/imunologia , Vacinas de Subunidades Antigênicas/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA